ISO764_数字隔离器

合集下载

Si86xx 1 Mbps 数字隔离器数据手册说明书

Si86xx 1 Mbps 数字隔离器数据手册说明书

Si86xx 1 Mbps Data Sheet 1 Mbps, 2.5 kV RMS Digital IsolatorsSkyworks' family of ultra-low-power digital isolators are CMOS devices offering substan-tial data rate, propagation delay, power, size, reliability, and external BOM advantages over legacy isolation technologies. The operating parameters of these products remain stable across wide temperature ranges and throughout device service life for ease of design and highly uniform performance. All device versions have Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors.All products support Data rates up to 1 Mbps and Enable inputs which provide a single point control for enabling and disabling output drive. All products are safety certified by UL, CSA, VDE, and CQC and support withstand ratings up to 2.5 kV RMS.Automotive Grade is available for certain part numbers. These products are built using automotive-specific flows at all steps in the manufacturing process to ensure the robust-ness and low defectivity required for automotive applications.KEY FEATURES•High-speed operation•DC to 1 Mbps•No start-up initialization required•Wide Operating Supply Voltage•2.5 to 5.5 V•Up to 2500 V RMS isolation•60-year life at rated working voltage •High electromagnetic immunity•Ultra low power (typical)•5 V Operation: 1.6 mA per channel at 1Mbps•2.5 V Operation: 1.5 mA per channel at1 Mbps•Tri-state outputs with ENABLE •Schmitt trigger inputs•Transient Immunity 50 kV/µs•AEC-Q100 qualification•Wide temperature range•–40 to 125 °C•RoHS-compliant packages•SOIC-16 wide body•SOIC-16 narrow body•SOIC-8 narrow body•Automotive-grade OPNs available•AIAG compliant PPAP documentationsupport•IMDS and CAMDS listing supportIndustrial Applications•Industrial automation systems •Medical electronics•Isolated switch mode supplies •Isolated ADC, DAC•Motor control•Power inverters •Communication systemsSafety Regulatory Approvals•UL 1577 recognized•Up to 5000 V RMS for 1 minute •CSA component notice 5A approval •IEC 60950-1, 61010-1•VDE certification conformity•IEC 60747-5-2 (VDE0884 Part 2)•CQC certification approval•GB4943.1Automotive Applications•On-board chargers •Battery management systems •Charging stations •Traction inverters•Hybrid Electric Vehicles •Battery Electric Vehicles1. Ordering GuideIndustrial and Automotive Grade OPNsIndustrial-grade devices (part numbers having an “-I” in their suffix) are built using well-controlled, high-quality manufacturing flows to ensure robustness and reliability. Qualifications are compliant with JEDEC, and defect reduction methodologies are used throughout definition, design, evaluation, qualification, and mass production steps.Automotive-grade devices (part numbers having an “-A” in their suffix) are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and feature International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compliant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass production steps.Table 1.1. Ordering Guide for Valid OPNs1, 2, 4Table of Contents1. Ordering Guide (2)2. Functional Description (5)2.1 Theory of Operation (5)3. Device Operation (6)3.1 Device Startup (8)3.2 Undervoltage Lockout (8)3.3 Layout Recommendations (8)3.3.1 Supply Bypass (8)3.3.2 Output Pin Termination (8)4. Electrical Specifications (9)5. Pin Descriptions (30)5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8) (30)5.2 Pin Descriptions (Si863x) (31)5.3 Pin Descriptions (Si864x) (32)5.4 Pin Descriptions (Si8650/51/52) (33)5.5 Pin Descriptions (Si866x) (34)6. Package Outlines (35)6.1 Package Outline (16-Pin Wide Body SOIC) (35)6.2 Package Outline (16-Pin Narrow Body SOIC) (37)6.3 Package Outline (8-Pin Narrow Body SOIC) (39)7. Land Patterns (40)7.1 Land Pattern (16-Pin Wide-Body SOIC) (40)7.2 Land Pattern (16-Pin Narrow Body SOIC) (41)7.3 Land Pattern (8-Pin Narrow Body SOIC) (42)8. Top Markings (43)8.1 Top Marking (16-Pin Wide Body SOIC) (43)8.2 Top Marking (16-Pin Narrow Body SOIC) (44)8.3 Top Marking (8-Pin Narrow Body SOIC) (45)9. Revision History (46)Si86xx 1 Mbps Data Sheet • Functional Description2. Functional Description2.1 Theory of OperationThe operation of an Si86xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si86xx channel is shown in the figure below.A BFigure 2.1. Simplified Channel DiagramA channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to outputB via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See the figure below for more details.Input SignalModulation SignalOutput SignalFigure 2.2. Modulation Scheme3. Device OperationDevice behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on page 8, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to determine outputs when power supply (VDD) is not present. Additionally, refer to Table 3.2 Enable Input Truth1on page 7for logic conditions when enable pins are used.Table 3.1. Si86xx Logic OperationTable 3.2. Enable Input Truth13.1 Device StartupOutputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs.3.2 Undervoltage LockoutUndervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when V DD1 falls below V DD1(UVLO–) and exits UVLO when V DD1 rises above V DD1(UVLO+). Side B operates the same as Side A with respect to its V DD2 supply.VVFigure 3.1. Device Behavior during Normal Operation3.3 Layout RecommendationsTo ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V AC) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V AC) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.5 Regulatory Information1 on page 25and Table 4.6 Insulation and Safety-Related Specifications on page 25detail the working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.3.3.1 Supply BypassThe Si86xx family requires a 0.1 µF bypass capacitor between V DD1 and GND1 and V DD2 and GND2. The capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series with the inputs and outputs if the system is excessively noisy.3.3.2 Output Pin TerminationThe nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.4. Electrical SpecificationsTable 4.1. Recommended Operating ConditionsTable 4.2. Electrical Characteristics(V DD1 = 5 V±10%, V DD2 = 5 V±10%, T A = –40 to 125 °C)ENABLEOUTPUTSen1t en2Figure 4.1. ENABLE Timing DiagramInputOutputFigure 4.2. Propagation Delay TimingFigure 4.3. Common-Mode Transient Immunity Test CircuitTable 4.3. Electrical Characteristics(V DD1 = 3.3 V±10%, V DD2 = 3.3 V±10%, T A = –40 to 125 °C)Table 4.4. Electrical Characteristics (V DD1 = 2.5 V ±5%, V DD2 = 2.5 V ±5%, T A = –40 to 125 °C)Table 4.5. Regulatory Information1CSAThe Si86xx is certified under CSA Component Acceptance Notice 5A, IEC61010-1 and IEC60950-1. For more details, see File 232873.VDEThe