机器人的位姿描述与坐标变换
合集下载
第3章 位姿描述和齐次变换

ZB ZA YB
P
AP
XB
OA
YA
A
参考坐标系{A}
机器人研究所
4
第1节 位置和姿态的表示
位置描述(Description of Position)
px A p p y pz
Ap
zA
{A}
p
A
p
:p点在坐标系{A}中的表示,
xA
oA
yA
也称作位置矢量。
图1 位置表示
齐次的,将其等价为齐次变换形式:
A A p B R | A pBo B p 0 0 0 | 1 1 1
A A B p B R p A pBo A
直角坐标
齐次坐标
等价于
p A BT
B
p
11
齐次变换
机器人研究所
22
第3节 齐次坐标变换
机器人研究所14坐标变换复合变换compositetransform机器人研究所15例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所16例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所17例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所18例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述3030086605303030050866坐标变换机器人研究所19例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所20例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述0866051211098050866坐标变换第第33节节齐次坐标变换齐次坐标变换旋转变换通式第三章位姿描述和齐次变换机器人研究所22齐次坐标变换齐次坐标和齐次变换坐标变换式中对于点是非齐次的将其等价为齐次变换形式
P
AP
XB
OA
YA
A
参考坐标系{A}
机器人研究所
4
第1节 位置和姿态的表示
位置描述(Description of Position)
px A p p y pz
Ap
zA
{A}
p
A
p
:p点在坐标系{A}中的表示,
xA
oA
yA
也称作位置矢量。
图1 位置表示
齐次的,将其等价为齐次变换形式:
A A p B R | A pBo B p 0 0 0 | 1 1 1
A A B p B R p A pBo A
直角坐标
齐次坐标
等价于
p A BT
B
p
11
齐次变换
机器人研究所
22
第3节 齐次坐标变换
机器人研究所14坐标变换复合变换compositetransform机器人研究所15例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所16例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所17例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所18例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述3030086605303030050866坐标变换机器人研究所19例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述坐标变换机器人研究所20例21已知坐标系b的初始位姿与a重合首先b相对于坐标系a的zb0和旋转矩阵求它在坐标系a中的描述0866051211098050866坐标变换第第33节节齐次坐标变换齐次坐标变换旋转变换通式第三章位姿描述和齐次变换机器人研究所22齐次坐标变换齐次坐标和齐次变换坐标变换式中对于点是非齐次的将其等价为齐次变换形式
机器人的位姿描述与坐标变换

0
1
0
⎥ ⎥
⎢⎣− sinθ 0 cosθ ⎥⎦
Zi Zj
θ
θ Xi
Xj
Yi Y j
⎡cosθ − sinθ 0⎤
j i
R(Zi
,θ
)
=
⎢⎢sinθ
cosθ
0⎥⎥
⎢⎣ 0
0 1⎥⎦
Zi Zj
θ
Xi Xj
Yj
θ
Yi
⎡1 0
0⎤
j i
R(
X
i
,θ
)
=
⎢⎢0
cosθ
−
sinθ
⎥ ⎥
⎢⎣0 sinθ cosθ ⎥⎦
¥ ¥假设机器人的连杆和关节都是刚体¥ ¥
位置矢量
⎡x0 ⎤
P o '
o
=
⎢ ⎢
y0
⎥ ⎥
⎢⎣ z0 ⎥⎦
Z b Z'
O' Y' t n X' O
X Y
姿态矢量
O' O
R
=
[
O' O
X
OO'Y
⎡cos(∠X ' X )
O' O
Z
]3×3
=
⎢ ⎢
cos(∠X
'Y
)
⎢⎣cos(∠X ' Z )
单位主矢量
cos(∠Y ' X ) cos(∠Y 'Y ) cos(∠Z ' Z )
