追及和相遇问题典型例题分析
第12讲 追及和相遇问题(解析版)

第12讲 追及和相遇问题甲、乙两人沿平直的公路进行自行车追逐比赛,他们初始在同一位置A ,某时刻甲以12m/s 的速度从A 位置开始匀速运动,经过时间2s 后,乙再从A 位置出发追赶甲,乙先做初速度为零的匀加速直线运动,加速度大小为23m/s ,速度达到15m/s 后做匀速直线运动。
(1)求乙追上甲之前,甲、乙间的最大距离; (2)经过多少时间乙才能追上甲?【答案】(1)4s ;(2)20.5s 【解析】(1)乙出发时,甲运动的位移1124m x vt ==乙追上甲之前,当甲、乙速度相等时,它们间距离最大,设乙运动的时间为2t ,有2v at =解得24s t =甲乙相距的最大距离122m 48m 2vs x vt t =+-=(2)乙加速到最大速度所用的时间为m35s v t a== 设乙运动4t 时间追赶上甲,则()2143m 4312x vt at v t t +=+- 解得420.5st1.追及相遇问题两物体在同一直线上一前一后运动,速度相同时它们之间可能出现距离最大、距离最小或者相遇(碰撞)的情况,这类问题称为追及相遇问题.2.分析追及相遇问题的思路和方法(1)讨论追及相遇问题的实质是分析两物体能否在同一时刻到达同一位置,注意抓住一个条件、用好两个关系.一个条件速度相等这是两物体是否追上(或相撞)、距离最大、距离最小的临界点,是解题的切入点两个关系时间关系和位移关系通过画示意图找出两物体位移之间的数量关系,是解题的突破口(2)常用方法物理分析法抓住“两物体能否同时到达同一位置”这一关键,认真审题,挖掘题中的隐含条件,建立物体运动关系的图景,并画出运动情况示意图,找出位移关系图像法将两者的v-t图像画在同一坐标系中,然后利用图像分析求解数学分析法设从开始到相遇的时间为t,根据条件列位移关系方程,得到关于t的一元二次方程,用判别式进行讨论.若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相碰例题1.平直公路上有甲、乙两辆汽车,甲以0.5 m/s2的加速度由静止开始行驶,乙在甲的前方200 m处以5 m/s的速度做同方向的匀速运动,问:(1)甲何时追上乙?甲追上乙时的速度为多大?此时甲离出发点多远?(2)在追赶过程中,甲、乙之间何时有最大距离?这个距离为多少?【答案】(1)40 s20 m/s400 m(2)10 s225 m【解析】(1)设甲经过时间t 追上乙,则有x 甲=12a 甲t 2,x 乙=v 乙t ,根据追及条件,有12a 甲t 2=x 0+v 乙t ,代入数据解得t =40 s 和t =-20 s(舍去) 这时甲的速度v 甲=a 甲t =0.5×40 m/s =20 m/s 甲离出发点的位移x 甲=12a 甲t 2=12×0.5×402 m =400 m.(2)在追赶过程中,当甲的速度小于乙的速度时,甲、乙之间的距离仍在继续增大;但当甲的速度大于乙的速度时,甲、乙之间的距离便不断减小;当v 甲=v 乙,甲、乙之间的距离达到最大值.由a 甲t ′=v 乙,得t ′=v 乙a 甲=50.5 s =10 s ,即甲在10 s 末离乙的距离最大.x max =x 0+v 乙t ′-12a 甲t ′2=200 m +5×10 m -12×0.5×102 m =225 m.对点训练1. 汽车以20 m/s 的速度在平直公路上行驶时,制动后40 s 停下来.现在同一平直公路上以20 m/s 的速度行驶时发现前方200 m 处有一货车以6 m/s 的速度同向匀速行驶,司机立即制动,则:(1)求汽车刹车时的加速度大小;(2)是否发生撞车事故?若发生撞车事故,在何时发生?若没有撞车,两车最近距离为多少? 【答案】(1)0.5 m/s 2 (2)不会相撞 4 m 【解析】(1)汽车制动加速度大小a =v At =0.5 m/s 2(2)当汽车减速到与货车共速时t 0=v A -v Ba =28 s汽车运动的位移x 1=v A 2-v B 22a =364 m此时间内货车运动的位移为x 2=v B t 0=168 m Δx =x 1-x 2=196 m <200 m ,所以两车不会相撞.此时两车相距最近,最近距离Δs =x 0-Δx =200 m -196 m =4 m.例题2. 甲、乙两汽车在同一条平直公路上同向运动,其速度-时间图像分别为如图所示的甲、乙两条图线。
小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。
常见的追及与相遇问题类型及其解法

追及与相遇问题专题知识要点:一、相遇是指两物体分别从相距S的两地相向运动到同一位置,它的特点是:两物体运动的距离之和等于S,分析时要注意:(1)、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;(2)、两物体各做什么形式的运动;(3)、由两者的时间关系,根据两者的运动形式建立S=S1+S2方程;二、追及是指两个物体在追赶过程中处在同一位置,问题的特征及处理方法:常见的情形有三种:1 速度小者匀加速追速度大者,一定能追上,追上前有最大距离的条件:两物体速度相等,即。
例: 一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3 m/s2的加速度开始行驶,恰在这时一辆自行车以6 m/s的速度匀速驶来,从后面超过汽车.(1)汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)什么时候汽车追上自行车,此时汽车的速度是多少?⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