Si86xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.ULThe Si86xx is certified under UL1577 component recognition program. For more details, see File E257455.CQCThe Si86xx is certified under GB4943.1-2011. For more details, see certificates CQC130******** and CQC130********.Note:1.Regulatory Certifications apply to2.5 kV RMS rated devices which are production tested to3.0 kV RMS for 1 sec.For more information, see 5.5 Pin Descriptions (Si866x).Table 4.6. Insulation and Safety-Related SpecificationsTable 4.7. IEC 60664-1 (VDE 0844 Part 2) RatingsTable 4.8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*Table 4.9. IEC Safety Limiting Values1Table 4.10. Thermal Characteristics200150100505004002001000Temperature (ºC)S a f e t y -L i m i t i n g C u r r e n t (m A )300Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Valueswith Case Temperature per DIN EN 60747-5-2200150100505004002001000Temperature (ºC)S a f e t y -L i m i t i n g C u r r e n t (m A )300Figure 4.5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Valueswith Case Temperature per DIN EN 60747-5-2200150********2001000Case Temperature (ºC)S a f e t y -L i m i t i n g V a l u e s (m A )300Figure 4.6. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Valueswith Case Temperature per DIN EN 60747-5-2Table 4.11. Absolute Maximum Ratings 15. Pin Descriptions5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8)V DD2 V DD1V DD2V DD2Figure 5.1. Si861x/2x Narrow Body SOIC-8 Pin DescriptionsTable 5.1. Si861x/2x Narrow Body SOIC-8 Pin DescriptionsSi86xx 1 Mbps Data Sheet • Pin DescriptionsVDD2VDD2Figure 5.2. Si863x Pin DescriptionsTable 5.2. Si863x Pin DescriptionsVDD2VDD2V DD2Figure 5.3. Si864x Pin DescriptionsTable 5.3. Si864x Pin Descriptions5.4 Pin Descriptions (Si8650/51/52)VDD2VDD2V DD2Figure 5.4. Si865x Pin DescriptionsTable 5.4. Si865x Pin Descriptions5.5 Pin Descriptions (Si866x)VVVVFigure 5.5. Si866x Pin DescriptionsTable 5.5. Si866x Pin Descriptions6. Package Outlines6.1 Package Outline (16-Pin Wide Body SOIC)The figure below illustrates the package details for the Si86xx Digital Isolator. The table below lists the values for the dimensions shown in the illustration.Figure 6.1. 16-Pin Wide Body SOICTable 6.1. Package Diagram Dimensions6.2 Package Outline (16-Pin Narrow Body SOIC)The figure below illustrates the package details for the Si86xx in a 16-pin narrow-body SOIC (SO-16). The table below lists the values for the dimensions shown in the illustration.Figure 6.2. 16-pin Small Outline Integrated Circuit (SOIC) PackageTable 6.2. Package Diagram Dimensions6.3 Package Outline (8-Pin Narrow Body SOIC)The figure below illustrates the package details for the Si86xx. The table below lists the values for the dimensions shown in the illustration.Figure 6.3. 8-pin Small Outline Integrated Circuit (SOIC) PackageTable 6.3. Package Diagram Dimensions7. Land Patterns7.1 Land Pattern (16-Pin Wide-Body SOIC)The figure below illustrates the recommended land pattern details for the Si86xx in a 16-pin wide-body SOIC. The table below lists the values for the dimensions shown in the illustration.Figure 7.1. 16-Pin SOIC Land PatternTable 7.1. 16-Pin Wide Body SOIC Land Pattern DimensionsTable 7.2. 16-Pin Narrow Body SOIC Land Pattern DimensionsTable 7.3. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)8. Top Markings8.1 Top Marking (16-Pin Wide Body SOIC)Figure 8.1. 16-Pin Wide Body SOICTable 8.1. Top Marking Explanation (16-Pin Wide Body SOIC)Line 1 Marking:Base Part NumberOrdering Options(See 1. Ordering Guide for more information).Si86 = Isolator product seriesXY = Channel ConfigurationX = # of data channels (5, 4, 3, 2, 1)Y = # of reverse channels (2, 1, 0)S = Speed Grade (max data rate) and operating mode:A = 1 Mbps (default output = low)B = 150 Mbps (default output = low)D = 1 Mbps (default output = high)E = 150 Mbps (default output = high)V = Insulation ratingA = 1 kV;B = 2.5 kV;C = 3.75 kV;D = 5.0 kVLine 2 Marking:YY = YearWW = Workweek Assigned by assembly subcontractor. Corresponds to the year and work week of the mold date.RTTTTT = Mfg Code Manufacturing code from assembly house“R” indicates revisionLine 3 Marking:Circle = 1.7 mm Diameter(Center-Justified)“e4” Pb-free symbolCountry of Origin ISO Code Abbreviation CC = Country of Origin ISO Code Abbreviation•TW = Taiwan•TH = ThailandFigure 8.2. 16-Pin Narrow Body SOICTable 8.2. Top Marking Explanation (16-Pin Narrow Body SOIC)Line 1 Marking:Base Part NumberOrdering Options(See 1. Ordering Guide for more information.)Si86 = Isolator product seriesXY = Channel ConfigurationX = # of data channels (5, 4, 3, 2, 1)Y = # of reverse channels (2, 1, 0)S = Speed Grade (max data rate) and operating mode:A = 1 Mbps (default output = low)B = 150 Mbps (default output = low)D = 1 Mbps (default output = high)E = 150 Mbps (default output = high)V = Insulation ratingA = 1 kV;B = 2.5 kV;C = 3.75 kVLine 2 Marking:Circle = 1.2 mm Diameter“e3” Pb-Free SymbolYY = YearWW = Work Week Assigned by the assembly subcontractor. Corresponds to the year and work week of the mold date.RTTTTT = Mfg Code Manufacturing code from assembly house“R” indicates revisionFigure 8.3. 8-Pin Narrow Body SOICTable 8.3. Top Marking Explanation (8-Pin Narrow Body SOIC)Line 1 Marking:Base Part NumberOrdering Options(See 1. Ordering Guide for more information).Si86 = Isolator Product Series XY = Channel ConfigurationS = Speed Grade (max data rate) V = Insulation ratingLine 2 Marking:YY = YearWW = Workweek Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date.R = Product RevisionT = First character of the manufacturing codeLine 3 Marking:Circle = 1.1 mm Diameter“e3” Pb-Free Symbol.TTTT = Last four characters of the manufactur-ing codeLast four characters of the manufacturing code.9. Revision HistoryRevision 1.03September 2019•Updated Ordering Guide.Revision 1.02February 2018•Added SI8641AB-AS1 and SI8642AB-AS1 to Ordering Guide for Automotive-Grade OPN options Revision 1.01January 2018•Updated data sheet format.•Added new table to Ordering Guide for Automotive-Grade OPN options•Updated Table 4.5 Regulatory Information1 on page 25.•Added CQC certificate numbers.•Updated 1. Ordering Guide.•Removed references to moisture sensitivity levels.•Removed note 2.Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks’ Terms and Conditions of Sale.THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks’ published specifications or parameters.Skyworks, the Skyworks symbol, Sky5®, SkyOne ®, SkyBlue™, Skyworks Green™, Clockbuilder ®, DSPLL ®, ISOmodem ®, ProSLIC ®, and SiPHY ® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at , are incorporated by reference.PortfolioQuality/qualitySupport & Resources/support。