cos(∠Z ' X )⎤
cos(∠Z
'Y
)
⎥ ⎥
cos(∠Z ' Z ) ⎥⎦
姿态矩阵R的特点:
机器人学技术基础课程-位姿描述和齐次变换

2、齐次变换在研究空间机构动力学、机器人控制算法、计算 机视觉等方面也得到广泛应用。
位姿描述与齐次变换
1 刚体位姿的描述 2 坐标变换 3 齐次坐标系和齐次变换 4 齐次变换矩阵的运算 5 变换方程
2.1 刚体位姿的描述
为了完全描述一个刚体在空间的位姿,通常将刚体与某 一坐标系固连,坐标系的原点一般选在刚体的特征点上,如 质心、对称中心等。
YˆB ZˆA
ZˆB Xˆ A ZˆB YˆA
ZˆB ZˆA
XB n
2.1.4 旋转矩阵的意义
若坐标系B可由坐标系A,通过绕A的某一坐标轴获得,则绕 x,y,z三轴的旋转矩阵分别为:
1 0 0
c 0 s
c s 0
R(x, ) 0
Ay
y
所以: A Axaˆx Ayaˆy Azaˆz
2.1.2 方位的描述
矢量: A Axaˆx Ayaˆy Azaˆz
模的计算: | A | Ax2 Ay2 Az2
z
Az
A
方向角与方向余弦:, ,
o
Ay
Ax
y
x
cos Ax = A aˆx , cos Ay = A aˆy , cos Az A aˆz
两矢量的叉积又可表示为:
aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
2.1.2 方位的描述
空间物体B的方位(Orientation)可由某个固接于此物体的坐标系{B}的三 个单位主矢量[xB,yB,zB]相对于参考坐标系A的方向余弦组成的3x3矩阵描述.
BAR n o a a
位姿描述与齐次变换
1 刚体位姿的描述 2 坐标变换 3 齐次坐标系和齐次变换 4 齐次变换矩阵的运算 5 变换方程
2.1 刚体位姿的描述
为了完全描述一个刚体在空间的位姿,通常将刚体与某 一坐标系固连,坐标系的原点一般选在刚体的特征点上,如 质心、对称中心等。
YˆB ZˆA
ZˆB Xˆ A ZˆB YˆA
ZˆB ZˆA
XB n
2.1.4 旋转矩阵的意义
若坐标系B可由坐标系A,通过绕A的某一坐标轴获得,则绕 x,y,z三轴的旋转矩阵分别为:
1 0 0
c 0 s
c s 0
R(x, ) 0
Ay
y
所以: A Axaˆx Ayaˆy Azaˆz
2.1.2 方位的描述
矢量: A Axaˆx Ayaˆy Azaˆz
模的计算: | A | Ax2 Ay2 Az2
z
Az
A
方向角与方向余弦:, ,
o
Ay
Ax
y
x
cos Ax = A aˆx , cos Ay = A aˆy , cos Az A aˆz
两矢量的叉积又可表示为:
aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
2.1.2 方位的描述
空间物体B的方位(Orientation)可由某个固接于此物体的坐标系{B}的三 个单位主矢量[xB,yB,zB]相对于参考坐标系A的方向余弦组成的3x3矩阵描述.
BAR n o a a
机器人运动学

58
斯坦福机器人反向运动学方程求解
• 已知斯坦福机器人的运动学方程为T6=A1A2A3A4A5A6, 以及T6 矩阵与各杆参数a、α、d,求关节变量θ1~θ6 , 其中θ3= d3。
• 求θ1:
59
斯坦福机器人反向运动学方程求解
• 求θ1:
• “+”号对应右肩位姿,“-”号对应左肩位姿。60
斯坦福机器人反向运动学方程求解
2 机器人运动学
• • • • 齐次坐标及动坐标系、对象物位姿的描述 齐次变换 机器人连杆坐标系及其齐次变换矩阵 机器人运动学方程及其求解
1
齐次坐标及动坐标系、对象物位姿的描述 • • • • • 点的直角坐标描述 点的齐次坐标描述 坐标轴方向的齐次坐标描述 动坐标系位姿的齐次坐标描述 对象物位姿的齐次坐标描述
n cos30 cos60 cos90 0 T 0.866 0.500 0.000 0
P 2 1 cos90 0 T 0.500 0.866 0.000 0 a 0.000 0.000 1.000 0
2
点的直角坐标描述
式中:Px、Py、Pz是点P在坐标 系{A}中的三个位置坐标分量。
点的直角坐标描述
3
点的齐次坐标描述
• 齐次坐标的表示不是惟一的,将其各元素同 乘一非零因子ω后,仍然代表同一点P,即
4
坐标轴方向的齐次坐标描述
坐标轴方向的描述
5
• 4 1列阵[a b c w]T中第四个元素不为零,则表示空 间某点的位置; • 4 1列阵[a b c w]T 中第四个元素为零,且满足 a2 + b2 + c2 = 1,则表示某轴(矢量)的方向。
44
正向运动学方程求解
2-2.1位姿描述

这是绕Z轴的旋转.其它两轴只要把坐标次序调换可得上页结果.
