中考数学复习方案设计专题
中考数学专题复习教案

中考数学专题复习教案一、教学目标本教案旨在帮助学生复中考数学各个专题,提高他们的数学能力和应试技巧。
具体目标如下:1. 复和掌握中考数学常见的专题知识点;2. 提高解题能力,培养学生的逻辑思维和问题解决能力;3. 熟悉中考数学题型和解题技巧,为考试做好准备。
二、教学内容根据中考数学的考试大纲和常见试题,本教案将涵盖以下专题的重点内容:1. 整式的加减运算2. 整式的乘法3. 分式的加减运算4. 分式的乘除运算5. 初等函数6. 平面图形的性质与运动7. 空间图形的性质与运动8. 数据的收集、整理与分析9. 概率与统计10. 三角形的性质与计算三、教学方法与策略为了有效地提高学生的数学研究效果,本教案采用以下教学方法和策略:1. 知识与实践相结合:通过教师讲解和学生实际操作相结合,深化学生对数学知识的理解;2. 案例教学:通过实际例题,让学生掌握解题的方法和技巧;3. 互动教学:引导学生积极参与讨论和提问,增强他们的研究兴趣和主动性;4. 个性化教学:根据学生的不同差异,采用不同的教学方式和资源,满足学生的研究需求;5. 检测与评价:定期进行小测验和练,及时发现学生的问题并加以解决。
四、教学评价为了对学生的研究情况进行评价和跟踪,本教案将采用以下评价方式:1. 日常表现评价:包括学生的课堂参与情况、作业完成情况等;2. 期中考试:对学生的专题掌握情况进行全面测试;3. 模拟考试:模拟中考试题,检验学生对各个专题的综合应用能力;4. 学业成绩评价:综合考虑学生的平时表现、考试成绩等因素,对学生的数学学业水平进行评价。
五、教学资源为了支持教学的顺利进行,本教案将准备以下教学资源:1. 教材:根据教学内容准备相应的教材和教辅资料;2. 题:提供各个专题的练题,供学生进行巩固和练;3. 投影仪和白板:用于展示案例和讲解;4. 计算器:辅助学生进行计算和实验。
六、教学计划根据教学内容和学校的教学进度,本教案将制定详细的教学计划。
数学中考复习方案(通用7篇)

数学中考复习方案(通用7篇)数学中考复习方案1一、制定合理的复习安排切实可行的复习安排能让复习有条不紊地进行下去,避开复习时的随意性和盲目性。
我们将中考的数学复习分为三轮进行。
第一轮:基础学问系统复习。
1、在复习时我们首先要仔细探讨新课程标准,和吉林省学业考试指导纲要,摸清初中数学内容的脉络,开展基础学问系统复习。
我们根据数与代数、空间与图形、统计与概率、实践与综合应用四个模块,根据课程标准给学生重新梳理哪些学问点是识记,哪些学问点是理解,哪些学问点是运用。
如在复习实数时,我们将实数的有关学问根据课标要求中的识记、理解、运用整理出来,然后以教科书为蓝本进行基础学问复习。
将每个学问点给学生整理出来,在这里我们要求学生过“三关”,第一关“记忆关”必需做到记牢记准全部的公式、定理等,没有精确无误的记忆,就不行能有好的结果;其次关过基本方法关,如:待定系数法求二次函数基础学问;第三关过基本技能关,如,给你一个题,你找到了它的解题方法,也就是知道了用什么方法,这时就说具备了解这个题的技能。
基本宗旨:学问系统化,练习专题化,专题规律化。
在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
2、我们通过典型的例、习题讲解让学生驾驭学习方法,对例、习题能举一反三,触类旁通,变条件、变结论、变图形、变式子、变表达方式等。
3、我们定期检测,刚好反馈。
练习要有针对性、典型性、层次性,不能盲目的加大练习量。
要定期检查学生完成的作业。
我们对于作业、练习、测验中的问题,采纳集中讲授和个别辅导相结合,因材施教,全面提高复习效率。
其次轮:专题复习其次轮专题复习的主要目的是为了将第一轮复习学问点、线结合,交织成学问网,注意与现实的联系,以达到实力的培育和提高。
“专题复习”我们根据中考题型分为“填空、选择专题”、“规律性专题”、“探究性专题”、“阅读材料专题”、“开放性专题”等。
在进行这些专题复习时,我们依据历年中考试卷命题的特点,细心选择一些新奇的、有代表性的题型进行专题训练,就中考的特点我们从以下几个方面收集一些资料,进行专项训练:①实际应用型问题;②突出科技发展、信息资源的转化的图表信息题;③体现自学实力考查的阅读理解题;④考查学生应变实力的图形改变题、开放性试题;⑤考查学生思维实力、创新意识的归纳猜想、操作探究性试题;⑥几何代数综合型试题等。
中考数学专题复习《设计方案》测试卷-附带答案