数字隔离器工作原理及应用实例

数字隔离器工作原理及应用实例

数字隔离器工作原理及应用实例作者:徐华来源:《电脑知识与技术·学术交流》2008年第22期摘要:讨论了隔离技术的发展,分析了数字隔离器的工作原理,给出了数字隔离器的应用实例。

关键词:隔离;数字隔离器;高频通道;低频通道;传感器;接口中图分类号:TN305文献标识码:A文章编号:1009-3044(2008)22-772-02The Working Principle and Applications of the Digital IsolatorXU Hua(Xiamen Kerun Electronic Technology Co.Ltd, Xiamen 361006, China)Abstract: Discuss the development of isolation technology, analysis the working principle of the digital isolator, and also give the applications of digital isolators.Key words: isolation; digital isolators; high-frequency channel; low-frequency channel; sensor; interface1 引言进行隔离是防止电流在两个通讯点之间流动的一种方法。

一般在两种情况下采用隔离:第一种情况是,在有可能存在损坏设备或危害人员的潜在的电流浪涌时。

第二种情况是必须避免存在不同地电位和分裂的接地回路的互连。

两种情形都是采用隔离来避免电流流过,而允许两点之间有数据或功率传送。

隔离应用涉及高电压、高速/高精度通信、或者长距离通信。

普通的例子如工业I/O系统、传感器接口、电源/调节杆,发动机控制/驱动系统以及仪器仪表。

2 早期的隔离技术早期的设计除使用变压器之外,还使用各种模拟隔离放大器,将工厂地面的传感器电路与控制室内的信号处理系统进行隔离。

隔离电源模块常用芯片

隔离电源模块常用芯片

隔离电源模块常用芯片
隔离电源模块是电子设备电路中常用的一种电源模块。

它能够有效地隔离输入输出之间的电气信号,防止电路中出现潜在的接地故障和电压干扰。

在隔离电源模块中,常用的芯片有以下几种:
1. LT8300:这是一种高效率隔离型DC/DC转换器芯片,能够在输入电压范围内实现高达92%的转换效率。

它支持多种输入电压和输出电压,并具有过热保护和短路保护功能。

2. ADuM3190:这是一种高速隔离型数字隔离器芯片,能够在高达1 Mbps的数据速率下实现高精度的信号隔离。

它支持多种输入电压和输出电压,并具有电磁干扰和电压浪涌保护功能。

3. CS8122:这是一种高精度隔离型电流传感器芯片,能够实现高达±200A的电流测量范围。

它支持多种输入电压和输出电压,并具有过载保护和短路保护功能。

4. ISO1540:这是一种高速隔离型数字隔离器芯片,能够在高达100 Mbps的数据速率下实现高精度的信号隔离。

它支持多种输入电压和输出电压,并具有电磁干扰和电压浪涌保护功能。

以上是隔离电源模块中常见的芯片,它们能够为电子设备提供高效、精确、可靠的隔离电源解决方案。

- 1 -。

数字隔离器的细致分析

数字隔离器的细致分析

数字隔离器的细致分析数字隔离器在尺寸、速度、功耗、易用性和可靠性方面具有光耦合器所无法比拟的巨大优势。

多年来,工业、医疗和其他隔离系统的设计人员实现安全隔离的手段有限,唯一合理的选择是光耦合器。

如今,数字隔离器在性能、尺寸、成本、效率和集成度方面均有优势。

了解数字隔离器三个关键要素的特点及其相互关系,对于正确选择数字隔离器十分重要。

这三个要素是:绝缘材料、结构和数据传输方法。

设计人员之所以引入隔离,是为了满足安全法规或者降低接地环路的噪声等。

电流隔离确保数据传输不是通过电气连接或泄漏路径,从而避免安全风险。

然而,隔离会带来延迟、功耗、成本和尺寸等方面的限制。

数字隔离器的目标是在尽可能减小不利影响的同时满足安全要求。

传统隔离器——光耦合器则会带来非常大的不利影响,功耗极高,而且数据速率低于 1 Mbps。

虽然存在更高效率和更高速度的光耦合器,但其成本也更高。

数字隔离器问世于10多年前,目的是降低光耦合器相关的不利影响。

数字隔离器采用基于CMOS的电路,能够显著节省成本和功耗,同时大大提高数据速率。

数字隔离器由上述要素界定。

绝缘材料决定其固有的隔离能力,所选材料必须符合安全标准。

结构和数据传输方法的选择应以克服上述不利影响为目的。

所有三个要素必须互相配合以平衡设计目标,但有一个目标必须不折不扣地实现,那就是符合安全法规。

绝缘材料数字隔离器采用晶圆CMOS工艺制造,仅限于常用的晶圆材料。

非标准材料会使生产复杂化,导致可制造性变差且成本提高。

常用的绝缘材料包括聚合物(如聚酰亚胺PI,它可以旋涂成薄膜)和二氧化硅(SiO2)。

二者均具有众所周知的绝缘特性,并且已经在标准半导体工艺中使用多年。

聚合物是许多光耦合器的基础,作为高压绝缘体具有悠久的历史。

安全标准通常规定1分钟耐压额定值(典型值2.5 kV rms至5 kV rms)和工作电压(典型值125 V rms至400 V rms)。

某些标准也会规定更短的持续时间、更高的电压(如10 kV峰值。

数字隔离器原理及应用

数字隔离器原理及应用

数字隔离器原理及应用数字隔离器是一种常用的电子元件,主要用于将数字电路中的高电平信号和低电平信号隔离开来,以避免高电平信号对低电平信号的干扰。