上海电机学院 机械学院
旋转矩阵的几何意义: 1) 可以表示固定于刚体上的坐标系{B}相对于参考坐标系 的姿态. 2) 可作为坐标变换矩阵.它使得坐标系{B}中的点的坐标 变换成{A}中点的坐标 . 3) 可作为算子,将{B}中的矢量或物体变换到{A}中.
px A P py pz
齐次坐标
px p y pz 1
注意: 齐次坐标的表示不是惟一的。
P px
py
p z 1 a b c
T
T
上海电机学院 机械学院
位姿描述——齐次坐标
规定: (1) (4×1)列阵[a b c ω]T中第四个元素不为零,则表示空间某点的 位置; (2) (4×1)列阵[a b c 0]T中第四个元素为零,且a2+b2+c2=1,则表示 某轴(矢量)的方向; (2)矢量(坐标轴)方向的齐次坐标 X、Y、Z三个坐标轴方向的齐次坐标为:
0 1 Rot( x, ) 0 cos 0 sin cos 0 sin Rot ( y , ) cos sin 0 0 sin cos sin 1 0 Rot ( z , ) 0 cos 0 sin cos 0 0 0 1
动系位姿 采用齐次坐标后可将原来 的3×4的非方阵转化为 4×4的方阵。
1 0 A 0 0 0 1 0 0 0 100 0 0 1 0 0 1
上海电机学院 机械学院
位姿描述——刚体位姿的描述
机器人的每一个连杆均可视为一个刚体。 1 2 3
上海电机学院 机械学院
旋转矩阵的几何意义: 1) 可以表示固定于刚体上的坐标系{B}相对于参考坐标系 的姿态. 2) 可作为坐标变换矩阵.它使得坐标系{B}中的点的坐标 变换成{A}中点的坐标 . 3) 可作为算子,将{B}中的矢量或物体变换到{A}中.
px A P py pz
齐次坐标
px p y pz 1
注意: 齐次坐标的表示不是惟一的。
P px
py
p z 1 a b c
T
T
上海电机学院 机械学院
位姿描述——齐次坐标
规定: (1) (4×1)列阵[a b c ω]T中第四个元素不为零,则表示空间某点的 位置; (2) (4×1)列阵[a b c 0]T中第四个元素为零,且a2+b2+c2=1,则表示 某轴(矢量)的方向; (2)矢量(坐标轴)方向的齐次坐标 X、Y、Z三个坐标轴方向的齐次坐标为:
0 1 Rot( x, ) 0 cos 0 sin cos 0 sin Rot ( y , ) cos sin 0 0 sin cos sin 1 0 Rot ( z , ) 0 cos 0 sin cos 0 0 0 1
动系位姿 采用齐次坐标后可将原来 的3×4的非方阵转化为 4×4的方阵。
1 0 A 0 0 0 1 0 0 0 100 0 0 1 0 0 1
上海电机学院 机械学院
位姿描述——刚体位姿的描述
机器人的每一个连杆均可视为一个刚体。 1 2 3
机器人运动学坐标变换

xi cos x j sin y j 0 z j yi sin x j cos y j 0 z j zi 0 x j 0 y j 1 z j
2017年2月19日星期日
工 业 机 器 人
第3章
3.2.1 直角坐标变换
工 业 机 器 人
第3章
3.1.1 机器人位姿的表示
姿态可h o p(x,y,z) h
o yh y
3.1 机器人的位姿描述
z
余弦值组成3×3的姿态
矩阵来描述。
cos(x , x h ) cos(x , yh ) cos(x , z h ) R cos(y , x h ) cos(y , yh ) cos(y , z h ) cos(z , x h ) cos(z , yh ) cos(z , z h )
2017年2月19日星期日
工 业 机 器 人
R
x , ij
第3章
3.2.1 直角坐标变换
2、旋转变换
②绕x轴旋转α角的 旋转变换矩阵为:
机器人运动学
zi
3.2 齐次变换及运算
zj
α
0 0 1 0 cos sin 0 sin cos
xj
yj oi oj
xi x j cos y j sin yi x j sin y j cos zi z j
xi
yi
xj
2017年2月19日星期日
工 业 机 器 人
第3章
3.2.1 直角坐标变换
2、旋转变换
机器人运动学
3.2 齐次变换及运算
① 绕z轴旋转θ角 若补齐所缺的有些项,再作适当变形,则有:
(优选)机器人位姿描述详解.