中考数学专题复习《设计方案》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一选择题1.(2023九上·菏泽月考)在数学活动课上老师让同学们判断一个由四根木条组成的四边形是否为矩形下面是一个学习小组拟定的方案其中正确的方案是()A.测量四边形的三个角是否为直角B.测量四边形的两组对边是否相等C.测量四边形的对角线是否互相平分D.测量四边形的其中一组邻边是否相等2.(2023九上·安徽期中)某班计划在劳动实践基地内种植蔬菜班长买回来10米长的围栏准备围成两边靠墙(两墙垂直且足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰直角三角形(两直角边靠墙)扇形这三种方案如图所示.最佳方案是()A.方案1B.方案2C.方案1或方案2D.方案33.(2022·自贡)九年级2班计划在劳动实践基地内种植蔬菜班长买回来8米长的围栏准备围成一边靠墙(墙足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰三角形(底边靠墙)半圆形这三种方案最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案24.(2023·衡水模拟)要得知某一池塘两端A B的距离发现其无法直接测量两同学提供了如下间接测量方案.方案Ⅰ:如图1 先过点B作BF⊥AB再在BF上取C D两点使BC=CD接着过点D作BD的垂线DE交AC的延长线于点E 则测量DE的长即可方案Ⅱ:如图2 过点B作BD⊥AB再由点D观测用测角仪在AB的延长线上取一点C 使∠BDC=∠BDA则测量BC的长即可.对于方案ⅠⅡ说法正确的是()A.只有方案Ⅰ可行B.只有方案Ⅱ可行C.方案Ⅰ和Ⅱ都可行D.方案Ⅰ和Ⅱ都不可行5.(2023·北京市模拟)某产品的盈利额(即产品的销售价格与固定成本之差)记为y 购买人数记为x 其函数图象如图1所示.由于日前该产品盈利未达到预期相关人员提出了两种调整方案图2 图3中的实线分别为调整后y与x的函数图象.给出下列四种说法其中正确说法的序号是()①图2对应的方案是:保持销售价格不变并降低成本②图2对应的方案是:提高销售价格并提高成本③图3对应的方案是:提高销售价格并降低成本④图3对应的方案是:提高销售价格并保持成本不变A.①③B.②③C.①④D.②④二填空题6.(2022·瓯海模拟)小芳和小林为了研究图中“跑到画板外面去的两直线a b所成的角(锐角)”问题设计出如下两个方案:小林的方案小芳的方案测αβ的度数.测∠1 ∠ACB的度数.已知小林测得∠β=115°小芳作了AB=BC 并测得∠1=80°则直线a b所成的角为.7.(2023九上·港南期中)生物工作者为了估计一片山林中雀鸟的数量设计了如下方案:先捕捉50只雀鸟给它们做上标记后放回山林一段时间后再从山林中随机捕捉80只其中有标记的雀鸟有2只请你帮助工作人员估计这片山林中雀鸟的数量为只.8.(2021·东城模拟)数学课上李老师提出如下问题:已知:如图AB是⊙O的直径射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:①如图1 连接BC作BC的垂直平分线交⊙O于点D.②如图2 过点O作AC的平行线交⊙O于点D.③如图3 作∠BAC的平分线交⊙O于点D.④如图4 在射线AC上截取AE使AE=AB连接BE交⊙O于点D.上述四种方案中正确的方案的序号是.9.(2022·房山模拟)为确定传染病的感染者医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次)如果检测结果是阴性可确定这些人都未感染 如果检测结果是阳性 可确实其中感染者 则将这些人平均分成两组 每组2m−1个人的样本混合在一起做第2轮检测 每组检测1次.依此类推:每轮检测后 排除结果为阴性的组 而将每个结果为阳性的组再平均分成两组 做下轮检测 直至确定所有的感染者. 例如 当待检测的总人数为8 且标记为“x ”的人是唯一感染者时 “二分检测方案”可用如图所示.从图中可以看出 需要经过4轮共n 次检测后 才能确定标记为“x ”的人是唯一感染者.(1)n 的值为(2)若待检测的总人数为8 采用“二分检测方案” 经过4轮共9次检测后确定了所有的感染者 写出感染者人数的所有可能值三 实践探究题10.(2024·镇海区月考)根据以下素材 探索完成任务.如何确定木板分配方案?素材1我校开展爱心义卖活动 小艺和同学们打算推销自己的手工制品.他们以每块15元的价格买了100张长方形木板 每块木板长和宽分别为80cm 40cm.素材2现将部分木板按图1虚线裁剪 剪去四个边长相同的小正方形(阴影).把剩余五个矩形拼制成无盖长方体收纳盒 使其底面长与宽之比为3:1.