【精校】2016年四川省资阳市中考真题数学
四川省资阳中学2016-2017学年高二下学期期中考数学(文)试题

资阳中学2016-2017学年高二第二学期半期考试数学文试题一、选择题(每题5分,共60分) 1、若43i z =+,则||zz =( ) A 1B 1-C 43+i 55D43i 55- 2、使“lgm<1”成立的一个充分不必要条件是( ) A .m ∈(0,+∞)B .m ∈{1,2} C .0<m <10 D .m <13、阅读下面的“三段论”推理:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点;因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点.以上推理中( )A .大前提错误B .小前提错误C .推理形式错误D .结论正确 4、已知曲线313y x =在点82,3P ⎛⎫⎪⎝⎭,则过P 点的切线方程为( ) A .312160x y --= B .123160x y --= C .312160x y -+= D .123160x y -+=5、已知点F 是抛物线x y 42=的焦点,N M 、是该抛物线上两点,||||6MF NF +=,则MN 中点的横坐标为( )A .23B .2C .25 D .3 6、在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的大小为( ). A.32π B.65π C.2π D.3π7、秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,f (x )=a n x n +a n ﹣1x n ﹣1+…+a 1x+a 0改写成如下形式f (x )=(…((a n x+a n ﹣1)x+a n ﹣2)x+…a 1)x+a 0.至今仍是比较先进的算法,特别是在计算机程序应用上,比英国数学家取得的成就早800多年.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为5,2,则输出v 的值为( )A .130B .120C .110D .1008、已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)0,3(F ,过点F 的直线交椭圆E 于A ,B 两点,若AB 中点为)1,1(-,则椭圆E 的方程为( )A 、1364522=+y x B 、1273622=+y x C 、1182722=+y x D 、191822=+y x 9、如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()y f x =是区间I 上“缓增函数”,区间I 叫做“缓增区间”.若函数()21322f x x x =-+是区间I 上“缓增函数”,则“缓增函数区间”I 为( )A .[)1,+∞B .⎡⎣C .[]0,1D .⎡⎣10、已知点P 是椭圆221169x y +=上任意一点,则点P 到直线70x y +-=的距离最大值为( )A .B .C .D .611、若直线2y kx =+与双曲线226x y -=的左支交于不同的两点,则k 的取值范围是( )A .33⎛- ⎝⎭B .13⎛ ⎝⎭,C .()11-,D .13⎛⎫-- ⎪ ⎪⎝⎭12、设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为'()f x ,且有22()'()f x xf x x +>,则不等式2(2016)(2016)9(3)0x f x f ++--<的解集为( )A .(2019,2016)--B .(2019,2016)-C .(2019,)-+∞D .(,2019)-∞-二、填空题(每题5分,共20分)13、已知复数z 满足i z z 42-=-,则=z _______. 14、极坐标系下,直线2)4cos(=-πθρ与圆2=ρ的公共点个数是________;15、在双曲线()22221,0x y a b a b-=>中,若过双曲线左顶点A 斜率为1的直线交右支于点B ,点B在x 轴上的射影恰为双曲线的右焦点F ,则该双曲线的离心率为 .16、若函数f(x)=ln x -12ax 2-2x(a≠0)存在单调递减区间,则实数a 的取值范围是______. 三、解答题(共70分)17(10分)、已知抛物线)0(22>=p px y 上一点Q (4,m )到焦点F 的距离为5. (1)求p 及m 的值;(2)过焦点F 的直线L 交抛物线于A ,B 两点,若8=AB ,求直线L 的方程. 18(10分)、已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线⎩⎨⎧+-=+=ty tx C 223:3,(t 为参数)距离的最小值.19(12分)、设()3221f x x ax bx =+++的导数为()'f x ,若函数()'y f x =的图象关于直线12x =-对称,且()'10f =.(1)实数,a b 的值; (2)求函数()f x 的极值.20(12分)、已知直线1:x tl y =⎧⎪⎨=⎪⎩(t为参数),圆221:((2)1C x y +-=,以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系. (1)求圆1C 的极坐标方程,直线1l 的极坐标方程; (2)设1l 与1C 的交点为,M N ,求1C MN ∆的面积21(12分)、已知椭圆()2222:10x y C a b a b+=>>,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线260x -+=相切. