《计量经济学基础第五版古扎拉蒂》习题1.1表1-3
古扎拉蒂《计量经济学基础》第1章

区
大利哥
GDP 0.9 12. 3.6 -1.7 2.7 14.2 6.3
1
3
(3)混合数据
国家和
实际GDP增长率
地区 1992年 1993年 1994年 1995年 1996年 1997年 1998年
加拿大 0.9 2.5 3.9 2.2 1.2 4.0 3.1
智利 12.3 7.0 5.7 10.6 7.4 7.1 3.4 墨西哥 3.6 2.0 4.4 -6.2 5.2 7.0 4.8
换言之,尽管父母双亲都异常高或异常矮, 而儿女的身高则有走向人口总体平均身高的趋势。
(2)高尔顿的普遍回归定律(law of universal regression)还被他的朋友卡尔·皮尔 逊(Karl Pearson)证实。 皮尔逊曾收集过一些家庭群体的一千多名成 员的身高记录。他发现,对于一个父亲高的群体, 儿辈的平均身高低于他们父辈的身高,而对于一
相关分析的例子:吸烟与肺癌之间、统计 学考分与数学考分之间、中学成绩与大学成绩 之间的相关(系数)等。
回归分析:即为根据其他变量的设定值来 估计或预测某一变量的平均值。例如,也许想 知道能否从一个学生的已知数学考分,去预测 他的统计学平均考分。
5. 术语、符号和规定(1)
因变量(Dependent variable)
确定性关系是相对的,随机性关系是绝对 的!
3.回归与因果关系 从逻辑上说。统计关系式本身不可能意味 着任何因果关系。要谈因果律,必须诉诸先验 的或理论上的思考。 如在前面所引的农作物收成一例中,没有 任何统计上的理由可以认为降雨量不依赖于作 物收成。把作物收成看作依赖于降雨量等的因 变量,并非出于统计上的考虑。普通常识提示 了不能把这种关系倒转过来,因为不能用改变 作物收成的方法来控制降雨。
古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解

三、计量经济学方法论
大致说来,传统的计量经济学方法论按如下路线进行:
1.理论或假说的陈述;
2.理论的数学模型设定;
3.统计或计量经济模型设定;
4.获取数据;
5.计量经济模型的参数估计;
理论计量经济学是要找出适当的方法,去测度由计量经济模型设定的经济关系。为此,计量经济学家非常依赖于数理统计。
在应用计量经济学中,利用理论计量经济学工具去研究经济学或管理学中的某些特殊领域。
0.2
本章没有课后习题。本章是全书的一个引言,对计量经济学这门学科作一个简要介绍。对于本章内容,学员简单了解即可。
(3)在问卷调查中,无应答的问题也可能相当严重。
(4)获取数据的抽样方法可能变化很大,要比较不同样本得来的结果常常非常困难。
(5)通常获得的经济数据都是高度加总的。
(6)由于保密性质,某些数据只能以高度加总的形式公布。
研究结果不可能比数据的质量更好。所以,如果在一定情况下,研究者发现研究的结果“不能令人满意”的话,原因不一定是误用模型,而是数据的质量不好。
4.名义尺度
此类变量不具备比率尺度变量的任何一个特征。因此适合于比率尺度变量的计量经济方法可能不适合于名义尺度变量。
1.2
1.表1-1给出了7个工业化国家的消费者价格指数(CPI)数据,以1982~1984年为该指数的基期并令1982—1984=100。
1.经济理论所作的陈述或假说大多数是定性的。计量经济学家的工作就是要提供这一数值估计。换言之,计量经济学对大多数的经济理论赋予经验内容。
2.数理经济学的主要问题,是要用数学形式(方程式)来表述经济理论,而不管该理论是否可以量化或是否能够得到实证支持。计量经济学家常常使用数理经济学家所提供的数学方程式,但要把这些方程式改造成适合于经验检验的形式。这种从数学方程到计量经济方程的转换需要有许多的创造性和实际技巧。
古扎拉蒂《计量经济学基础》(第5版)视频网课

在各个章节中,通过列举并分析历年考研真题,明确命题规律和特点,引导学员掌握考点的历年出题思路及方式,从而有效指导学员复习相关知识点。
3.电子书(题库)(送手机版)
报名本课程后,本视频课程里的所有电子书(题库)均可使用。
需要提醒的是,考虑到课时的需要以及相关知识点的难易程度,对于一些简单的知识点、考试不易涉及的知识点,本课程不予以讲述或一带而过,故建议大家在学习本课程之前提前复习一遍教材,在翻看教材基础上,学习本课程。本课程的学员可以下载电子版讲义打印学习。
01:17:03
20
第13章计量经济建模:模型设定与误差检验(2)
01:19:04
21
第14章非线性回归模型
00:47:26
22
第15章定性响应回归模型(1)
00:55:23
23
第15章定性响应回归模型(2)
00:49:11
24
第16章面板数据回归模型(1)
00:50:16
25
第16章面板数据回归模型(2)
15
第11章异方差性:误差方差不是常数怎么办(1)
00:53:23
16
第11章异方差性:误差方差不是常数怎么办(2)