数字隔离器的主要原理是利用光电隔离技术或磁电隔离技术,将输入和输出电路进行隔离,从而实现信号的隔离和传输。

数字隔离器主要应用于工业自动化控制系统、计算机网络系统、通信设备等领域。

在工业自动化控制系统中,数字隔离器主要用于隔离高电压和低电压信号,以保证控制信号的稳定性和可靠性。

在计算机网络系统中,数字隔离器主要用于隔离计算机和外部设备之间的信号,以保护计算机的安全和稳定性。

在通信设备中,数字隔离器主要用于隔离输入和输出信号,以保证通信的可靠性和安全性。

数字隔离器的主要特点是具有高隔离电压、高速度、低功耗、小体积、可靠性高等优点。

数字隔离器的隔离电压一般在1000V以上,能够有效地隔离高压信号和低压信号,从而保证信号的稳定性和可靠性。

数字隔离器的速度一般在10Mbps以上,能够满足高速传输的需求。

数字隔离器的功耗一般很低,能够节省能源和减少热量的产生。

数字隔离器的体积一般很小,能够方便地安装在各种场合。

数字隔离器的可靠性很高,能够长时间稳定工作。

数字隔离器的应用越来越广泛,随着工业自动化、智能化、信息化进程的加快,数字隔离器在各个领域都有着重要的应用。

数字隔离器的应用不仅可以提高系统的可靠性和稳定性,还可以降低系统的成本和维护成本。

随着数字隔离器技术的不断发展和创新,数字隔离器在未来的应用前景将会更加广阔。

数字隔离器是一种非常重要的电子元件,能够有效地隔离高电压和低电压信号,保证系统的可靠性和稳定性。

数字隔离器的应用越来越广泛,随着技术的不断发展和创新,数字隔离器的应用前景将会更加广阔。

764控制器操作与调节说明

764控制器操作与调节说明

764控制器操作与调节说明一、764控制器操作说明断电情况下的存储器维持能力764控制器具有下述特性,在断电期间,无需电池即可保持“每日时间”和“每周天数”。

设计了一个超级电容,可将数据保存8~24小时,具体情况与装置有关。

如果超级电容耗尽,在电源恢复时,Logix控制将立刻显示四个短划线”- - - -”。

必须重置“每日时间”和“每周天数”。

所有其他编程设定参数保存在静态存储器中,也会得到保存。

显示图标和光标时间/天再生时间盐量容量硬度a) a)如果你的Logix 764控制器用作过滤控制,将显示:时间/日,回冲时间,回冲长度,以及容量。

注释:在正常操作模式下以及在编程模式下,仅显示少量图标。

1.编程设定再生天数时,将显示该光标(用.5表示99天再生编程)。

2.显示这些光标之一,指明了编程设定在控制器中的日期。

3.“PM”,表明所显示的时间介于中午12:00点和午夜12:00之间(无AM显示)。

如果将时钟模式设为24小时模式,将不使用PM标识。

4.显示“MIN”时,所输入的值以分钟为增量。

5.显示“g/L”时,输入的再生剂量采用的单位为克/升。

6.显示“kg”时,输入值的单位为千克或千克令。

7.使用四位数值显示时间或程序值。

也用于显示错误码。

8.作为时间显示组成部分的冒号闪烁,表明处于正常操作模式(仅对742)9.锁定/解锁指示符:在层次1编程中,如果当前参数已锁定,将显示它。

也可用于层次2编程,当控制器处于层次1时,指明所显示参数是否是锁定的(图标闪烁)。

10.显示“x2”时,调用第2个再生。

11.在下次再生时间调用再生时,显示再生符号(闪烁)。

在再生过程中,也将显示。

12.编程再生剂量时,显示光标位于“盐量”旁边。

如果控制器位于“3循环”过滤器上,将编程设定回冲时间。

13.编程再生时间和再生天数时,显示光标位于“再生时间”旁边。

14.编程设定当前时间和日期时,显示光标位于“时间/天”旁边。

texa instruments 高速数字隔离器产品 iso72x系列 说明书

texa instruments 高速数字隔离器产品 iso72x系列 说明书

高速数字隔离器产品ISO72x 系列作者:德州仪器(TI)Kevin Gingerich , Chris Sterzik概要本应用报告概述了高速数字电路中电子隔离的必要性、实施以及特性,讨论了在一个隔离层上进行光、磁(电感)和电气(电容)信号传输的优点和缺点,并对ISO72x 系列数字隔离器中使用的电容耦合技术作了特别的重点阐述。

1 引言隔离就是将一部分与其他部分中的非理想影响分离开来。

在电子电路中,电介质通过阻断直流电(dc) 实现电路隔离。

那么被隔离的电路如何在一个更大的电气系统中运行呢?这个问题的答案便是本应用报告的主题。

随着德州仪器(TI) 和其他供应商推出的产品数量不断增加,隔离信号的传输选项也随之增加,从而使设计人员在产品选择上变得更加复杂。

本报告阐述了隔离器的重要特性,并说明了各产品之间的差异和相似之处。

在对电路隔离的必要性进行回顾之后,我们对电介质信号传输的三种方法以及模拟对数字隔离器进行了讨论,并对每一类型数字隔离器的实例进行了描述和对比。

2 电路隔离的必要性隔离电路的主要原因是保护电路不受危险电压和电流的损坏。

在图 1 的医疗应用实例中,即使是小量的AC 电流也有可能造成致命的伤害,因此需要采用一个隔离层来保护病人。

隔离还可对敏感电路进行保护,使其免于受到工业应用中出现的高压损坏。

图2的工业实例仅为一个高压测量法。

将传感器与实际高压相隔离使得对低压电路的测量成为可能。

图1、电源和病人之间可能的电路通路图2、高压和低压电路之间的隔离保护原理是将高电压电位(potential) 隔离,其可能出现在各系统或电路中,如图3中的线缆应用所示,其中的长距离可以将一个驱动器和接收机隔离。