例:一车处于静止状态,车后距车S0=25m处有一个人,当车以1m/s2的加速度开始起动时,人以6m/s的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时。
提示:此类问题常涉及相撞,相撞是指两个物体在追赶过程中处在同一位置时后者速度大于前者速度,零界点是:两物体在同一位置时速度相等,恰巧不相撞。
例:一列快车正以20m/s的速度在平直轨道上运动时,发现前方180m处有一货车正以6m/s速度匀速同向行驶,快车立即制动,快车作匀减速运动,经40s才停止,问是否发生碰车事故?例:火车以速度v1匀速行驶,司机发现前方同轨道上相距s处有另一火车沿同方向以速度v2做匀速运动,已知v1>v2司机立即以加速度a紧急刹车,要使两车不相撞,加速度a的大小应满足什么条件?三、分析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
追及与相遇问题(详解)

追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。
一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。
a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。
⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。
即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。
⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。
匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
追及与相遇问题知识详解及典型例题

追及与相遇问题追及和相遇问题主要涉及在同一直线上运动的两个物体的运动关系,所应用的规律是匀变速直线运动的相关规律。
追及、相遇问题常常涉及到临界问题,分析临界状态,找出临界条件是解决这类问题的关键。
速度相等是物体恰能追上或恰不相碰、或间距最大或最小的临界条件。
在两物体沿同一直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出。
解答追及、相遇问题时要特别注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据。
1. 追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。
如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离。
若二者相遇时(追上了),追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值。
再如初速度为零的匀加速运动的物体追从同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上。
“追上”的主要条件是两个物体在追赶过程中处在同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即v甲=v乙;二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件:两物体速度相等,即v甲>v乙,此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若v甲>v乙,则能追上去,若v甲<v乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小;三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似。
追及相遇问题分析

x 6t
3 2
t 0
2
T 4s
v 汽 aT 12 m / s
s汽
1 2
aT = 24 m
2
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中, 以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个 物理量的分别为:v0=-6m/s,a=3m/s2,vt=0
v t v 0 2 ax 0
2 t 2 0
a
v v
2 x0
0 10
2
2 100
m / s 0 .5 m / s
2
2
则 a 0 .5 m / s
2
以B为参照物,公式中的各个量都应是相对于B的 物理量.注意物理量的正负号.
①若甲在乙前,则追上,并相遇两次 ②若甲乙在同一处,则甲恰能追上乙
③若甲在乙后面,则甲追不上乙,此 时是相距最近的时候
情况同上 若涉及刹车问题,要先 求停车时间,以作判别!
(2)相遇 ①同向运动的两物体的追击即相遇 ②相向运动的物体,当各自位移大小之和等于开 始时两物体的距离,即相遇 (3)相撞 两物体“恰相撞”或“恰不相撞”的临界条件: 两物体在同一位置时,速度恰相同 若后面的速度大于前面的速度,则相撞。 3、解题方法
问:xm=-6m中负号表示什么意思?
表示汽车相对于自行车是向后运动的,其相对于自行车 的位移为向后6m.
例2:A火车以v1=20m/s速度匀速行驶,司机发现前方 同轨道上相距100m处有另一列火车B正以v2=10m/s速 度匀速行驶,A车立即做加速度大小为a的匀减速直线 运动。要使两车不相撞,a应满足什么条件?