00:54:18
17
第12章自相关:误差项相关会怎么样(1)
01:10:52
18
第12章自相关:误差项相关会怎么样(2)
01:17:51
19
第13章计量经济建模:模型设定与误差检验(1)
01:04:41
9
第8章多元回归分析:推断问题(1)
01:01:49
10
第8章多元回归分析:推断问题(2)
00:55:55
11
计量经济学-古扎拉蒂

为了便于期末复习,请各类题型都抄好原题,而不是只写出答案;并且名词 解释和简答题要抄一小题,答一小题,而不是集中抄题,集中回答。
只要是讲过的附录内容,都属于考试范围。
第1章一、填空1. 拟合即( )的意思,拟合直线是指直线对( )的近似。
2. 回归一词的使用始于高尔顿对人体身高的研究。
他发现一个规律:父母高,子女也高; 父母矮,子女也矮。
当父母身高既定时, 子女的身高趋向于或“回归” 部子女的( )。
简记为,回归即指回归到(第2章一、 填空1. 总体回归线代表(二、 单项选择题1. 下列函数中,哪个是参数线性但非变量线性的函数? A. E(Y)=B 1+B 2 X ;B. E(Y | X i )=B i +B 2X iC. Y i =B i +B 2X i +U i2. 下列函数中,哪个是变量线性但非参数线性的函数?1 2A. E (Y )=B 1+B 2B. E (Y )=B 什 B 2 X iC. E (Y | X i )=B 计B 2X iXi三、 名词解释总体;样本;随机实验;估计量;估计值;变量线性;参数线性 四、 简述1. 奥卡姆剃刀原则如何应用到模型设定中?2. 什么是非随机总体回归函数?什么是随机总体回归函数?什么是非随机样本回归函数? 什么是随机样本回归函数? 五、 论述题什么是普通最小二乘法?(按教材内容回答,不必按讲义,因它太细了)第3章一、填空1. 如果连续随机变量的概率密度函数( PDF )有如下形式:11 (x _P ) f (x )= ----- exp (2 ) , (-m <x< g ) 口阪2其中,□和2分别是分布的均值和方差,那么该变量被称为是( )分布的,其图形呈( )。
2. 如果X 1,X 2, , ,X n 都独立抽取于同一概率分布,即X i (i=1,2,, ,n )的概率密度函数相同, 则称其为(),X 称为()随机变量。
3. 如果随机样本X 1, X 2, , , X n 来自均值为 収,方差为£的任一总体,则随着样本容量无限增大,样本均值X 趋于(),其均值为 似,方差为cX /n 。
计量经济学古扎拉蒂课后答案

计量经济学古扎拉蒂课后答案【篇一:计量经济学考试习题及答案】双对数模型 lny?ln?0??1lnx??中,参数?1的含义是()a.y关于x的增长率b.y关于x的发展速度c. y关于x的弹性d. y关于x 的边际变化2、设k为回归模型中的参数个数,n为样本容量。
则对多元线性回归方程进行显著性检验时,所用的f统计量可表示为()ess(/n?k)r2/(k?1)b. a.2rss(/k?1)(1?r)(/n?k)ess(/k?1)r2(/n-k)d.c. tss(/n?k)(1?r2)(/k?1)3、回归模型中具有异方差性时,仍用ols估计模型,则以下说法正确的是()a. 参数估计值是无偏非有效的b. 参数估计量仍具有最小方差性c. 常用f 检验失效d. 参数估计量是有偏的4、利用德宾h检验自回归模型扰动项的自相关性时,下列命题正确的是()a. 德宾h检验只适用一阶自回归模型b. 德宾h检验适用任意阶的自回归模型c. 德宾h 统计量渐进服从t分布d. 德宾h检验可以用于小样本问题5、一元线性回归分析中的回归平方和ess的自由度是()a. nb. n-1c. n-kd. 16、已知样本回归模型残差的一阶自相关系数接近于1,则dw统计量近似等于( )a. 0b. 1 c. 2 d. 47、更容易产生异方差的数据为 ( )a. 时序数据b. 修匀数据c. 横截面数据d. 年度数据8、设m为货币需求量,y为收入水平,r为利率,流动性偏好函数为?2分别是?1 、?2的估计值,则根据经济理m??0??1y??2r??,又设?1、论,一般来说(a )a. ?1应为正值,?2应为负值b. ?1应为正值,?2应为正值c. ?1应为负值,?2应为负值d. ?1应为负值,?2应为正值9、以下选项中,正确地表达了序列相关的是()a.co(v?i,?j)?0,i?jb.co(v?i,?j)?0,i?j ??????????vxi,?j)?0,i?j c.cov(xi,xj)?0,i?jd.co(10、在一元线性回归模型中,样本回归方程可表示为()a. yt??0??1??tb.yt?e(yt/x)??ic. yt??0??1xtd. e(yt/xt)??0??1xt11、对于有限分布滞后模型 ???yt????0xt??1xt?1??2xt?2????kxt?k??t在一定条件下,参数?i 可近似用一个关于i的阿尔蒙多项式表示(i?0,1,2,?,m),其中多项式的阶数m必须满足() ?a.mk b.m=kc.mkd.m?k12、设?t为随机误差项,则一阶线性自相关是指()a.cov(?t,?s)?0(t?s) b. ?t???t?1??tc. ?t??1?t?1??2?t?2??td. ?t??2?t?1??t13、把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为()a. 