经过如此的长距离,接地可能处在不同电压中。

通过隔离,在隔离器而非敏感电路中形成电压差。

图3、设备之间的接地电压差如图 4 所示,通过相对于其他电路组件而言的高阻抗,隔离中断了由电路通路形成的环路。

通过中断该环路,噪声电压出现在隔离层上,而非出现在接收机或更为敏感的组件上。

195-2011 中国联通M2M UICC卡技术规范V2.0

195-2011 中国联通M2M UICC卡技术规范V2.0
6.2.2.1 封装底部的方向标....................................................................................................................... 12 6.2.2.2 封装顶部的方向标....................................................................................................................... 12
I
中国联通 M2M UICC 卡技术规范 v2.0
6.2.1.2 封装顶部的方向标....................................................................................................................... 11 6.2.2 MFF2 ..................................................................................................................................................... 11
6.2.1 MFF1 ....................................................................................................................................................... 9 6.2.1.1 封装底部的方向标....................................................................................................................... 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ISO7640GND2GND2OUTAOUTCOUTBENOUTDV VCC2GND2GND2OUTAOUTCOUTBINDEN2V VCC2ISO7641ISO7640FMISO7641FM SLLSE89D–SEPTEMBER2011–REVISED JULY2012Low Power Quad Channels Digital IsolatorsCheck for Samples:ISO7640FM,ISO7641FMFEATURES APPLICATIONS•Signaling Rate:150Mbps•Optocoupler Replacement in:•Low Power Consumption,Typical I CC per–Industrial FieldbusChannel(3.3V Supplies):–Profibus–ISO7640FM:2mA at25Mbps–Modbus–ISO7641FM:2.4mA at25Mbps–DeviceNet TM Data Buses•Low Propagation Delay:7ns Typical–Servo Control Interface•Output Defaults to Low-state in fail-safe mode–Motor Control•Wide Temperature Range:–40°C to125°C–Power Supplies•50KV/µs Transient Immunity,Typical–Battery Packs•Long Life with SiO2Isolation barrierSAFETY AND REGULATORY•Operates From2.7V,3.3V and5V Supply andAPPROVALSLogic Levels•6000V PK/4243V RMS for1Minute per UL1577•Wide Body SOIC-16Package(approved)•VDE Approval for DIN EN60747-5-2(VDE0884Rev.2),1414V PK Working Voltage(approved)•CSA Component Acceptance Notice5A,IEC60601-1Medical Standard(approved)•5KV RMS Reinforced Insulation per TUV forEN/UL/CSA60950-1and EN/UL/CSA61010-1(approved)DESCRIPTIONISO7640FM and ISO7641FM provide galvanic isolation up to6KV PK for1minute per UL and VDE.These devices are also certified up to5KV RMS Reinforced isolation at a working voltage of400V RMS per end equipment standards EN/UL/CSA60950-1and61010-1.ISO7640F and ISO7641F are quad channel isolators;ISO7640F has four forward and ISO7641F has three forward and one reverse direction channels.Suffix F indicates that output defaults to Low-state in fail-safe conditions(see Table1).M-Grade devices are high speed isolators capable of150Mbps data rate with fast propagation delaysPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.UNLESS OTHERWISE NOTED this document contains Copyright©2011–2012,Texas Instruments Incorporated PRODUCTION DATA information current as of publication date.捷多邦,您值得信赖的PCB打样专家!ISO7640FMISO7641FMSLLSE89D–SEPTEMBER2011–REVISED These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.DESCRIPTION CONTINUEDEach isolation channel has a logic input and output buffer separated by a silicon dioxide(SiO2)insulation barrier. Used in conjunction with isolated power supplies,these devices prevent noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry.The devices have TTL input thresholds and can operate from2.7V,3.3V and5V supplies.All inputs are5V tolerant when supplied from3.3V or2.7V supplies.PIN DESCRIPTIONSPINI/O DESCRIPTIONNAME ISO7640ISO7641INA33I Input,channel AINB44I Input,channel BINC55I Input,channel CIND611I Input,channel DOUTA1414O Output,channel AOUTB1313O Output,channel BOUTC1212O Output,channel COUTD116O Output,channel DEnables(when input is High or Open)or Disables(when input is Low)OUTA,OUTB,OUTC EN10-Iand OUTD of ISO7640EN1-7I Enables(when input is High or Open)or Disables(when input is Low)OUTD of ISO7641Enables(when input is High or Open)or Disables(when input is Low)OUTA,OUTB,andEN2-10IOUTC of ISO7641V CC111–Power supply,V CC1V CC21616–Power supply,V CC2GND12,82,8–Ground connection for V CC1GND29,159,15–Ground connection for V CC2NC7--No Connect pins are floating with no internal connectionTable1.FUNCTION TABLE(1)INPUT OUTPUT INPUT OUTPUT ENABLE OUTPUTV CC V CC(INx)(ENx)(OUTx)H H or Open HL H or Open LPU PUX L ZOpen H or Open LPD PU X H or Open LPD PU X L ZPU PD X X Z(1)PU=Powered Up(V CC≥2.7V);PD=Powered Down(V CC≤2.1V);X=Irrelevant;H=High Level;L=Low Level;Z=High Impedance2Submit Documentation Feedback Copyright©2011–2012,Texas Instruments IncorporatedISO7640FMISO7641FM SLLSE89D–SEPTEMBER2011–REVISED JULY2012AVAILABLE OPTIONSRATED INPUT DATA RATE CHANNEL MARKED ORDERING PRODUCT PACKAGEISOLATION THRESHOLD and FILTER DIRECTION AS NUMBERISO7640FMDW(rail)4Forward,ISO7640FM ISO7640FM0Reverse1.5V TTL ISO7640FMDWR(reel)6KV PK/150Mbps,DW-16(CMOS5KV RMS(1)No Noise Filter ISO7641FMDW(rail)Compatible)3Forward,ISO7641FM ISO7641FM1Reverse ISO7641FMDWR(reel) (1)See the Regulatory Information table for detailed isolation ratings.ABSOLUTE MAXIMUM RATINGS(1)VALUE PARAMETER UNITMIN MAXSupply voltage(2)V CC1,V CC2–0.56VVoltage INx,OUTx,ENx–0.56VOutput Current,I O±15mAHuman Body Model ESDA,JEDEC JS-001-2012±4kVField-Induced Charged DeviceElectrostatic discharge JEDEC JESD22-C101E All pins±1.5kV ModelMachine Model JEDEC JESD22-A115-A±200VMaximum junction temperature,T J150°CStorage temperature,T STG-65150°C (1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratingsonly and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltage values except differential I/O bus voltages are with respect to the local ground terminal(GND1or GND2)and are peakvoltage values.RECOMMENDED OPERATING CONDITIONSPARAMETER MIN TYP MAX UNITSupply voltage V CC1,V CC2 2.7 5.5VHigh-level output current I OH-4mALow-level output current I OL4mAHigh-level input voltage V IH2V CC VLow-level input voltage V IL00.8V≥3V-Operation 6.67Input pulse duration t ui ns<3V-Operation10≥3V-Operation0150Signaling rate1/t ui Mbps<3V-Operation0100Junction