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点A ,B 为动直线()()20y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由. 22(14分)、已知函数()ln f x ax x =+,其中a ∈R . (Ⅰ)若()f x 在区间[1,2]上为增函数,求a 的取值范围; (Ⅱ)当e a =-时,证明:()20f x +≤; (Ⅲ)当e a =-时,试判断方程参考答案 一、选择题1、D2、B3、A4、B5、B6、A7、A8、D9、D 10、A 11、B 12、A 二、填空题13、34i - 14、1 15、2 16、 (-1,0)∪(0,+∞) 三、解答题17、解(1)由题意知524=+=pFQ ,∴p=2.…………………2分 4222⨯⨯=m ,∴4±=m ……………………………………… 4分(2)由题意知直线L 的斜率存在,设为k ,直线L :y=k(x-1)代入x y 42= 得0)42(2222=++-k x k x k ,……………………………………6分 设),(11y x A ,),(22y x B ,∴222142kk x x +=+,121=x x 又∵821=++=p x x AB ,……………………………………8分 ∴12=k ,∴1±=k .∴所求直线方程为x-y-1=0或x+y-1=0.…………………………………………10分 18、(每小问5分)19、(1)因()3221f x x ax bx =+++,故()2'62f x x ax b =++,从而()22'666a a f x x b ⎛⎫=++- ⎪⎝⎭,即()'y f x =关于直线6ax =-对称, 从而由条件可知162a -=-,解得3a =, 又由于()'0f x =,即620a b ++=解得12b =-………………6分(2)由(1)知()()()()32223121,'6612612f x x x x f x x x x x =+-+=+-=-+. 令()'0f x =,得1x =或2x =-,当(),2x ∈-∞-时,()()'0,f x f x >在(),2-∞-上是增函数,当()2,1x ∈-时,()()'0,f x f x <在()2,1-上是减函数,当()1,x ∈+∞时,()()'0,f x f x >在()1,,+∞上是增函数,从而()f x 在2x =-处取到极大值()221f -=,在1x =处取到极小值()16f =-………………………………………………………12分20、解析:(1)因为cos sin x y ρθρθ=⎧⎨=⎩,将其代入1C 展开整理得:223cos 4sin 60ρρθρθ--+=,∴圆1C 的极坐标方程为:223cos 4sin 60ρρθρθ--+=.…………3分1l 消参得tan 33πθθ==(R ρ∈)∴直线1l 的极坐标方程为3πθ=(R ρ∈).………………………………6分(2)23cos 4sin 60πθρθρθ⎧=⎪⎨⎪--+=⎩⇒360ρ-+=⇒12ρρ-=9分∴111224C MN S ∆==.………………………………………12分 21、(1)由e =得c a =,即c a =① 又以原点O 为圆心,椭圆C 的长轴长为半径的圆为222x y a +=且与直线260x +=相切, 所以a ==2c =,所以2222b a c =-=.所以椭圆C 的标准方程为22162x y +=………………5分(2)由()221622x y y k x ⎧+=⎪⎨⎪=-⎩得()222213121260k x k x k +-+-= 设()11,A x y 、()22,B x y ,所以21212132k x x k +=+,212212613k x x k -=+……………7分根据题意,假设x 轴上存在定点(),0E m ,使得()2EA EA AB EA AB EA EA EB +⋅=+⋅=⋅为定值. 则()()()()11221212,,EA EB x m y x m y x m x m y y ⋅=-⋅-=--+()()()()()()22222221212231210612413mm k m k x x k m x x k mk -++-=+-++++=+要使上式为定值,即与k 无关,()223121036m m m -+=-, 得73m =.…………………………………………………………………11分 此时,22569EA EA AB m +⋅=-=-,所以在x 轴上存在定点7,03E ⎛⎫⎪⎝⎭,使得2EA EA AB +⋅为定值,且定值为59-.…………………………………12分22、解析:函数()f x 定义域),0(+∞∈x ,(Ⅰ)因为()f x 在区间[1,2]上为增函数,所以()0f x '≥在[1,2]x ∈上恒成立,在[1,2]x ∈上恒成立,4分(Ⅱ)当e a =-时,() e ln f x x x =-+, 令0)(='x f ,得令()0f x '>,,所以函数)(x f 在令()0f x '<,,所以函数)(x f 在所以()20f x +≤成立.…………………………………………8分 (Ⅲ)由(Ⅱ)知,max ()2f x =-,所以2|)(|≥x f .………………9分令0)(='x g ,得e x =.令()0g x '>,得(0,e)x ∈,所以函数)(x g 在(0,e)单调递增,令()0g x '<,得(e,)x ∈+∞,所以函数)(x g 在(e,)+∞单调递减;……………11分 ,即2)(<x g .…………………13分 所以)(|)(|x g x f >,即分。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016学年四川省资阳中考数学年试题

