数值分析第四章典型例题
数值分析第四章习题

数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。
〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。
〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。
〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。
〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。
〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。
〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
数值分析第四章

考察其代数精度。
f(x)
解:逐次检查公式是否精确成立
代入 P0 = 1:ab1dx梯b形a公=式b2a[11] f(a)
f(b)
代入
P1
=
x
:
b
xdx
a
b2
a2 2
=
b2a[ab]
a
b
代入
P2
=
x2
:b a
x2dx
b3a3 3
b2a[a2 b2]
代数精度 = 1
10
n
注:形如 Ak f (xk ) 的求积公式至少有 n 次代数精度 该
………………
23
< ?
R1 = T3(0)
➢ 理查德森外推法 /* Richardson外推法 */
利用低阶公式产生高精度的结果。 i 与 h 无关
设对于某一 h 0,有公式 T0(h) 近似计算某一未知值 I。由
Taylor展开得到: T0(h) I = 1 h + 2 h2 + 3 h3 + …
项式
n
Ln(x)f
(xk)lk(,x)即得到
k0
b
n
b
f(x)dx
a
f(xk)alk(x)dxAk
k0
误差 R[ f ]
b
n
f ( x )dx a
Ak f ( xk )
k0
b
b
b
Ak a
jk
(xxj ) (xkxj )
d
x由与节f (点x)
决定, 无关。
[
a
f
(x)
Ln ( x )]dx
是精确的,但对m次1多项式不精确,则称(1) 具有 m次代数精度。
数值分析答案第四章

令
f (x) = x ,则
0 = −1 + 2 x1 + 3 x2
令 f ( x ) = x 2 ,则
2 2 = 1 + 2 x12 + 3 x2
从而解得
⎧ x1 = −0.2899 ⎧ x1 = 0.6899 或⎨ ⎨ ⎩ x2 = 0.5266 ⎩ x2 = 0.1266
令 f ( x ) = x 3 ,则
∫
1
−1
f ( x)dx = ∫ x3 dx = 0
−1
1
[ f ( −1) + 2 f ( x1 ) + 3 f ( x2 )] / 3 ≠ 0
故
∫
1
−1
f ( x)dx = [ f (− 1) + 2 f ( x1 ) + 3 f ( x2 )] / 3不成立。
h
因此,原求积公式具有 2 次代数精度。 (4)若
7 h T8 = [ f ( a) + 2∑ f ( xk ) + f ( b)] = 0.11140 2 k =1
复化辛普森公式为
7 7 h S8 = [ f ( a) + 4∑ f ( x 1 ) + 2∑ f ( xk ) + f ( b)] = 0.11157 k+ 6 k=0 k =1 2 1
令 f ( x ) = x 2 ,则
b 1 3 3 2 f ( x ) dx = ∫a ∫a x dx = 3 (b − a ) b −a 1 3 3 [7 f ( x0 ) + 32 f ( x1 ) + 12 f ( x2 )+ 32 f ( x (b − a ) 3 )+ 7 f ( x 4 )]= 90 3 b
典型例题与习题

a
2
b f ( x)dx (b a) f ( a b ) f () (b a)3
a
2
24
9/16
Ex2.复合左矩形求积公式旳求积误差
b a
n1
f ( x)dx h
j0
f (a
h2 jh)
2
n j1
f ( j )
设被积函数在积分区间上旳一阶导数连续,由连续函数
介值定理
1
n
n j 1
N 1
[
n0
f
(
xn
)
4
f
(
xn1/
2
)
f ( xn1 )]
其中, h = (b – a )/N, xn= a + n h ( n = 0,1,2,···, N)
13/16
Ex8.将线性常系数非齐次高阶常微分方程初值问题:
y(n) + a1 y(n-1) + a2 y(n-2) +·······+ an y = f( x, y, ····, y(n-1))
Gm
(h)
4m
Gm
1
(
h 2
)
Gm
1
(h)
4m 1
f ( x) Gm (h) O(h2(m1) )
练习:二阶中心差商旳外推公式?
6/16
常微分方程初值问题 1. Euler措施
y f ( x, y) x x0
y(
x0
)
y0
y0 yn1
y( x0 ), yn
xn1 xn h hf ( xn , yn ),(n
16/16
N 1
试证明用Euler公式计算成果为 y(b) f (tn )h
数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
数值分析习题与答案