temperature T J-40136°CAmbient temperature T A-4025125°C Copyright©2011–2012,Texas Instruments Incorporated Submit Documentation Feedback3ISO7640FMISO7641FMSLLSE89D–SEPTEMBER2011–REVISED THERMAL INFORMATIONISO76xxTHERMAL METRIC(1)UNITSDW(16Pins)θJA Junction-to-ambient thermal resistance72θJC(top)Junction-to-case(top)thermal resistance38θJB Junction-to-board thermal resistance39°C/WψJT Junction-to-top characterization parameter9.4ψJB Junction-to-board characterization parameter n/aθJC(bottom)Junction-to-case(bottom)thermal resistance n/aV CC1=V CC2=5.5V,T J=150°C,C L=15pFP D Maximum Device Power Dissipation399mWInput a75MHz50%duty cycle square wave(1)For more information about traditional and new thermal metrics,see the IC Package Thermal Metrics application report,SPRA953. ELECTRICAL CHARACTERISTICSV CC1and V CC2at5V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITI OH=–4mA;see Figure1V CCx(1)–0.8 4.8V OH High-level output voltage VI OH=–20μA;see Figure1V CCx(1)–0.15I OL=4mA;see Figure10.20.4V OL Low-level output voltage VI OL=20μA;see Figure100.1V I(HYS)Input threshold voltage hysteresis450mVI IH High-level input current V IH=V CC at INx or ENx10μAI IL Low-level input current V IL=0V at INx or ENx-10CMTI Common-mode transient immunity V I=V CC or0V;see Figure42575kV/μs (1)V CCx is the supply voltage,V CC1or V CC2,for the output channel that is being measured.SWITCHING CHARACTERISTICSV CC1and V CC2at5V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITt PLH,t PHL Propagation delay time 3.5710.5See Figure1PWD(1)Pulse width distortion|t PHL–t PLH|2Same-direction Channels2nst sk(o)(2)Channel-to-channel output skew timeOpposite-direction Channels3t sk(pp)(3)Part-to-part skew time 4.5t r Output signal rise time 1.6See Figure1nst f Output signal fall time1Disable Propagation Delay,high-to-hight PHZ516 impedance outputDisable Propagation Delay,low-to-hight PLZ516 impedance outputSee Figure2ns Enable Propagation Delay,high impedance-to-t PZH416 high outputEnable Propagation Delay,high impedance-to-t PZL416 low outputFail-safe output delay time from input data ort fs See Figure39.5μs power loss(1)Also known as Pulse Skew.(2)t sk(o)is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the samedirection while driving identical loads.(3)t sk(pp)is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the samedirection while operating at identical supply voltages,temperature,input signals and loads.4Submit Documentation Feedback Copyright©2011–2012,Texas Instruments IncorporatedISO7640FMISO7641FM SLLSE89D–SEPTEMBER2011–REVISED JULY2012 SUPPLY CURRENTV CC1and V CC2at5V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7640FMI CC10.6 1.2Disable EN=0VI CC2 4.5 6.6I CC10.7 1.3DC to1MbpsI CC2 4.6 6.7I CC1 1.1210Mbps mADC Signal:V I=V CC or0V,I CC2 6.610.5AC Signal:All channels switching with square wave clockI CC1 1.93input;C L=15pF25MbpsI CC29.714.7I CC18.214.5150MbpsI CC23558ISO7641FMI CC1 2.6 4.2Disable EN1=EN2=0VI CC2 4.2 6.8I CC1 2.7 4.3DC to1MbpsI CC2 4.3 6.9I CC1 3.6 4.910Mbps mADC Signal:V I=V CC or0V,I CC268.2AC Signal:All channels switching with square wave clockI CC1 5.1 6.6input;C L=15pF25MbpsI CC28.811.4I CC11722150MbpsI CC23142Copyright©2011–2012,Texas Instruments Incorporated Submit Documentation Feedback5ISO7640FMISO7641FMSLLSE89D–SEPTEMBER2011–REVISED ELECTRICAL CHARACTERISTICSV CC1at5V±10%and V CC2at3.3V±10%(over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNITI OH=–4mA;see OUTx on V CC1(5V)side V CC1–0.8 4.8Figure1OUTx on V CC2(3.3V)side V CC2-0.43V OH High-level output voltage VI OH=–20μA;see OUTx on V CC1(5V)side V CC1–0.15Figure1OUTx on V CC2(3.3V)side V CC2–0.1 3.3I OL=4mA;see Figure10.20.4V OL Low-level output voltage VI OL=20μA;see Figure100.1V I(HYS)Input threshold voltage430mV hysteresisI IH High-level input current V IH=V CC at INx or ENx10μAI IL Low-level input current V IL=0V at INx or ENx-10Common-mode transientCMTI V I=V CC or0V;see Figure42550kV/μs immunitySWITCHING CHARACTERISTICSV CC1at5V±10%and V CC2at3.3V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITt PLH,t PHL Propagation delay time4813See Figure1PWD(1)Pulse width distortion|t PHL–t PLH|2Same-direction Channels 2.5nst sk(o)(2)Channel-to-channel output skew timeOpposite-direction Channels 3.5t sk(pp)(3)Part-to-part skew time6t r Output signal rise time2See Figure1nst f Output signal fall time 1.2Disable Propagation Delay,high-to-hight PHZ 6.517 impedance outputDisable Propagation Delay,low-to-hight PLZ 6.517 impedance outputSee Figure2ns Enable Propagation Delay,high impedance-to-t PZH 5.517 high outputEnable Propagation Delay,high impedance-to-t PZL 5.517 low outputFail-safe output delay time from input data ort fs See Figure39.5μs power loss(1)Also known as Pulse Skew.(2)t sk(o)is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the samedirection while driving identical loads.(3)t sk(pp)is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the samedirection while operating at identical supply voltages,temperature,input signals and loads.6Submit Documentation Feedback Copyright©2011–2012,Texas Instruments IncorporatedISO7640FMISO7641FM SLLSE89D–SEPTEMBER2011–REVISED JULY2012 SUPPLY CURRENTV CC1at5V±10%and V CC2at3.3V±10%(over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7640FMI CC10.6 1.2Disable EN=0VI CC2 3.6 5.1I CC10.7 1.3DC to1MbpsI CC2 3.7 5.2I CC1 1.1210Mbps mADC Signal:V I=V CC or0V,I CC257.1AC Signal:All channels switching with square wave clock input;C LI CC1 1.93=15pF25MbpsI CC2 6.911I CC18.214.5150MbpsI CC22440ISO7641FMI CC1 2.6 4.2Disable EN1=EN2=0VI CC2 3.2 4.9I CC1 2.7 4.3DC to1MbpsI CC2 3.35I CC1 3.6 4.910Mbps mADC Signal:V I=V CC or0V,I CC2 4.4 5.8AC Signal:All channels switching with square wave clock input;C LI CC1 5.1 6.6=15pF25MbpsI CC2 6.17.6I CC11722150MbpsI CC220.626.5Copyright©2011–2012,Texas Instruments Incorporated Submit Documentation Feedback7ISO7640FMISO7641FMSLLSE89D–SEPTEMBER2011–REVISED ELECTRICAL CHARACTERISTICSV CC1at3.3V±10%and V CC2at5V±10%(over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNITI OH=–4mA;see Figure1OUTx on V CC1(3.3V)side V CC1–0.43OUTx on V CC2(5V)side V CC2–0.8 4.8V OH High-level