横截面数据b. 时间序列数据c. 修匀数据d. 原始数据14、多元线性回归分析中,调整后的可决系数r与可决系数r2之间的关系()22n?122a.?1?(1?r) b. ?r n?k22n?k2 c. ?0 d. ?1?(1?r) n?115、goldfeld-quandt检验法可用于检验( )a.异方差性b.多重共线性c.序列相关d.设定误差16、用于检验序列相关的dw统计量的取值范围是( )a.0?dw?1b.?1?dw?1c.?2?dw?2 d.0?dw?417、如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量的值为()a.不确定,方差无限大b.确定,方差无限大c.不确定,方差最小d.确定,方差最小18、应用dw检验方法时应满足该方法的假定条件,下列不是其假定条件的为()a.解释变量为非随机的b.被解释变量为非随机的c.线性回归模型中不能含有滞后内生变量d.随机误差项服从一阶自回归二、多项选择题1、古典线性回归模型的普通最小二乘估计量的特性有()a. 无偏性b. 线性性c. 最小方差性d. 不一致性e. 有偏性2、如果模型中存在自相关现象,则会引起如下后果()a.参数估计值有偏b.参数估计值的方差不能正确确定c.变量的显著性检验失效d.预测精度降低e.参数估计值仍是无偏的????x的特点() ???3、利用普通最小二乘法求得的样本回归直线yt12ta. 必然通过点(,)b. 可能通过点(,)?的平均值与y?的平均值相等 c. 残差et的均值为常数 d. ytte. 残差et与解释变量xt之间有一定的相关性4、广义最小二乘法的特殊情况是()a.对模型进行对数变换 b.加权最小二乘法c.数据的结合d.广义差分法e.增加样本容量5、计量经济模型的检验一般包括内容有()a、经济意义的检验b、统计推断的检验c、计量经济学的检验d、预测检验e、对比检验三、判断题(判断下列命题正误,并说明理由)1、在实际中,一元回归几乎没什么用,因为因变量的行为不可能仅由一个解释变量来解释。
古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(虚拟变量回归模型)【圣才出品】

第9章虚拟变量回归模型9.1 复习笔记考点一:ANOVA模型★★★1.虚拟变量含义虚拟变量是指仅有0和1两个取值的变量,是一种定性变量。
一般而言,虚拟变量等于0表示变量不具有某种性质,等于1表示具有某种性质。
虚拟变量也可以放到回归模型中。
这种模型被称为方差分析(ANOVA)模型。
2.虚拟变量模型(1)虚拟变量的表达式Y i=β1+β2D2i+β3D3i+u i应看到,除了不是定量回归元而是定性或虚拟回归元(若观测值属于某特定组则取值为1,若它不属于那一组则取值0)之外,方程与前面考虑的任何一个多元回归模型都是一样的。
所有的虚拟变量都用字母D表示。
(2)使用虚拟变量的注意事项①若定性变量有m个类别,则只需引入m-1个虚拟变量,否则就会陷入虚拟变量陷阱,即完全共线性或完全多重共线性(若变量之间存在不止一个精确的关系)情形。
对每个定性变量而言,所引入的虚拟变量的个数必须比该变量的类别数少一个。
②不指定其虚拟变量的那一组被称为基组、基准组、控制组、比较组、参照组或省略组。
所有其他的组都与基准组进行比较。
③截距值(β1)代表了基准组的均值。
④附属于方程中虚拟变量的系数被称为级差截距系数,它反映取值为1的地区的截距值与基准组的截距系数之间的差别。
⑤如果定性变量不止一类,那么,基准组的选择完全取决于研究者。
⑥对于虚拟变量陷阱,如果在这种模型中不使用截距项,那么引入与变量的类别相同数量的虚拟变量就能够回避虚拟变量陷阱的问题。
因此,如果从方程中去掉截距项,并考虑如下模型Y i=β1D1i+β2D2i+β3D3i+u i由于此时没有完全共线性,所以就不会陷入虚拟变量陷阱。
但要确定做这个回归时,一定要使用回归软件包中的无截距选项。
⑦在一个含有截距的方程中,能更容易地处理是否有某个组与基准组有所不同以及有多大的不同,所以在方程中包括截距更方便。
为了检查分组是否得当,也可通过将虚拟变量的系数相对0做t检验(或者更一般地,对适当的虚拟变量系数集做一个F检验),就可以检验分类是否适当。
古扎拉蒂《计量经济学基础》(第5版)笔记和课后习题详解
资料来源:EconomicReport ofthe President,2007,Table13-110,P.356.