第一章绪论习题一1.设x>0,x的相对误差为δ,求fx=ln x的误差限;解:求lnx的误差极限就是求fx=lnx的误差限,由公式1.2.4有已知x的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限;解:直接根据定义和式1.2.21.2.3则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确12解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式;124.近似数x=0.0310,是 3 位有数数字;5.计算取,利用:式计算误差最小;四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计5.8;线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少解:用误差估计式5.8,令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f0.23的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式5.14当n=3时得Newton均差插值多项式N3x=1.0067x+0.08367xx-0.2+0.17400xx-0.2x-0.3由此可得f0.23 N30.23=0.23203由余项表达式5.15可得由于7. 给定fx=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式5.17得其中计算时用Newton后插公式5.18误差估计由公式5.19得这里仍为0.5658.求一个次数不高于四次的多项式px,使它满足解:这种题目可以有很多方法去做,但应以简单为宜;此处可先造使它满足,显然,再令px=x22-x+Ax2x-12由p2=1求出A= ,于是9. 令称为第二类Chebyshev多项式,试求的表达式,并证明是-1,1上带权的正交多项式序列;解:因10. 用最小二乘法求一个形如的经验公式,使它拟合下列数据,并计算均方误差.解:本题给出拟合曲线,即,故法方程系数法方程为解得最小二乘拟合曲线为均方程为11. 填空题1 满足条件的插值多项式px=.2 ,则f1,2,3,4=,f1,2,3,4,5=.3 设为互异节点,为对应的四次插值基函数,则=,=.4 设是区间0,1上权函数为ρx=x的最高项系数为1的正交多项式序列,其中,则=,=答:1234第4章数值积分与数值微分习题41. 分别用复合梯形公式及复合Simpson公式计算下列积分.解本题只要根据复合梯形公式6.11及复合Simpson公式6.13直接计算即可;对,取n=8,在分点处计算fx的值构造函数表;按式6.11求出,按式 6.13求得,积分2. 用Simpson公式求积分,并估计误差解:直接用Simpson公式6.7得由6.8式估计误差,因,故3. 确定下列求积公式中的待定参数,使其代数精确度尽量高,并指明求积公式所具有的代数精确度.123解:本题直接利用求积公式精确度定义,则可突出求积公式的参数;1令代入公式两端并使其相等,得解此方程组得,于是有再令,得故求积公式具有3次代数精确度;2令代入公式两端使其相等,得解出得而对不准确成立,故求积公式具有3次代数精确度; 3令代入公式精确成立,得解得,得求积公式对故求积公式具有2次代数精确度;4. 计算积分,若用复合Simpson公式要使误差不超过,问区间要分为多少等分若改用复合梯形公式达到同样精确度,区间应分为多少等分解:由Simpson公式余项及得即,取n=6,即区间分为12等分可使误差不超过对梯形公式同样,由余项公式得即取n=255才更使复合梯形公式误差不超过5. 用Romberg求积算法求积分,取解:本题只要对积分使用Romberg算法6.20,计算到K =3,结果如下表所示;于是积分,积分准确值为0.7132726.用三点Gauss-Legendre求积公式计算积分.7.解:本题直接应用三点Gauss公式计算即可;由于区间为,所以先做变换于是本题精确值8.用三点Gauss-Chebyshev求积公式计算积分解:本题直接用Gauss-Chebyshev求积公式计算即于是,因n=2,即为三点公式,于是,即故8. 试确定常数A,B,C,及α,使求积公式有尽可能高的代数精确度,并指出所得求积公式的代数精确度是多少.它是否为Gauss型的求积公式解:本题仍可根据代数精确度定义确定参数满足的方程,令对公式精确成立,得到由24得A=C,这两个方程不独立;故可令,得5由35解得,代入1得则有求积公式令公式精确成立,故求积公式具有5次代数精确度;三点求积公式最高代数精确度为5次,故它是Gauss型的;第五章解线性方程组的直接法习题五1. 用Gauss消去法求解下列方程组.解本题是Gauss消去法解具体方程组,只要直接用消元公式及回代公式直接计算即可;故2. 用列主元消去法求解方程组并求出系数矩阵A的行列式detA的值解:先选列主元,2行与1行交换得消元3行与2行交换消元回代得解行列式得3. 用Doolittle分解法求的解.解:由矩阵乘法得再由求得由解得4. 