output voltage VI OH=–20μA;see Figure1OUTx on V CC1(3.3V)side V CC1–0.1 3.3OUTx on V CC2(5V)side V CC2–0.15I OL=4mA;see Figure10.20.4V OL Low-level output voltage VI OL=20μA;see Figure100.1V I(HYS)Input threshold voltage hysteresis430mVI IH High-level input current V IH=V CC at INx or ENx10μAI IL Low-level input current V IL=0V at INx or ENx-10CMTI Common-mode transient immunity V I=V CC or0V;see Figure42550kV/μs SWITCHING CHARACTERISTICSV CC1at3.3V±10%and V CC2at5V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITt PLH,t PHL Propagation delay time47.512.5See Figure1PWD(1)Pulse width distortion|t PHL–t PLH|2Same-direction Channels 2.5nst sk(o)(2)Channel-to-channel output skew timeOpposite-direction Channels 3.5t sk(pp)(3)Part-to-part skew time6t r Output signal rise time 1.7See Figure1nst f Output signal fall time 1.1Disable Propagation Delay,high-to-high impedancet PHZ 5.517 outputDisable Propagation Delay,low-to-high impedancet PLZ 5.517 outputSee Figure2ns Enable Propagation Delay,high impedance-to-hight PZH 4.517 outputEnable Propagation Delay,high impedance-to-lowt PZL 4.517 outputFail-safe output delay time from input data or powert fs See Figure39.5μs loss(1)Also known as Pulse Skew.(2)t sk(o)is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the samedirection while driving identical loads.(3)t sk(pp)is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the samedirection while operating at identical supply voltages,temperature,input signals and loads.8Submit Documentation Feedback Copyright©2011–2012,Texas Instruments IncorporatedISO7640FMISO7641FM SLLSE89D–SEPTEMBER2011–REVISED JULY2012 SUPPLY CURRENTV CC1at3.3V±10%and V CC2at5V±10%(over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7640FMI CC10.350.7Disable EN=0VI CC2 4.5 6.6I CC10.40.8DC to1MbpsI CC2 4.6 6.7I CC10.7 1.210Mbps mADC Signal:V I=V CC or0V,I CC2 6.610.5AC Signal:All channels switching with square wave clock input;C L=I CC1 1.1215pF25MbpsI CC29.714.7I CC158.5150MbpsI CC23558ISO7641FMI CC1 1.9 2.9Disable EN1=EN2=0VI CC2 4.2 6.8I CC123DC to1MbpsI CC2 4.3 6.9I CC1 2.5 3.510Mbps mADC Signal:V I=V CC or0V,I CC268.2AC Signal:All channels switching with square wave clock input;C L=I CC1 3.4 4.515pF25MbpsI CC28.811.4I CC110.514.5150MbpsI CC23142Copyright©2011–2012,Texas Instruments Incorporated Submit Documentation Feedback9ISO7640FMISO7641FMSLLSE89D–SEPTEMBER2011–REVISED ELECTRICAL CHARACTERISTICSV CC1and V CC2at3.3V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITI OH=–4mA;see Figure1V CCx(1)–0.43V OH High-level output voltage VI OH=–20μA;see Figure1V CCx(1)–0.1 3.3I OL=4mA;see Figure10.20.4V OL Low-level output voltage VI OL=20μA;see Figure100.1V I(HYS)Input threshold voltage425mV hysteresisI IH High-level input current V IH=V CC at INx or ENx10μAI IL Low-level input current V IL=0V at INx or ENx-10Common-mode transientCMTI V I=V CC or0V;see Figure42550kV/μs immunity(1)V CCx is the supply voltage,V CC1or V CC2,for the output channel that is being measured.SWITCHING CHARACTERISTICSV CC1and V CC2at3.3V±10%(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITt PLH,t PHL Propagation delay time48.514See Figure1PWD(1)Pulse width distortion|t PHL–t PLH|2Same-direction Channels3nst sk(o)(2)Channel-to-channel output skew timeOpposite-direction Channels4t sk(pp)(3)Part-to-part skew time 6.5t r Output signal rise time2See Figure1nst f Output signal fall time 1.3Disable Propagation Delay,high-to-hight PHZ 6.517 impedance outputDisable Propagation Delay,low-to-high impedancet PLZ 6.517 outputSee Figure2ns Enable Propagation Delay,high impedance-to-hight PZH 5.517 outputEnable Propagation Delay,high impedance-to-lowt PZL 5.517 outputFail-safe output delay time from input data ort fs See Figure39.2μs power loss(1)Also known as Pulse Skew.(2)t sk(o)is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the samedirection while driving identical loads.(3)t sk(pp)is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the samedirection while operating at identical supply voltages,temperature,input signals and loads.10Submit Documentation Feedback Copyright©2011–2012,Texas Instruments IncorporatedSUPPLY CURRENTV CC1and V CC2at3.3V±10%(over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7640FMI CC10.350.7Disable EN=0VI CC2 3.6 5.1I CC10.40.8DC to1MbpsI CC2 3.7 5.2I CC10.7 1.210Mbps mADC Signal:V I=V CC or0V,I CC257.1AC Signal:All channels switching with square wave clock input;C L=I CC1 1.1215pF25MbpsI CC2 6.911I CC158.5150MbpsI CC22440ISO7641FMI CC1 1.9 2.9Disable EN1=EN2=0VI CC2 3.2 4.9I CC123DC to1MbpsI CC2 3.35I CC1 2.5 3.510Mbps mADC Signal:V I=V CC or0V,I CC2 4.4 5.8AC Signal:All channels switching with square wave clock input;C L=I CC1 3.4 4.515pF25MbpsI CC2 6.17.6I CC110.514.5150MbpsI CC220.626.5ELECTRICAL CHARACTERISTICSV CC1and V CC2at2.7V(1)(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITI OH=–4mA;see Figure1V CC(2)–0.5 2.4V OH High-level output voltage VI OH=–20μA;see Figure1V CC(2)–0.1 2.7I OL=4mA;see Figure10.20.4V OL Low-level output voltage VI OL=20μA;see Figure100.1V I(HYS)Input threshold voltage hysteresis350mVI IH High-level input current V IH=V CC at INx or ENx10μA I IL Low-level input current V IL=0V at INx or ENx-10CMTI Common-mode transient immunity V I=V CC or0V;see Figure42550kV/μs(1)For2.7V-operation,max data rate is100Mbps.(2)V CCx is the supply voltage,V CC1or V CC2,for the output channel that is being measured.SWITCHING CHARACTERISTICSV CC1and V CC2at2.7V(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITt PLH,t PHL Propagation delay time5816See Figure1PWD(1)Pulse width distortion|t PHL–t PLH| 2.5Same-direction Channels4ns t sk(o)(2)Channel-to-channel output skew timeOpposite-direction Channels5t sk(pp)(3)Part-to-part skew time8t r Output signal rise time 2.3See Figure1ns t f Output signal fall time 1.8Disable Propagation Delay,high-to-hight PHZ818 impedance outputDisable Propagation Delay,low-to-hight PLZ818 impedance outputSee Figure2ns Enable Propagation Delay,high impedance-to-t PZH718 high outputEnable Propagation Delay,high impedance-to-t PZL718 low outputFail-safe output delay time from input data ort fs See Figure38.5μs power loss(1)Also known as Pulse Skew.