其余木板按图2虚线裁剪出两块木板(阴影是余料) 给部分盒子配上盖子.素材3义卖时的售价如标签所示:问题解决任计算盒子高度求出长方体收纳盒的高度.务1 任务2 确定分配方案1若制成的有盖收纳盒个数大于无盖收纳盒 但不到无盖收纳盒个数的2倍 木板该如何分配?请给出分配方案.任务3确定分配方案2为了提高利润 小艺打算把图2裁剪下来的余料(阴影部分)利用起来 一张矩形余料可以制成一把小木剑 并以5元/个的价格销售.请确定木板分配方案 使销售后获得最大利润.11.(2023九上·鹿城月考)某校准备在校园里利用围墙(墙可用最大长度为25.2m )和48m 长的篱笆墙围成Ⅰ Ⅱ两块矩形开心农场.某数学兴趣小组设计了三种方案(除围墙外 实线部分为篱笆墙 且不浪费篱笆墙) 请根据设计方案回答下列问题:(1)方案一:如图① 全部利用围墙的长度 但要在Ⅰ区中留一个宽度AE =2m 的矩形水池 且需保证总种植面积为185.52m 2 试确定CG 的长(2)方案二:如图② 使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?(3)方案三:如图③ 在图中所示三处位置各留1m 宽的门 且使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?12.【综合与实践】有言道:“杆秤一头称起人间生计 一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案 然后动手制作 再结合实际进行调试 请完成下列方案设计中的任务. 【知识背景】如图 称重物时 移动秤砣可使杆秤平衡 根据杠杆原理推导得:(m 0+m)⋅l =M ⋅(a +y).其中秤盘质量m 0克 重物质量m 克 秤砣质量M 克 秤纽与秤盘的水平距离为l 厘米 科纽与零刻线的水平距离为a 厘米 秤砣与零刻线的水平距离为y 厘米. 【方案设计】目标:设计简易杆秤.设定m0=10,M=50最大可称重物质量为1000克零刻线与末刻线的距离定为50厘米.(1)当秤盘不放重物秤砣在零刻线时杆秤平衡请列出关于l a的方程(2)当秤盘放入质量为1000克的重物秤砣从零刻度线移至末刻线时杠杆平衡请列出关于l a的方程(3)根据(1)和(2)所列方程求出l和a的值(4)根据(1)-(3)求y关于m的函数解析式(5)从零刻线开始每隔100克在科杆上找到对应刻线请写出相邻刻线间的距离. 13.(2023九上·长清期中)某校项目式学习小组开展项目活动过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高需要借助一些工具来测量比如自制的直角三角形硬纸板标杆镜子甚至还可以利用无人机…确定方法后先画出测量示意图然后实地进行测量并得到具体数据从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量标杆皮尺自制直角三角板硬纸板皮尺…工具测量示意图说明:线段AB 表示学校旗杆 小明的眼睛到地面的距离CD =1.7m 测点F 与B D 在同一水平直线上 D F B 之间的距离都可以直接测得 且A B C D E F 都在同一竖直平面内 点A C E 三点在同一直线上.说明:线段AB 表示旗杆 小明的身高CD =1.7m 测点D 与B 在同一水平直线上 D B 之间的距离可以直接测得 且A B CD E F G 都在同一竖直平面内 点A C E 三点在同一直线上 点C F G 三点在同一直线上.测量数据B D 之间的距离 16.8m B D 之间的距离 16.8m … D F 之间的距离 1.35mEF 的长度0.50m…EF 的长度2.60mCE 的长度0.75m… … …根据上述方案及数据 请你选择一个方案 求出学校旗杆AB 的高度.(结果精确到0.1m )14.(2024九上·杭州月考)根据以下素材 探索完成任务.如何设计喷泉喷头的升降方案?素材1如图 有一个可垂直升降的喷泉 喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x 米 到湖面的垂直高度为y 米.当喷头位于起始位置时 测量得x 与y 的四组数据如下: x (米) 0 2 3 4 y (米)121.751素材2公园想设立新的游玩项目 通过升降喷头 使游船能从水柱下方通过 如图 为避免游船被喷泉淋到 要求游船从水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.4米.已知游船顶棚宽度为2.8米 顶棚到湖面的高度为2米.问题解决 任务确定喷泉形状 结合素材1 求y 关于x 的表达式.1任务2探究喷头升降方案为使游船按素材2要求顺利通过求喷头距离湖面高度的最小值.15.