下述矩阵能否作Doolittle分解,若能分解,分解式是否唯一解:A中,若A能分解,一步分解后,,相互矛盾,故A不能分解,但,若A中1行与2行交换,则可分解为LU对B,显然,但它仍可分解为分解不唯一,为一任意常数,且U奇异;C可分解,且唯一;5. 用追赶法解三对角方程组Ax=b,其中解:用解对三角方程组的追赶法公式3.1.2和3.1.3计算得6. 用平方根法解方程组解:用分解直接算得由及求得7. 设,证明解:即,另一方面故9.设计算A的行范数,列范数及F-范数和2范数解:故10.设为上任一种范数,是非奇异的,定义,证明证明:根据矩阵算子定义和定义,得令,因P非奇异,故x与y为一对一,于是10. 求下面两个方程组的解,并利用矩阵的条件数估计.,即,即解:记则的解,而的解故而由3.12的误差估计得表明估计略大,是符合实际的;11.是非题若"是"在末尾填+,"不是"填-:题目中1若A对称正定,,则是上的一种向量范数2定义是一种范数矩阵3定义是一种范数矩阵4只要,则A总可分解为A=LU,其中L为单位下三角阵,U为非奇上三角阵5只要,则总可用列主元消去法求得方程组的解6若A对称正定,则A可分解为,其中L为对角元素为正的下三角阵7对任何都有8若A为正交矩阵,则答案:1+2-3+4-5+6+7-8+第六章解线性方程组的迭代法习题六1.证明对于任意的矩阵A,序列收敛于零矩阵解:由于而故2. 方程组1 考查用Jacobi法和GS法解此方程组的收敛性.2 写出用J法及GS法解此方程组的迭代公式并以计算到为止解:因为具有严格对角占优,故J法与GS法均收敛;2J法得迭代公式是取,迭代到18次有GS迭代法计算公式为取3. 设方程组证明解此方程的Jacobi迭代法与Gauss-Seidel迭代法同时收敛或发散解:Jacobi迭代为其迭代矩阵,谱半径为,而Gauss-Seide 迭代法为其迭代矩阵,其谱半径为由于,故Jacobi迭代法与Gauss-Seidel法同时收敛或同时发散;4. 下列两个方程组Ax=b,若分别用J法及GS法求解,是否收敛解:Jacobi法的迭代矩阵是即,故,J法收敛、GS法的迭代矩阵为故,解此方程组的GS法不收敛;5. 设,detA≠0,用,b表示解方程组Ax=f 的J法及GS法收敛的充分必要条件.解J法迭代矩阵为,故J法收敛的充要条件是;GS法迭代矩阵为由得GS法收敛得充要条件是6. 用SOR方法解方程组分别取ω=1.03,ω=1,ω=1.1精确解,要求当时迭代终止,并对每一个ω值确定迭代次数解:用SOR方法解此方程组的迭代公式为取,当时,迭代5次达到要求若取,迭代6次得7. 对上题求出SOR迭代法的最优松弛因子及渐近收敛速度,并求J法与GS法的渐近收敛速度.若要使那么J法GS法和SOR法各需迭代多少次解:J法的迭代矩阵为,故,因A为对称正定三对角阵,最优松弛因子J法收敛速度由于,故若要求,于是迭代次数对于J法,取K=15对于GS法,取K=8对于SOR法,取K=58. 填空题1要使应满足.2 已知方程组,则解此方程组的Jacobi迭代法是否收敛.它的渐近收敛速度RB=.3 设方程组Ax=b,其中其J法的迭代矩阵是.GS法的迭代矩阵是.4 用GS法解方程组,其中a为实数,方法收敛的充要条件是a满足.5 给定方程组,a为实数.当a满足,且0<ω<2时SOR迭代法收敛.答:12J法是收敛的,3J法迭代矩阵是,GS法迭代矩阵4满足5满足第七章非线性方程求根习题七1.用二分法求方程的正根,使误差小于0.05解使用二分法先要确定有根区间;本题fx=x2-x-1=0,因f1=-1,f2=1,故区间1,2为有根区间;另一根在-1,0内,故正根在1,2内;用二分法计算各次迭代值如表;其误差2. 求方程在=1.5附近的一个根,将方程改写成下列等价形式,并建立相应迭代公式.1 ,迭代公式.2 ,迭代公式.3,迭代公式.试分析每种迭代公式的收敛性,并选取一种收敛最快的方法求具有4位有效数字的近似根解:1取区间且,在且,在中,则L<1,满足收敛定理条件,故迭代收敛;2,在中,且,在中有,故迭代收敛;3,在附近,故迭代法发散;在迭代1及2中,因为2的迭代因子L较小,故它比1收敛快;用2迭代,取,则3. 设方程的迭代法1 证明对,均有,其中为方程的根.2 取=4,求此迭代法的近似根,使误差不超过,并列出各次迭代值.3 此迭代法收敛阶是多少证明你的结论解:1迭代函数,对有,2取,则有各次迭代值取,其误差不超过3故此迭代为线性收敛4. 给定函数,设对一切x,存在,而且.证明对的任意常数,迭代法均收敛于方程的根解:由于,为单调增函数,故方程的根是唯一的假定方程有根;迭代函数,;令,则,由递推有,即5. 用Steffensen方法计算第2题中2、3的近似根,精确到解:在2中,令,,则有令,得,与第2题中2的结果一致,可取,则满足精度要求.对3有,原迭代不收敛.现令令6. 用Newton法求下列方程的根,计算准确到4位有效数字.1在=2附近的根.2在=1附近的根解:1Newton迭代法取,则,取2令,则,取7. 应用Newton法于方程,求立方根的迭代公式,并讨论其收敛性.解:方程的根为,用Newton迭代法此公式迭代函数,则,故迭代法2阶收敛;还可证明迭代法整体收敛性;设,对一般的,当时有这是因为当时成立;从而,即,表明序列单调递减;故对,迭代序列收敛于。