(2)t sk(o)is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the samedirection while driving identical loads.(3)t sk(pp)is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the samedirection while operating at identical supply voltages,temperature,input signals and loads.SUPPLY CURRENTV CC1and V CC2at2.7V(over recommended operating conditions unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7640FMI CC10.20.6Disable EN=0VI CC2 3.35I CC10.20.7DC to1MbpsI CC2 3.4 5.1I CC10.4 1.110Mbps mADC Signal:V I=V CC or0V,I CC2 4.4 6.8AC Signal:All channels switching with square wave clock input;C L=I CC10.8 1.815pF25MbpsI CC269.5I CC1 2.75100MbpsI CC214.221ISO7641FMI CC1 1.6 2.4Disable EN1=EN2=0VI CC2 2.8 4.1I CC1 1.7 2.5DC to1MbpsI CC2 2.9 4.2I CC1 2.1310Mbps mADC Signal:V I=V CC or0V,I CC2 3.85AC Signal:All channels switching with square wave clock input;C L=I CC1 2.8 3.815pF25MbpsI CC2 5.2 6.7I CC1 6.47.5100MbpsI CC211.815.5V OV VL =1kW 1%±VVOHCCCC OLC L BOH CC1OLPARAMETER MEASUREMENT INFORMATIONA.The input pulse is supplied by a generator having the following characteristics:PRR ≤50kHz,50%duty cycle,t r ≤3ns,t f ≤3ns,Z O =50Ω.At the input,50Ωresistor is required to terminate Input Generator signal.It is not needed in actual application.B.C L =15pF and includes instrumentation and fixture capacitance within ±20%.Figure 1.Switching Characteristics Test Circuit and Voltage WaveformsA.The input pulse is supplied by a generator having the following characteristics:PRR ≤10kHz,50%duty cycle,t r ≤3ns,t f ≤3ns,Z O =50Ω.B.C L =15pF and includes instrumentation and fixture capacitance within ±20%.Figure 2.Enable/Disable Propagation Delay Time Test Circuit and Waveform–OLV OAV I IN = V CC0V CCVOLV OHPARAMETER MEASUREMENT INFORMATION (continued)A.C L =15pF and includes instrumentation and fixture capacitance within ±20%.Figure 3.Failsafe Delay Time Test Circuit and Voltage WaveformsA.C L =15pF and includes instrumentation and fixture capacitance within ±20%.Figure mon-Mode Transient Immunity Test CircuitDEVICE INFORMATIONIEC INSULATION AND SAFETY-RELATED SPECIFICATIONS FOR DW-16PACKAGEPARAMETER TEST CONDITIONS MIN TYP MAX UNIT L(I01)Minimum air gap(Clearance)Shortest terminal to terminal distance through air8.3mm Minimum external tracking Shortest terminal to terminal distance across theL(I02)(1)8.1mm (Creepage)package surfaceTracking resistance(ComparativeCTI DIN IEC60112/VDE0303Part1≥400V Tracking Index)Minimum Internal Gap(InternalDistance through the insulation0.014mm Clearance)V IO=500V,T A<100°C>1012 Isolation resistance,Input toR IO(2)ΩOutput V=500V,100°C≤T A≤max>1011IOBarrier capacitance,Input to V I=0.4sin(2πft),f=1MHzC IO(2)2pFOutputC I(3)Input capacitance V I=V CC/2+0.4sin(2πft),f=1MHz,V CC=5V2pF(1)Per JEDEC package dimensions.(2)All pins on each side of the barrier tied together creating a two-terminal device.(3)Measured from input pin to ground.NOTECreepage and clearance requirements should be applied according to the specificequipment isolation standards of an application.Care should be taken to maintain thecreepage and clearance distance of a board design to ensure that the mounting pads ofthe isolator on the printed circuit board do not reduce this distance.Creepage and clearance on a printed circuit board become equal according to themeasurement techniques shown in the Isolation Glossary.Techniques such as insertinggrooves and/or ribs on a printed circuit board are used to help increase thesespecifications.DIN EN60747-5-2(VDE0884TEIL2)INSULATION CHARACTERISTICS(4)over recommended operating conditions(unless otherwise noted)PARAMETER TEST CONDITIONS SPECIFICATION UNIT V IORM Maximum working insulation voltage(1)1414V PEAKAfter Input/Output safety test subgroup2/3,V PR=V IORM x1.2,t=10s,1697Partial discharge<5pCMethod a,After environmental tests subgroup1,V PR Input-to-output test voltage V PR=V IORM x1.6,t=10s,2262V PEAKPartial Discharge<5pCMethod b1,100%Production testV PR=V IORM x1.875,t=1s2652Partial discharge<5pCV TEST=V IOTMV IOTM Maximum transient overvoltage t=60sec(Qualification)6000V PEAKt=1sec(100%Production)R S Insulation resistance V IO=500V at T S>109ΩPollution degree2(4)Climatic Classification40/125/21(1)For applications that require DC working voltages between GND1and GND2,please contact Texas Instruments for further details.IEC60664-1RATINGS TABLEPARAMETER TEST CONDITIONS SPECIFICATIONBasic Isolation Group Material Group IIRated mains voltage≤300V RMS I–IVInstallation classification Rated mains voltage≤600V RMS I–IIIRated mains voltage≤1000V RMS I–II REGULATORY INFORMATIONVDE TUV CSA ULCertified according to DIN EN Certified according to Approved under CSA Component Recognized under1577Component 60747-5-2EN/UL/CSA60950-1and61010-Acceptance Notice#5A Recognition Program1Basic Insulation5000V RMS Reinforced Insulation,5000V RMS Reinforced InsulationMaximum Transient400V RMS maximum working2Means of Patient Protection atOvervoltage,6000V PK voltage Single Protection,4243V RMS(1)125V RMS per IEC60601-1(3rdMaximum Working Voltage,5000V RMS Basic Insulation,600Ed.)1414V PK V RMS maximum working voltageFile Number:40016131Certificate Number:U8V1108File Number:220991File Number:E18197477311005(1)Production tested≥5092V RMS for1second in accordance with UL1577.IEC SAFETY LIMITING VALUESSafety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry.A failure of the IO can allow low resistance to ground or the supply and,without current limiting,dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.PARAMETER TEST CONDITIONS MIN TYP MAX UNITθJA=72°C/W,V I=5.5V,T J=150°C,T A=25°C316 Safety input,output,or supplyI S DW-16θJA=72°C/W,V I=3.6V,T J=150°C,T A=25°C482mAcurrentθJA=72°C/W,V I=2.7V,T J=150°C,T A=25°C643T S Maximum case temperature150°C The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum ratings table.The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature.The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a High-K Test Board for Leaded Surface Mount Packages.The power is the recommended maximum input voltage times the current.The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.。

相关文档
最新文档