R
B
p
A B
R
B
p
A p C p A pCo
Ap
A B
R
B
p
A pBo
24
旋转部分 平移部分
三、齐次坐标和齐次变化
齐次坐标
a P b
c
直角坐标
x
P
y z
齐次坐标
非零的比例因子
a x
b y
c z
25
1)点的齐次坐标:
P x y z T
0
P 2 3 4 1T , P 4 6 8 2T
5
2、方位的描述
为了规定空间某刚体B的方位,设一坐标系{B}与此刚 体固连。用坐标系{B}的三个单位主矢量 , xB, y相B 对zB 于{A}的方向余弦组成的3x3矩阵来表示刚体B相对于 坐标系{A}的方位。
BAR AxB A yB AzB
r11 r12 r13
A B
R
r21
r22
r23
A p BAR B p cos( yA, xB )
cos( yA, yB )
cos(
yA
,
zB
)
pBy
18
cos(zA, xB ) cos(zA, yB ) cos(zA, zB ) pBz
绕一个坐标轴旋转的转动矩阵
ZA ZB
q q
XA
X
B
1)RX
YB YA
ZA ZB
ZA ZB
q
已知点P在B坐标系的坐标:
B P [x B y B zB ]T
求点P在A坐标系的坐标:
AP [x A y A zA ]T
15
ZB
ZA
3位姿变换Trans-Matrix

cos z R sin z 0
与o-xyz之间的方位关系,即旋
0 0 1
sin z cos z 0
从
ob xb yb zb
到O-xyz的坐标变换
由
x x0 Rx b
x u cos z v sin z 得 y u sin z v cos z w z
x x0 Rxb
例题: 如图3-4所示,b 系
坐标原点与基坐标系 O-xyz 原 点重合, x 轴与 xb 轴之间的夹 角为θz,另外轴zb与轴z重合, 求表示 b 系相对于 O-xyz 的位 置矢量 x0 和方位矩阵 R,并求 空间一点从 b 系到 O-xyz 的坐 标变换。 z 解: (1)x0为零。
四、齐次坐标变换
1、 齐次坐标 将三维直角坐标系中点矢量(a,b,c)T用四维列向量 U=(x,y,z,w)T来表示,其中w是比例因子,且令a=x/w, b=y/w, c=z/w,则称(x,y,z,w)T为三维空间点(a,b,c)T的齐次坐标。 当取w=1,则(a,b,c)T的一个齐次坐标为(a,b,c,1)T。 例:
又称此矩阵为旋转矩阵
(4)R矩阵正交性:
由于n、o、a为三个坐标轴的单位矢量,于是有 n o 0, a o 0, na 0 n n 1, o o 1, a a 1 因此矩阵R是正交矩阵。 (5)刚体位姿描述: R P 用4× 4的齐次矩阵来表示刚体位姿 T 013 1 称此矩阵 为刚体位 姿矩阵
c s 0 s c 0 0 cb 0 0 1 sb 0 sb 1 0 0 cg 1 0 0 cb 0 sg 0 sg cg
与o-xyz之间的方位关系,即旋
0 0 1
sin z cos z 0
从
ob xb yb zb
到O-xyz的坐标变换
由
x x0 Rx b
x u cos z v sin z 得 y u sin z v cos z w z
x x0 Rxb
例题: 如图3-4所示,b 系
坐标原点与基坐标系 O-xyz 原 点重合, x 轴与 xb 轴之间的夹 角为θz,另外轴zb与轴z重合, 求表示 b 系相对于 O-xyz 的位 置矢量 x0 和方位矩阵 R,并求 空间一点从 b 系到 O-xyz 的坐 标变换。 z 解: (1)x0为零。
四、齐次坐标变换
1、 齐次坐标 将三维直角坐标系中点矢量(a,b,c)T用四维列向量 U=(x,y,z,w)T来表示,其中w是比例因子,且令a=x/w, b=y/w, c=z/w,则称(x,y,z,w)T为三维空间点(a,b,c)T的齐次坐标。 当取w=1,则(a,b,c)T的一个齐次坐标为(a,b,c,1)T。 例:
又称此矩阵为旋转矩阵
(4)R矩阵正交性:
由于n、o、a为三个坐标轴的单位矢量,于是有 n o 0, a o 0, na 0 n n 1, o o 1, a a 1 因此矩阵R是正交矩阵。 (5)刚体位姿描述: R P 用4× 4的齐次矩阵来表示刚体位姿 T 013 1 称此矩阵 为刚体位 姿矩阵