四川省广元市2016年初中学业及高中阶段学校招生考试数学答案解析第Ⅰ卷一、选择题1.【答案】D 【解析】34-的倒数为43-,故选D .【考点】倒数的定义2.【答案】C【解析】26268x x x x +==,A 错误;()()624623x x x -÷-=,B 错误;()2323a a a a -=-=-,C 正确;()22244x x x -=-+,D 错误,故选C .【考点】同底数幂的乘法,单项式除法,合并同类项,完全平方公式3.【答案】B【解析】20x ≥,2+11x ∴≥,∴点()22,1P x -+在第二象限,故选B .【提示】记住各象限内点的坐标的符号是解题的关键,四个象限的符号特征:第一象限()+,+;第二象限(),+-;第三象限(),--;第四象限()+,-.【考点】各象限内点的坐标的符号特征4.【答案】C【解析】总体:某市参加中考的32000名学生的体重情况,故A 错误;每名学生的体重是总体的一个个体,故B 错误;样本:1500名学生的体重,故C 正确;该调查是抽样调查,故D 错误,故选C .【提示】关键是明确考查的对象.总体、个体与样本的考查对象是相同的,不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位,比较简单.【考点】总体、个体与样本的定义5.【答案】B【解析】如图,//AB CD ,45180∴∠=∠=︒,根据多边形的外角和定理,12345360∠+∠+∠+∠+∠=︒,123360180180∴∠+∠+∠=︒-︒=︒,故选B .【考点】平行线的性质,多边形的外角和定理6.【答案】A【解析】根据题意,在反比例函数k y x=图像上,当120x x <<时,12y y <,可知该函数在第二象限时,y 随x 的增大而增大,即0k <,则一次函数2y x k =-+经过第二,三,四象限,不过第一象限,故选A .【考点】反比例函数图像上点的坐标特征7.【答案】B【解析】连接OP ,OB .10BAC ∠=︒,220BOC BAC ∴∠=∠=︒.160AOB ∴∠=︒.点P 是AB 的中点,1802BOP AOB ∴∠=∠=︒.11804022PAB BOP ∴∠=∠=⨯︒=︒,故选B .【考点】圆周角定理,圆心角、弧、弦之间的关系8.【答案】D【解析】由题意得()()()2110171x ++=+%%%,故选D .【提示】解答本题的关键是读懂题意,找出合适的等量关系,列方程.【考点】一元二次方程的应用9.【答案】A【解析】连接BD ,设AD 与BE 交点为G ,BF 与CD 交点为H ,四边形ABCD 是菱形,60A ∠=︒,ABD ∴△和BCD △是等边三角形,BD BC ∴=,60ADB DBC C ∠=∠=∠=︒,扇形圆心角60EBF ∠=︒,60DBE DBF CBF DBF ∴∠+∠=∠+∠=︒,DBE CBF ∴∠=∠,在BDG △和BCH △中,60,,.ADB C BD BC DBE CBF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ASA BDG BCH ∴△△≌,BDG BCH S S ∴=△△,2AB =,扇形BEF 的半径为2,2602122236023S ππ⎛∴=-⨯⨯=- ⎝⎭阴影A . 【提示】根据已知得出四边形GBHD 的面积等于ABD △的面积都是解题关键.【考点】菱形的性质,扇形的面积计算,全等三角形的判定与性质10.【答案】A【解析】如图,过D 作DF AF ⊥于点F ,点B 的坐标为()1,3,1AO ∴=,3AB =,根据折叠可知CD OA =,而90CDE AOE ∠=∠=︒,DEC AEO ∠=∠,CDE AOE ∴≌△△,OE DE ∴=,设O E x =,那么3CE x =-,DE x =,∴在Rt DCE △中,222CE DE CD =+,()22231x x ∴-=+,43x ∴=.又DF AF ⊥,//DF EO ∴,AEO ADF ∴∽△△,而3A D A B ==,45333AE CE ∴==-=,AE EO AO AD DF AF∴==,即541333DF AF ==.125DF ∴=,95AF =,94155OF ∴=-=.∴点D 的坐标为412,55⎛⎫- ⎪⎝⎭,故选A .【提示】解题的关键是把握折叠的隐含条件,得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.【考点】图形的折叠,坐标与图形的性质第Ⅱ卷二、填空题11.【答案】()()55a a -+【解析】()()22555a a a -=-+.【考点】因式分解12.【答案】2 【解析】79861085x ++++==.()()()()()222222117898886810810255s ⎡⎤=-+-+-+-+-=⨯=⎣⎦. 【提示】方差:一般地设n 个数据,1x ,2x ,…,n x 的平均数为x ,则方差()()()2222121...n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦. 【考点】平均数和方差13.【答案】2- 【解析】()231132x x x +⎧⎪⎨-⎪⎩<①,>②.解不等式①得1x -<,解不等式②得3x ->.∴这个不等式组的解集为31x --<<,在这个范围内的整数为2-.