v/ms
小学数学典型应用题相遇和追及问题

小学数学典型应用题相遇和追及问题相遇问题含义:两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
这类应用题叫做相遇问题。
数量关系:相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间解题思路和方法:简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
例题1:欢欢和乐乐在一条马路的两端相向而行,欢欢每分钟行60米,乐乐每分钟行80米,他们同时出发5分钟后相遇。
这条马路长()。
解:根据公式总路程=(甲速+乙速)×相遇时间,可以求出这条马路长(60+80)×5=700(米)。
例题2:甲乙两车分别以不变的速度从AB两地同时出发,相向而行。
到达目的地后立即返回。
已知第一次相遇地点距离A地50千米,第二次相遇地点距离B地60千米,AB两地相距_____千米。
解:1、本题考查的是二次相遇问题,灵活的运用画线段图的方法来分析是解决这类问题的关键。
2、画线段图3、从图中可以看出,第一次相遇时甲行了50千米。
甲乙合行了一个全程的路程。
从第一次相遇后到第二次相遇,甲乙合行了两个全程的路程。
由于甲乙速度不变,合行两个全程时,甲能行50×2=100(千米)。
4、因此甲一共行了50+100=150(千米),从图中看甲所行路程刚好比AB两地相距路程还多出60千米。
所以AB两地相距150-60=90(千米)。
例题3:欢欢和乐乐在相距80米的直跑道上来回跑步,乐乐的速度是每秒3米,欢欢的速度是每秒2米。
如果他们同时分别从跑道两端出发,当他们跑了10分钟时,在这段时间里共相遇过_____次。
解:1、根据题意,第一次相遇时,两人共走了一个全程,但是从第二次开始每相遇一次需要的时间都是第一次相遇时间的两倍。
(线段图参考例2。
)2、根据“相遇时间=总路程÷速度和”得到,欢欢和乐乐首次相遇需要80÷(3+2)=16(秒)。
追及和相遇问题

追及和相遇问题分析关键:(1)画好运动情景图;(2)速度相等是出现最值得临界条件;(3)抓住位移、速度、时间的关系列式。
1.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s 的速度从车边匀速驶过.试求:(1)汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)什么时候汽车追上自行车,此时汽车的速度是多少?2.一辆值勤的警车停在公路边,当警员发现从他旁边以v0=8 m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经t0=2.5s,警车发动起来,以加速度a=2m/s2做匀加速运动。
试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?3.一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?1.解法一(1)汽车开动后速度由零逐渐增大,而自行车的速度是定值.当汽车的速度还小于自行车的速度时,两者的距离越来越大,而一旦汽车的速度大于自行车的速度,两车的距离就会越来越小.因此两者速度相等时距离最大,有v汽=at=v自所以t=v自/a=2s(2)当汽车追上自行车时,两车位移相等,则v自t′=1/2at2,则可得t′=4s.解法二用数学求极值方法来求解设汽车在追上自行车之前经时间t两车相距最远.解法三用相对运动求解选匀速运动的自行车为参考系,则从运动开始到相距最远的这段时间内,汽车相对此参考系的各个物理量为初速度v0=v汽初-v自=(0-6)m/s=-6m/s末速度v S=v汽末-v自=(6-6)=0加速度a=a汽-a自=(3-0)m/s2=3m/s2所以相距最远(负号表示汽车落后)解法四用图象法求解(1)自行车和汽车的v-t图象如图所示,由于曲线与横坐标所包围的面积表示位移的大小,所以由图上可以看出:在相遇之前,在t时刻两车速度相等时,自行车的位移(矩形面积)与汽车位移(三角形面积)之差(即斜线部分)达最大,所以t=v自/a=2s(2)由图可以看出:在t时刻以后,当自行车的速度曲线与汽车的速度曲线与横轴所围成的面积相等时,表示两者的位移相等,即汽车追上了自行车.由图可以看出该时刻为t′=4s.此时v 汽=at′=3×4m/s=12m/s.2.解:(1)设警车追上货车所用时间为t1,则两车的位移分别为x警1=,x货1=追上时两车位移相等,x警1= x货1,即解得追上时所用时间t1=10 s(另一解不符合题意,舍去)(2)警车和货车速度相等时相距最远,设警车从发动到与货车同速所需的时间为t2,v警=at2,v货=v0由v警=v货得,at2=v0,即相距最远时警车所用时间此时货车的位移x货2=v0(t0+t2)=8×(2.5+4) m=52 m警车的位移两车间的最大距离△x max=x货2-x警2=52m-16m=36 m3.【答案】:(l)警车在追赶货车的过程中,当两车速度相等时.它们的距离最大,设警车发动后经过t1时间两车的速度相等.