c s 0 s c 0 0 cb 0 0 1 sb 0 sb 1 0 0 cg 1 0 0 cb 0 sg 0 sg cg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j i
R (a , ) R( Z , ) R( X , a )
Xi
Xm
Xj
cos sin j i R (a , ) 0
sin cos 0
0 1 0 0 cos a 0 1 0 sin a
0 cos sin sin a cos a 0
Yj
xi
Xi
yi
Yi
xj
Xj
xi x j cos(X i , X j ) y j cos(X i , Y j ) z j cos(X i , Z j ) i P yi x j cos(Yi , X j ) y j cos(Yi , Y j ) z j cos(Yi , Z j ) z x cos(Z , X ) y cos(Z , Y ) z cos(Z , Z ) j i j j i j j i j i
T
5 21 7
2、坐标旋转(坐标系原点相同)
Zj Zi P
坐标系j由坐标系i旋转而成 已知点P在j坐标系的坐标:
Yj
j
P [x j
yj
z j ]T
Yi Xi Xj
求点P在i坐标系的坐标:
i
P [ xi
yi
zi ]T
Zj
Zi
zi
P
yj
zj
Yj
xi
Xi
yi
Yi
xj
Xj
☺ 关于(Yi , X j )?
Z2 Z i (Z1 )
j f
R(Z i ,j )
j i
R(Y1 , )
R(Z 2 , f )
Zj
R(j , , f ) R ( Z , j ) R (Y , ) R ( Z , f )
Yj (Y2 )
f j
ZYZ欧拉角jY1 YifXi
X1 X 2 X j
cos j j R(j , , f ) i sin j 0
3、坐标变换综合(平移+旋转)
Zj Zc P
Pi RPj P
旋转部分 平移部分
Zi
Oj i
j i
Oj i
Pj
X Z b Z' O' O n X' Y' t
Y
刚体姿态:
O' O ' R [O OX O' O
Y
单位主矢量
cos(X ' X ) cos(Y ' X ) cos(Z ' X ) cos(X 'Y ) cos(Y 'Y ) cos(Z 'Y ) O' Z ] O 33 cos(X ' Z ) cos(Y ' Z ) cos(Z ' Z )
►绕多个坐标轴旋转的转动矩阵 1)、绕固定坐标系旋转
坐标系 ( X i , Yi , Z i ) 坐标系( X m , Ym , Z m ) 坐标系 ( X j , Y j , Z j )
Zi Zm Zj
R( X i ,a )
R ( Z i , )
j i
R (a , ) ?
a a
Yj Ym Yi
sin j cos j 0
0 cos 0 0 1 sin
0 sin cos f sin f 1 0 0 cos 0
sin f cos f 0
0 0 1
cosj cos cosf sin j sin f sin j cos cosf cosj sin f sin sin f
3)RZ
Zi Z
j
Yj Yi
Xi
Xj
cos(X i , X j ) cos(X i , Y j ) cos(X i , Z j ) x j i P cos(Yi , X j ) cos(Yi , Y j ) cos(Yi , Z j ) y j cos(Z , X ) cos(Z , Y ) cos(Z , Z ) z i j i j i j j
证明: 1)绕运动坐标系旋转
R(Z i ,j )
坐标系 ( X i , Yi , Z i )
Z2 Zj Z i (Z1 )
R(Y1 , ) R(Z 2 , f ) 坐标系 ( X 1 , Y1 , Z 1 ) 坐标系 ( X 2 , Y2 , Z 2 )
坐标系 ( X j , Y j , Z j )
1) Pm mjR Pj R ( Z i , ) Pj 2) Pi m iR P m R( X i , a) P m R ( X i , a ) R ( Z i , ) Pj
Xj
适用的机器人类型举例(有旋转关节)
例1: 已知坐标系B初始位姿与A重合,首先B相对于坐标系A的Z 轴转30度, 假设点P在 坐标系B的描述为PB={3,7,0}T,求它在坐标 系A中的描述PA.