【提示】解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用确定解集的原则求出公共部分.确定解集的原则:同大取大;同小取小;大小小大中间找;大大小小解不了.【考点】一元一次不等式组14.【答案】5【解析】23328x y x y -=⎧⎨+=⎩①,②.2⨯①+②得2x =,把2x =代入①得1y =.∴这个方程组的解为2,1.x y =⎧⎨=⎩若1作为等腰三角形的腰,则三边为1,1,2,不能组成三角形,此种情况不存在;若2作为等腰三角形的腰,则三边为2,2,1,符合三角形三边关系定理,故此等腰三角形的周长为2215++=.【考点】二元一次方程组,等腰三角形,三角形三边关系15.【答案】①④ 【解析】此二次函数经过点()1,0-,(),0m ,12m -<<,可知对称轴在y 轴右侧.当1x -<时,y 随x 的增大而减小,即在对称轴左侧y 随x 的增大而减小,抛物线开口向上,故0a >.如图所示,02b a ->,0a >,0b ∴<.抛物线与y 轴交于负半轴上,0c ∴<.0abc ∴>,①正确;由图像可知,当1x =时,0y <,0a b c ∴++<,a b c ∴+-<.而0c ->,a b ∴+不一定小于0,故②错误;由对称性可知,与()13,y -对称的点的横坐标134x <<.在对称轴的右侧,y 随x 的增大而增大,所以若13x >,则有12y y >,故③错误;二次函数经过点()1,0-,(),0m ,对称轴12m x -=.即122b m a --=.()10a m b ∴-+=,故④正确;抛物线与x 轴有两个交点,240b ac ∴->.1c -≤,44c ∴-≥,444ac c a a ∴-=-≥.20b >,244b ac a ∴->,故⑤错误.【考点】二次函数的图像与性质三、解答题16.【答案】6+【解析】原式9113=+++)1019=+- ()10169=-+-6=.注意:()()010,10p p a a a a a-=≠=≠. 【考点】实数的运算,绝对值,二次根式,负整指数幂,零指数幂,特殊的锐角三角形数值17.【答案】1- 【解析】原式2345222x x x x x ⎛⎫--=÷- ⎪---⎝⎭ ()()32233x x x x x --=--+ 13x =+. 当4x =-时,原式1143==--+. 【提示】分式的混合运算和整式的混合运算顺序类似:先算乘方、再算乘除、最后算加减;同级运算从左到右依次进行;有括号的先算括号内的.【考点】分式的混合运算,代数式求值18.【答案】见解析【解析】ABC △为等边三角形,AB BC ∴=,60ABM NCB ∠=∠=︒.在ABM △和BCN △中,,60,,AB BC ABM NCB BM CN =⎧⎪∠=∠=︒⎨⎪=⎩ABM BCN ≌△△(SAS ),B A M N B C∴∠=∠,在ABQ △中,BQM BAM ABN ∠=∠+∠ NBC ABN =∠+∠60ABC =∠=︒.【提示】能证明ABM BCN ≌△△是解此题的关键.【考点】等边三角形的性质,全等三角形的判定与性质,三角形外角的性质19.【答案】(1)50人5人(2).20.40C B %%(3)()310P =均为男生 【解析】(1)略(2).20.40C B %%(3)列举法:12132312112131122232男男男男男男女女男女男女男女男女男女男女()310P ∴=均为男生. 【考点】调查,统计图和概率的综合应用20.【答案】(1)0.8万元(2)12【解析】(1)设2016年A 型节能电动车每辆售价x 万元,则根据题意得()1200.2m m x x -=+%, 解得0.8x =,经检验0.8x =是原方程的解,符号题意.答:2016年A 型节能电动车每辆售价0.8万元.(2)设2016年新款B 型电动车至少要购进y 辆,由题意可得()()150020.80.5520.7182100003y y y y ⎛⎫+ ⎪⎝⎭-+-+≥, 解得12y ≥.答:2016年新款B 型电动车至少要购进12辆.【提示】解答时由销售问题的数量关系求出一次函数的解析式是关键.(1)设2016年A 型节能电动车每辆售价x 万元,则2015年每辆售价为()0.2x +万元,由卖出的数量相同建立方程求出其解即可;(2)设2016年新进B 型节能电动车y 辆,则A 型节能电动车2y 辆,由条件获利不少于18万元建立关于y 的不等式,求出y 的最小值.【考点】分式方程的应用,一次函数的应用21.【答案】3+【解析】过点A 作AF DE ⊥,设DF x =.在Rt ADF △中,30DAF∠=︒,tan 3DF DAF AF ∠==, AF ∴=.AC 的坡度12i =,12AB BC ∴=, 2AB =,4BC ∴=.又AB BC ⊥,DE CE ⊥,AF DE ⊥,∴四边形ABEF 为矩形,2EF AB ∴==,BE AF =,2DE DF EF x ∴=+=+.在Rt DCE △中,tan DE DCE CE ∠=,60DCE ∠=︒,)2CE x ∴=+.又)24BE BC CE x =+=++,BE AF =,)243x ++=,1x ∴=+3DE ∴=+.【提示】借助仰角构造直角三角形并解直角三角形是解决问题的关键.【考点】直角三角形的应用,矩形的判定与性质,三角函数22.【答案】(1)()0,2D(2)反比例函数表达式:12y x =-,一次函数表达式:22y x =-+ (3)3x >或20x -<<【解析】(1)2y kx =+,()0,2D ∴. (2)AP y ∥轴,12OD CD AP CP ∴==. 又2OD =,4AP ∴=.162ADP S AP OA ==△, 3OA ∴=,()3,4P ∴-. 