(2023九上·温州期末)根据素材解决问题.设计货船通过圆形拱桥的方案素材1图1中有一座圆拱石桥图2是其圆形桥拱的示意图测得水面宽AB=16m 拱顶离水面的距离CD=4m.素材2如图3 一艘货船露出水面部分的横截面为矩形EFGH 测得EF=3m EH=10m.因水深足够货船可以根据需要运载货物.据调查船身下降的高度y(米)与货船增加的载重量x (吨)满足函数关系式y=1100x.问题解决任务1确定桥拱半径求圆形桥拱的半径.任务2拟定设计方案根据图3状态货船能否通过圆形桥拱?若能 最多还能卸载多少吨货物?若不能 至少要增加多少吨货物才能通过?16.(2024九下·宁波月考)根据以下素材 探索完成任务.如何确定拍照打卡板素材一 设计师小聪为某商场设计拍照打卡板(如图1) 图2为其平面设计图.该打卡板是轴对称图形 由长方形DEFG 和等腰三角形ABC 组成 且点B F G C 四点共线.其中 点A 到BC 的距离为1.2米 FG =0.8米 DG =1.5米.素材二因考虑牢固耐用 小聪打算选用甲 乙两种材料分别制作长方形DEFG 与等腰三角形ABC (两种图形无缝隙拼接) 且甲材料的单价为85元/平方米 乙材料的单价为100元/平方米.问题解决任务一推理最大高度小聪说:“如果我设计的方案中CB长与C D 两点间的距离相等 那么最高点B 到地面的距离就是线段DG 长” 他的说法对吗?请判断并说明理由.任务二 探究等腰三角形ABC 面积 假设CG 长度为x 米 等腰三角形ABC 的面积为S 求S 关于x 的函数表达式.任务三确定拍照打卡板 小聪发现他设计的方案中 制作拍照打卡板的总费用不超过180元 请你确定CG 长度的最大值.17.(2024九上·杭州月考)根据以下素材 探索完成任务如何设计拱桥上救生圈的悬挂方案?素材1图1是一座抛物线形拱桥 以抛物线两个水平最低点连线为x 轴 抛物线离地面的最高点的铅垂线为y 轴建立平面直角坐标系 如图2所示. 某时测得水面宽20m 拱顶离水面最大距离为10m 抛物线拱形最高点与x 轴的距离为5m .据调查 该河段水位在此基础上再涨1m 达到最高.素材2为方便救助溺水者 拟在图1的桥拱上方栏杆处悬挂救生圈 如图3 救生圈悬挂点为了方便悬挂 救生圈悬挂点距离抛物线拱面上方1m 且相邻两救生圈悬挂点的水平间距为4m .为美观 放置后救生圈关于y 轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计)任务1确定桥拱形状 根据图2 求抛物线的函数表达式.任务2拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标.任务3探究救生绳长度 当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)问题解决(1)任务1 确定桥拱形状 根据图2 求抛物线的函数表达式. (2)任务2 拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标. (3)任务3 探究救生绳长度当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)18.(2023九上·浙江期中)根据以下素材 探索完成任务.绿化带灌溉车的操作方案素材1辆绿化带灌溉车正在作业 水从喷水口喷出 水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米 上边缘抛物线最高点离喷水口的水平距离为3米 高出|喷水口0.9米 下边缘水流形状与上边缘相同 且喷水口是最高点。
中考复习数学教案

中考复习数学教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!中考复习数学教案中考复习数学教案七篇中考复习数学教案都有哪些?在教新课之前做一个完美的教案,可以更大程度的调动学生上课的积极性。
中考数学复习方案(精选5篇)

中考数学复习方案中考数学复习方案(精选5篇)为了确保事情或工作能无误进行,常常需要预先准备方案,方案是解决一个问题或者一项工程,一个课题的详细过程。
制定方案需要注意哪些问题呢?以下是小编为大家收集的中考数学复习方案(精选5篇),希望对大家有所帮助。
中考数学复习方案1一、第一阶段系统全面的复习刚开始考生自然是要把全部的理论知识都复习一遍,优化自己的知识系统结构。
主要体现在理论知识的准确理解,熟悉和运用这些理论知识。
而要证明自己是否掌握了理论知识,考生就可以证明一下哪些公式和定理,如果之后证明出来了,就说明自己还掌握的不错。