则.s货=(5.5+4)×10m = 95ms警所以两车间的最大距离△s=s货-s警=75m ………………..5分(2) v0=90km/h=25m/s,当警车刚达到最大速度时,运动时间s货’=(5.5+10)×10m=155ms警’=因为s货’>s警’,故此时警车尚未赶上货车,且此时两车距离△s’=s货’-s警’=30m警车达到最大速度后做匀速运动,设再经过△t时间迫赶上货车.则:所以警车发动后要经过才能追上货车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追及和相遇问题注意“两个关系”和“一个条件”,“两个关系”即时间关系和位移关系;“一个条件”即两者速度相等,它往往是物体间能否追上或两物体距离最大、最小的临界条件,也是分析判断问题的切入点.一、匀速追匀加速:1. 如图(甲)所示,A车原来临时停在一水平路面上,B 车在后面匀速向A车靠近,A车司机发现后启动A车,以A车司机发现B车为计时起点(t=0), A B两车的v-t图象如图(乙)所示•已知B车在第1s内与A车的距离缩短了x i=12mo(1)求B车运动的速度V B和A车的加速度a的大小.(2)若A B两车不会相撞,则A车司机发现B车时(t=0)两车的距离s o应满足什么条件?2. 一个步行者以6m/s的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m时,绿灯亮了,汽车以1m/s2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少?二、匀速追匀减速:(刹车要计算静止,比较一下静止时是否追上,用静止的时间算)1. 当汽车B在汽车A前方7m时,A正以v a =4m/s的速度向前做匀速直线运动,而汽车B此时速度V b=10m/s, 并关闭油门向前做匀减速直线运动,加速度大小为2m/s2。
此时开始计时,则A追上B需要的时间是多少?2. 甲、乙两车在同一条平直公路上运动,甲车以10 m/s的速度匀速行驶,经过车站A时关闭油门以4m/s2的加速度匀减速前进,2s后乙车与甲车同方向以1m/s2的加速度从同一车站A出发,由静止开始做匀加速运动,问乙车出发后多少时间追上甲车?1. 一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过•求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?2. 一辆值勤的警车停在公路边,当警员发现从他旁边以8m/s 的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s,警车发动起来,以加速度2m/s2做匀加速运动。
试问:(1)警车要多长时间才能追上货车?(2)在警车追上货车之前,两车间的最大距离是多少?3. 羚羊从静止开始奔跑,经过50m距离能加速到最大速度25m/s,,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60m距离能加速到最大速度30m/s,以后只能维持这个速度 4.0s.设猎豹距离羚羊xm时开始攻击,羚羊则在猎豹开始攻击后 1.0s 才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且沿同一直线奔跑.求:(1)猎豹要在其最大速度减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追上羚羊,x 值应在什么范围?1甲乙两车在一平直道路上同向运动,其 v-t 图象如图所示,图中 A OPQ 和A 0Q ■的面积分别为S 1和S 2(S l <S 2)O 初始时,甲车在乙车前方 S o 处。
A. 若S o =S i +S 2,两车不会相遇B. 若S o <S i ,两车相遇2次C. 若S o =S i ,两车相遇1次D. 若S o =S 2,两车相遇1次2.甲、乙两车在公路上沿同一方向做直线运动,它们的v — t 图象如图所示.两图象在t = t i 时相交于P 点,P 在横轴上的投影为 Q △ OPQ 勺面积为S.在t = 0 时刻,乙车在甲车前面,相距为 d .已知此后两车相遇两次,且第一次相遇的时刻 为t ',则下面四组t '和d 的组合可能的是, , 1 1A . t = 11, d = SB. t = ^t 1, d = 4SC.*1, d = 2SD . L=苏 d = 3S五、匀加速追匀减速:1.如图所示,A B 两个物体相距7 m 时,A 在水平拉力和摩擦力的作用下,以V A = 4 m/s向右做匀速直线运动,而物体 B 此时的速度是V B = 10 m/S ,方向向右,它在摩擦力作用下做匀减速直线运动,加速度大小 是2 m/S 2,从图示位置开始计时,经过多少时间A 追上B?A ~~B77777/77777777777777777777?六、匀减速追匀速:1. 汽车正以10m/S 的速度在平直公路上前进, 速直线运动,汽车立即关闭油门做加速度大小为 门时汽车离自行车多远?2. 一辆客车在平直公路以 30m/S 的速度行驶,突然发现正前方40m 处有一货车正以20m/s 的速度沿同一2方向匀速行驶,于是客车立刻刹车,以 2m/s 的加速度做匀减速直线运动,问此后的过程中客车能否撞到货车?突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀6m/S 2的匀减速运动,汽车恰好不碰上自行车。