又m y x=过点()3,4P -, 12m ∴=-,12y x∴=-, 2y kx =+过点()3,4P -,432k ∴-=+,2k ∴=-,22y x ∴=-+.(3)联立22,12,y x y x =-+⎧⎪⎨=-⎪⎩解得3,4,x y =⎧⎨=-⎩2,6,x y =-⎧⎨=⎩()2,6G ∴-, ∴由图可知3x >或20x -<<时,一次函数值小于反比例函数值.【提示】熟悉掌握待定系数法是解题的关键.【考点】反比例函数和一次函数的交点,待定系数法求一次函数和反比例函数的解析式,函数和不等式的关系,数形结合思想23.【答案】(1)8cm(2)证明:过点O 作OC AB ⊥垂足为点C ,根据题意有5PA t =cm ,4PB t =cm ,10PO =cm ,8PQ =cm ,PA PB PO PQ∴=. 又P P ∠=∠,PAB POQ ∴∽△△,90PBA PQO ∴∠=∠=︒,∴直线AB PN ⊥.(3)0.5t =s 或 3.5t =s【解析】(1)连接OQ .PN ∴与O 相切于点Q ,OQ PN ∴⊥,∴即90OQP ∠=︒,10OP ∴=cm ,6OQ =cm ,8PQ ∴==cm .(2)证明:过点O 作OC AB ⊥垂足为点C ,根据题意有5PA t =cm ,4PB t =cm ,10PO =cm ,8PQ =cm ,PA PB PO PQ∴=. 又P P ∠=∠,PAB POQ ∴∽△△,90PBA PQO ∴∠=∠=︒,∴直线AB PN ⊥.(3)90BQO CBQ OCB ∠=∠=∠=︒,∴四边形OCBQ 为矩形,BQ OC ∴=.又O 的半径为6cm ,6BQ OC ∴==cm .①当AB 运动到如图所示位置时,84BQ PQ PB t =-=-,6BQ =,846t ∴-=,().5s 0t ∴=.②当AB 运动到如图所示位置时,48BQ PB PQ t =-=-,6BQ ∴=,486t ∴-=,().5s 3t ∴=.∴当0.5t =s 或 3.5t =s 时,直线AB 与O 相切.【提示】(1)连接OQ ,在Rt OPQ △中根据勾股定理求出PQ 的值;(2)欲证AB PN ⊥,只需证明PAB POQ ∽△△;(3)过点O 作OC AB ⊥,垂足为点C ,则O ,C ,B ,Q 组成的四边形为矩形,根据矩形的性质列出关于t 的方程,注意需分类讨论.【考点】圆切线的判定,勾股定理,矩形的性质,相似三角形的判定与性质,分类讨论思想24.【答案】(1)215222y x x =-++ (2)存在,()5,20P --(3)()2G ,()2+【解析】(1)抛物线与x 轴交于()5,0A ,()1,0B -,两点与y 轴交于点50,2C ⎛⎫ ⎪⎝⎭, ∴可设抛物线的解析式为()()51y a x x =-+, 过点50,2C ⎛⎫ ⎪⎝⎭,12a ∴=-, ()()2115512222y x x x x ∴=--+=-++. (2)过点A 作AP AC ⊥,交y 轴于点H ,与抛物线交于点P .AC AP ⊥,OC OA ⊥,OAC OHA ∴∽△△,OA OC OH OA ∴=, 2OA OC OH ∴=.又5OA =,52OC =,10OH ∴=, ()0,10H ∴-,()5,0A ,∴直线AP 的解析式为210y x =-, 联立2210,52,22y x x y x =-⎧⎪⎨=-++⎪⎩()5,20P ∴--.(3)DF x ⊥轴,DE y ⊥轴,∴四边形OFDE 为矩形,EF OD ∴=,EF ∴长度的最小值为OD 长度的最小值.当OD AC ⊥时,OD 长度最小, 此时1122AOC S AC OD OA OC ==△, 又()5,0A ,50,2C ⎛⎫ ⎪⎝⎭,AC ∴=,OD ∴= 又DE y ⊥轴,OD AC ⊥,ODE OCD ∴∽△△,OD CO OE OD∴=,2OD OE CO ∴=.又52CO =,OD =2OE ∴=, 点G 的纵坐标为2,2152222y x x ∴=-++=,12x ∴=,22x =,()2G ∴,().【提示】(1)待定系数法求此二次函数的解析式;(2)过点A 作AP AC ⊥,交y 轴于点H ,与抛物线相交于点P .求直线AP 的解析式,与二次函数解析式联立方程组,即可求出点P 的坐标;(3)根据矩形的性质,EF 长度的最小值就是OD 长度的最小值,利用相似三角形的性质,求点D 的纵坐标,点G 的纵坐标与点D 的纵坐标相同,然后把y 的值代人抛物线的解析式中得点G 的横坐标.【考点】二次函数的综合问题,待定系数法求二次函数,一次函数的解析式,相似三角形的判定与性质,利用方程组求图像的交点坐标。
四川省资阳市2016年中考数学真题试题(含解析)

2016年四川省资阳市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)23.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1085.的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和66.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,A.11,20 B.25,11 C.20,25 D.25,207.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A.2 B.3 C.4 D.无法确定8.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π9.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣10.