答:a.把汇率的对数作为纵轴并把时间作为横轴进行描点,如图1-4所示,汇率的波动性很大。比如,在1985年,1美元只能兑换0.257比索,但到了2004年,它能兑换约11.29比索。
2.回归分析与相关分析的区别
回归分析中,对因变量和解释变量的处理方法存在着不对称性。因变量被当作是统计的、随机的,也就是它有一个概率分布。而解释变量则被看作是(在重复抽样中)取固定值的。
相关分析中,任何(两个)变量的处理方法都是对称的;因变量和解释变量之间不加区别;两个变量都被看作是随机的。
五、术语与符号
计量经济学可定义为实际经济现象的数量分析。这种分析基于理论与观测的并行发展,而理论与观测又通过适当的推断方法得以联系。
计量经济学可定义为这样的社会科学:它把经济理论、数学和统计推断作为工具,应用于经济现象的分析。
2.研究对象和研究方法
计量经济学研究经济定律的经验判定。计量经济学家的艺术,就在于找出一组足够具体且足够现实的假定,使他尽可能最好地利用他所获得的数据。
图1-3
b.如图1-3所示,这六个国家的通货膨胀率与美国的通货膨胀率正相关。
c.相关并不意味着因果关系。从逻辑上说,回归得到的统计关系式本身不可能意味着任何因果关系。肯德尔和斯图亚特认为,一个统计关系式永远不能确立因果方面的联系,对因果关系的理念,必须来自统计学以外的某种理论。
3.表1-3给出了9个工业化国家1985~2006年间的外汇汇率数据。除英国外,汇率都定义为一美元兑换外币的数量;而英国的汇率定义为一英镑兑换美元的数量。
资料来源:Economic Report of the President,2007,Table l08,P.354.
计量经济学(伍德里奇第五版中文版)答案精编版
第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。
也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。
对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。
(二)呈负相关关系意味着,较大的一类大小是与较低的性能。
因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。
然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。
例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。
另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。
或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。
(三)鉴于潜在的混杂因素- 其中一些是第(ii)上市- 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。
在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。
1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B公司的不同?(二)公司很可能取决于工人的特点选择在职培训。
一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。
企业甚至可能歧视根据年龄,性别或种族。
也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。
此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。
(iii)该金额的资金和技术工人也将影响输出。
所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。
管理者的素质也有效果。
(iv)无,除非训练量是随机分配。
许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。
(完整word版)计量经济学基本点练习题及答案