cos(X i , X j ) cos(X i , Y j ) cos(X i , Z j ) x j i P cos(Yi , X j ) cos(Yi , Y j ) cos(Yi , Z j ) y j cos(Z , X ) cos(Z , Y ) cos(Z , Z ) z i j i j i j j
cos(X ' X ) cos(Y ' X ) cos(Z ' X ) cos(X 'Y ) cos(Y 'Y ) cos(Z 'Y ) O' O' O' O' R [ X Y Z ] O O O O 33 cos(X ' Z ) cos(Y ' Z ) cos(Z ' Z ) 姿态矩阵R的特点:
Xi
X1 X 2 X j
2)、绕固定坐标系旋转
( X i , a) ( Z i , )
坐标系 ( X i , Yi , Z i )
Zi Zm Zj
坐标系( X m , Ym , Z m )
j i
坐标系 ( X j , Y j , Z j )
a a
Xi Xm Yj Ym Yi
R?
证明与讨论:
cosj cos sin f sin j cosf sin j cos sin f cosj cosf sin sin f
cosj sin sin j sin cos
注意:多个旋转矩阵连乘时,次序不同则含义不同。
1)绕新的动坐标轴依次转动时,每个旋转矩阵要从左往右 乘,即旋转矩阵的相乘顺序与转动次序相同; 2)绕旧的固定坐标轴依次转动时,每个旋转矩阵要从右往 左乘,即旋转矩阵的相乘顺序与转动次序相反。
X
Z b Z' O' Y' t O n X'
Y
i
P R P
旋转矩阵
j i
j
坐标系j相对 于i的方位
旋转矩阵的性质:
j i
R R R
i j
1
i j
T
►绕一个坐标轴旋转的转动矩阵
Zi Z
j
Zi Zj
Yj
Yi Y j
Yi Xi Xi X
j
Xj
1)RX
Zi Zj
2)RY
Yj
Xi Xj Yi
sin cos a cos cos a sin a
sin sin a cos sin a cos a
2)、绕运动坐标系旋转
坐标系 ( X i , Yi , Z i ) 坐标系 ( X 1 , Y1 , Z1 ) 坐标系 ( X 2 , Y2 , Z 2 ) 坐标系 ( X j , Y j , Z j )
0 1 0 cos j R ( X , ) i i 0 sin sin cos 0
Zi Zj
cos 0 j R ( Y , ) i i sin
0 sin 1 0 0 cos
R是单位正交阵
O' O
R 1
刚体的位置和姿态:
' {O'} {O O R, O' O
P}
Zj
例:某刚体j在参考系i中的 位置 姿态
oj oi
P?
Oj Oi
Oj
Yj Xj Zi
R?
6
10
Oi
Xi
Yi
3-2 坐标变换(点的映射)
1、坐标平移(坐标系方位相同)
已知点P在j坐标系的坐标,平移j至i,求 点P在i坐标系的坐标。
Xi Xj Yi Yj
Zi
Zj Yj
cos sin j R ( Z , ) i i 0
sin cos 0
0 0 1
Xi
Xj
Yi
0 1 0 cos j R ( X , ) i i 0 sin
sin cos
yi x j cos(Yi , X j )
yi x j cos(Yi , X j ) y j cos(Yi , Y j ) yi x j cos(Yi , X j ) y j cos(Yi , Y j ) z j cos(Yi , Z j )
Zj
Zi
zi
P
zj
yj
适用的机器人类型举例(有平移关节)
Z1 X1
Y1 Z2 X2
Y2
Z3 X3