另外,书中的例题要能解出来,一些基本的解题方法也要掌握。
这些全部都做到了考生才算全面系统的复习了。
二、第二阶段就是题海训练经过了第一个阶段的复习,考生的水平应该提上去了很多,但是仍然会存在一部分难点没有克服。
包括函数、不等式、四边形、方程、三角形等等。
那考生就得通过做题来巩固这些知识点。
而有效的方法就是分类进行专题训练,主要分为三类,第一类是重点复习中档综合训练题型,第二类是复习近几年的中考题型。
第三类就是以题组的方式进行复习,也就是同类型的题放在一块复习。
而在做题的过程中,考生可以利用一些解题的方法,达到解题的目的。
例如,换元法、配方法、代入法、消元法、因式分解法、图象法。
当然也会学会辨识一些题型,包括开放题、操作题、探索题、情景题,这样才能结合方法答题。
三、第三阶段重点是模拟训练这一阶段考生主要就是进行模拟训练,通过几套真题试卷强化提高自己的解题能力,以及对基本知识进行再一次的复习,查漏补缺。
那考生在每次模拟测试完之后,都要看看自己有没有明显的错误,包括逻辑上,知识点认识上面、解题策略上的错误等等。
另外,自己给自己打分,看看每个步骤是否都完整。
最后再去提炼数学解题的思想方法。
总之就是先测试在评分,找不足,然后有改正过来,分数也就是这样一步步提高的。
以上,就是中考数学三个阶段的复习策略。
人教版中考复习数学练习专题五:方案设计专题(含答案)

专题五方案设计专题【考纲与命题规律】考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.【课堂精讲】例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。
(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。
数学中考复习备考方案(精选6篇)

数学中考复习备考方案(精选6篇)数学中考复习备考方案1一、指导思想以课程标准为指南,以考试说明为依据,以教材为载体,以训练为主线,以考试为渠道,以心理素养和应试实力培育为突破口,面对全体学生,全面提中学考成果。
二、复习原则1、低起点,小步伐,快反馈,高密度;2、讲练结合,以练代讲;3、面对全体,关注差异;4、培优扶差;5、有效教学,向课堂要质量。
三、复习设计(一)确立目标,结合每次考试成果比照指标找差距1、学校制定升学指标。
把重点中学一榜、指标到校、一般中学、职高指标确定总数后分解到各班级,张榜公示。
2、班级制定升学指标。
即对分解到班级的指标落实到人头。
要和学生谈话、沟通、指导,让学生给自己定位。
3、任课老师制定分数指标。
对每一名学生应当达到多少分定位。
4、学生自我设计目标。
对升入学校,各科志向分数预设。
(二)制订安排1、初三上半年结束全年课程;2、寒假时间同科老师集体探讨制订复习安排,体现:(1)复习课时;(2)每课时复习内容;(3)复习方法;(4)实现目标。
制订复习安排要从二个方面入手:(1)资源:课标——比照课标,反复学习,吃透标准,明确方向;考纲——依据考纲,反复探讨,定量、定位。
考题——收集近几年中考题,老师做题、析题、探讨各学问点,生成的题型、分值和难易度。
教材——不离教材,挖掘教材,提炼升华,熟知教材编写意图、体系,归纳学问点,形成学问网络。
学情——充分了解学生,知根知底,知彼知己,对症下药,因材施教。
信息——刚好捕获中考有关的信息,筛选、疏理,择用和调整。
(2)三轮复习法:第一轮:单元章节复习。
(3月1日——4月20日)复习时重点抓学科学问的单元、章节过关。
每天定量记忆。
复习各学问点、考点时,将其题型化(即设计成题)。
要四平八稳,要由易到难;重视基础学问和基本实力的训练。
其次轮:专项复习(4月20日——5月20日)首先要对中考的考点学问进行训练,其次要对中考题型进行专项训练。
在训练考点学问时,着重训练标准和考纲所涉及的重点和难点。
中考数学总复习教案七篇

中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。
负数的'意义是难点。
下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。
在正数前加上“-”号的数叫做负数如-5,-3,-等。
负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位零既不是正数,也不是负数,但它是自然数。
它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。