(完整word版)计量经济学基本点练习题及答案Chap1—31、在同⼀时间不同统计单位的相同统计指标组成的数据组合,是()A、原始数据B、时点数据C、时间序列数据D、截⾯数据2、回归分析中定义的( )A、解释变量和被解释变量都是随机变量B、解释变量为⾮随机变量,被解释变量为随机变量C、解释变量和被解释变量都为⾮随机变量D、解释变量为随机变量,被解释变量为⾮随机变量3、在⼀元线性回归模型中,样本回归⽅程可表⽰为:()4、⽤模型描述现实经济系统的原则是( )A、以理论分析作先导,解释变量应包括所有解释变量B、以理论分析作先导,模型规模⼤⼩要适度C、模型规模越⼤越好;这样更切合实际情况D、模型规模⼤⼩要适度,结构尽可能复杂5、回归分析中使⽤的距离是点到直线的垂直坐标距离。
最⼩⼆乘准则是指()6、设OLS法得到的样本回归直线为A、⼀定不在回归直线上B、⼀定在回归直线上C、不⼀定在回归直线上D、在回归直线上⽅7、下图中“{”所指的距离是A.随机误差项B.残差C.因变量观测值的离差D.因变量估计值的离差8、下⾯哪⼀个必定是错误的9、线性回归模型的OLS估计量是随机变量Y的函数,所以OLS估计量是()。
A.随机变量B.⾮随机变量C.确定性变量D.常量10、为了对回归模型中的参数进⾏假设检验,必须在古典线性回归模型基本假定之外,再增加以下哪⼀个假定:A.解释变量与随机误差项不相关B.随机误差项服从正态分布C.随机误差项的⽅差为常数D.两个误差项之间不相关D B C B D B B C A BChap41、⽤OLS估计总体回归模型,以下说法不正确的是:2、包含有截距项的⼆元线性回归模型中的回归平⽅和ESS的⾃由度是()A、nB、n-2C、n-3D、23、对多元线性回归⽅程的显著性检验,,k代表回归模型中待估参数的个数,所⽤的F统计量可表⽰为:4、已知三元线性回归模型估计的残差平⽅和为800,样本容量为24,则随机误差项的⽅差估计量为( )A 、33.33B 、 40C 、 38.09D 、36.365、在多元回归中,调整后的判定系数与判定系数的关系为6、下⾯哪⼀表述是正确的:A.线性回归模型的零均值假设是指B.对模型进⾏⽅程总体显著性检验(即F 检验),检验的零假设是C.相关系数较⼤意味着两个变量存在较强的因果关系D.当随机误差项的⽅差估计量等于零时,说明被解释变量与解释变量之间为函数关系7、在模型的回归分析结果报告中,有F=263489,p=0.000,则表明()A 、解释变量X1对Y 的影响是显著的B 、解释变量X2对Y 的影响是显著的C 、解释变量X1, X2对的Y 联合影响是显著的D 、解释变量X1, X2对的Y 的影响是均不显著8、关于判定系数,以下说法中错误的是()A 、判定系数是因变量的总变异中能由回归⽅程解释的⽐例;B 、判定系数的取值范围为0到1;C 、判定系数反映了样本回归线对样本观测值拟合优劣程度的⼀种描述;D 、判定系数的⼤⼩不受到回归模型中所包含的解释变量个数的影响。
古扎拉蒂《计量经济学基础》复习笔记和课后习题详解(定性响应回归模型)【圣才出品】
第15章定性响应回归模型15.1 复习笔记考点一:定性响应模型的性质★★定性响应模型是指模型中的回归子是一个二值或二分变量的模型,通常被称为概率模型。
回归子也可以是多分响应变量或多类型响应变量。
将二值响应变量建立成概率模型的方法包括线性概率模型(LPM)、logit模型、probit模型和tobit模型。
考点二:线性概率模型(LPM)★★★★1.LPM的定义以下述回归模型为例说明:Y i=β1+β2X i+u i。
其中X表示家庭收入;Y=1,则表示该家庭拥有住房;Y=0,则该家庭不拥有住房。
该模型被称为线性概率模型,因为Y i在给定X i下的条件期望E(Y i|X i)可解释为在给定X i下事件(家庭拥有住房)发生的条件概率,即Pr(Y i=1|X i)。
2.LPM的特征令P i表示“Y i=1”(即事件发生)的概率,而1-P i表示“Y i=0”(即事件不发生)的概率,则变量Y i服从贝努利概率分布。
根据期望的定义,有:E(Y i)=0(1-P i)+1P i=P i。
此外有:E(Y i|X i)=β1+β2X i =P i,即模型的条件期望事实上可以解释为Y i的条件概率。
该模型的约束条件为:0≤E(Y i|X i)≤1。
3.LPM的问题(1)干扰项u i的非正态性若把方程写成:u i=Y i-β1-β2X i,u i的概率分布见表15-1。
表15-1 u i的概率分布可见u i服从贝努利分布而不是正态分布。
虽然干扰项不满足正态性假定,但OLS的点估计值仍具有无偏性。
此外在大样本下,OLS估计量一般都趋于正态分布,因此LPM的统计推断仍可用正态性假定下的OLS程序。
(2)干扰项的异方差性即使LPM中的干扰项满足零均值和无序列相关性假定,但也不能说它具有同方差性。
对于贝努利分布,理论上的均值和方差分别为P和P(1-P),可见方差是均值的函数,而均值的取值依赖于X的值,因此LPM中的干扰项具有异方差性。