求关闭油t1. A 、B 两车在同一直线上向右匀速运动,B 车在A 车前,A 车的速度大小为 V=8m/s , B 车的速度大小为V 2=20m/s ,如图所示。
当 A B 两车相距x o =28m 时,B 车因前方突发情况紧急刹车(已知刹车过程的运动可 2视为匀减速直线运动),加速度大小为a =2m/s ,从此时开始计时,求:(1)从安全行驶的角度考虑,为避免两车相撞,在题设条件下,求 小加速度.2. 右图是甲乙两物体从同一地点沿同一方向运动的速度一时间图象,其 中 12=2t1,则A. 在11时刻乙物体在前,甲物体在后B. 甲的加速度比乙小C. 在t i 时刻甲乙两物体相遇D. 在t 2时刻甲乙两物体相遇八、其他追及问题: 1.如图所示,相邻两车站间距相等,在一条直线上•车在两站间行驶时平均速度均为v 车,每次靠站停顿 时间均为t .某同学位于车站 1与车站2之间离车站2较近的某一位置,当车从车站3开动的同时,他向车站2以平均速度v 人奔跑,并恰能赶上汽车,车长不计•于是该同学得出结论:若他仍以此平均速度从 原位置向车站A 车在B 车刹车的同时也应刹车的最结论成立的初位置须满足的条件是什么?1奔跑,也一定能赶得上这辆班车•请你通过计算判断这位同学的结论是否正确?并分析此2. 汽车前方120m有一自行车正以6m/s的速度匀速前进,汽车以18m/s的速度追赶自行车,若两车在同一条公路不同车道上作同方向的直线运动,求:(1)经多长时间,两车第一次相遇?(2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2m/s2,则再经多长时间两车第二次相遇?3. 一客车从静止开始以加速度a做匀加速直线运动的同时,在车尾的后面离车头x远的地方有一乘客以某一恒定速度V正在追赶这辆客车,已知司机从车头反光镜内能看到离车头的最远距离为X o(即人离车头距离超过X o,司机不能从反光镜中看到该人),同时司机从反光镜中看到该人的像必须持续时间在t o内才能注意到该人,这样才能制动客车使车停下来,该乘客要想乘坐上这辆客车,追赶客车匀速运动的速度v 所满足条件的表达式是什么?若a= 1.0 m/s 2, x = 30 m, x o= 20 m , t o = 4.0 s,求v的最小值。
九、接力问题:(匀速追匀加速)1. 甲乙两同学在直跑道上进行4X 100m接力,他们在奔跑时有相同的最大速度,最大速度为10m/s,乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可看做是匀加速直线运动,现在甲持棒以最大速度向乙奔来,乙在接力区伺机全力奔出•若要求乙接棒时奔跑的速度达到最大速度的80%贝(1)按题目描述的,接力的过程甲做什么运动,乙又是做什么运动?平均速度之比是多少?(2)乙在接力区须奔出多少距离?(3)如果乙是傻傻站着接棒,接到棒后才从静止开始全力奔跑,这样会浪费多少时间?2. 甲乙两运动员在训练交接棒的过程中发现:甲经短距离加速后能保持9m s的速度跑完全程;乙从起跑后到接棒前的运动是匀加速的。
为了确定乙起跑的时机,需在接力区前适当的位置设置标记。
在某次练习中,甲在接力区前S0 13.5m处作了标记,并以9m.: s的速度跑到此标记时向乙发出起跑口令。
乙在接力区的前端听口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒。
已知接力区的长度为L 20m。
求:(1)此次练习中乙在接棒前的加速度a。
(2)在完成交接棒时乙离接力区末端的距离。
十、匀变速直线运动中的极值问题:1.汽车由甲地从静止出发沿平直公路驶向乙地停下。
在这段时间内,汽车可做匀速运动,也可做加速度为a匀变速运动。
已知甲、乙两地相距S,那么要使汽车从甲地到乙地所用时间最短,汽车应如何运动?最短时间为多少?十一、红绿灯问题:1 •如图所示,以8m/s匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18m。
该车加速时最大加速度大小为 2 m/s2,减速时最大加速度大小为5m/s2。
此路段允许行驶的最大速度为12.5m/s,下列说法中正确的有A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B •如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D.如果距停车线5m处减速,汽车能停在停车线处2. 在某市区内,一辆小汽车在公路上以速度v i向东行驶,一位观光游客正由南向北从斑马线上横过马路。
汽车司机发现游客途经D处时,经过0.7s作出反应紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下,如图所示。
为了判断汽车司机是否超速行驶以及游客横穿马路的速度是否过快,警方派一警车以法定最高速度v m= 14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车, 经14.0 m后停下来。
在事故现场测得AB = 17.5 m, BC = 14.0 m, BD = 2.6 m.肇事汽车的刹车性能良好,问:(1)该肇事汽车的初速度v A是多大?(2)游客横过马路的速度是多大?。