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m=n2D.m=n2二、填空题.(本大题共6小题,每小题3分,共18分)11.若代数式有意义,则x的取值范围是.12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=.13.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第象限.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.15.设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b= .16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC 上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是.三、解答题.(本大题共8小题,共72分)17.化简:(1+)÷.18.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”,B表示“纯电动乘用车”,C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.19.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B 的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.24.已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.2016年四川省资阳市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.3.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【考点】几何体的展开图.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B .5.的运算结果应在哪两个连续整数之间( )A .2和3B .3和4C .4和5D .5和6【考点】估算无理数的大小.【分析】根据无理数的大小比较方法得到<<,即可解答.【解答】解:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选:D .6.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,A .11,20B .25,11C .20,25D .25,20【考点】众数;中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中25元是出现次数最多的,故众数是25元;将这组数据已从小到大的顺序排列,处于中间位置的两个数是20、20,那么由中位数的定义可知,这组数据的中位数是20;故选:D .7.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m ,n ,则m ﹣n 等于( )A .2B .3C .4D .无法确定【考点】三角形的面积.【分析】设空白出的面积为x ,根据题意列出关系式,相减即可求出m ﹣n 的值. 【解答】解:设空白出图形的面积为x ,根据题意得:m+x=9,n+x=6,则m ﹣n=9﹣6=3.故选B .8.在Rt△ABC 中,∠ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△A B C﹣S扇形C B D即可得出结论.【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△A B C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.9.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣【考点】矩形的性质;菱形的性质;翻折变换(折叠问题).【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:C.10.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m=n2D.m=n2【考点】抛物线与x轴的交点.【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.二、填空题.(本大题共6小题,每小题3分,共18分)11.若代数式有意义,则x的取值范围是x≧2.【考点】二次根式有意义的条件.【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.【解答】解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.【考点】多边形内角与外角.【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=÷2=36°;故答案为:36°.13.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第一象限.【考点】一次函数与一元一次方程.【分析】关于x的方程mx+3=4的解为x=1,于是得到m+3=4,求得m=1,得到直线y=﹣x ﹣3,于是得到结论.【解答】解:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m﹣2)x﹣3为直线y=﹣x﹣3,∴直线y=(m﹣2)x﹣3一定不经过第一象限,故答案为:一.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【考点】概率公式;等腰三角形的判定.【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F 时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.15.设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b= 128 .【考点】规律型:数字的变化类.【分析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故答案为:128.16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC 上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△A B C=×1×1=,S四边形D C E O=S△D O C+S△C E O=S△C D O+S△A D O=S△A O C=S△A B C即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△A B C=×1×1=,S四边形D C E O=S△D O C+S△C E O=S△C D O+S△A D O=S△A O C=S△A B C=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•P E,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.三、解答题.(本大题共8小题,共72分)17.化简:(1+)÷.【考点】分式的混合运算.【分析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.【解答】解:原式=÷=•=a﹣1.18.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”,B表示“纯电动乘用车”,C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)首先由A的数目和其所占的百分比可求出总数,进而可求出D的数目,问题得解;(2)由D的数目先求出它所占的百分比,再用百分比乘以360°,即可解答;(3)计算出补贴D类产品的总金额,再除以每辆车的补助可得车的数量.【解答】解:(1)补贴总金额为:4÷20%=20(千万元),则D类产品补贴金额为:20﹣4﹣4.5﹣5.5=6(千万元),补全条形图如图:(2)360°×=108°,答:“D”所在扇形的圆心角的度数为108°;(3)根据题意,16年补贴D类“插电式混合动力汽车”金额为:6+4.5×=7.35(千万元),∴7350÷3=2450(辆),答:预测该省16年计划大约共销售“插电式混合动力汽车”2450辆.19.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意结合购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【考点】切线的性质.【分析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DC M,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【考点】反比例函数与一次函数的交点问题;平行四边形的性质.【分析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y=(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC交y轴于点E,∴S△C D E=S△E D A+S△A D C=,即△CDE的面积是3.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B 的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=,进而求出答案;(2)根据题意结合已知得出当点B在A′的南偏东75°的方向上,则A′B平分∠CBA,进而得出等式求出答案.【解答】解:(1)如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=40,答:点A到岛礁C的距离为40海里;(2)如图所示:过点A′作A′N⊥BC于点N,可得∠1=30°,∠BA′A=45°,A′N=A′E,则∠2=15°,即A′B平分∠CBA,设AA′=x,则A′E=x,故CA′=2A′N=2×x=x,∵x+x=40,∴解得:x=20(﹣1),答:此时“中国海监50”的航行距离为20(﹣1)海里.23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【考点】几何变换综合题.【分析】(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC 是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出,,最后判断出△AFD∽△BED,代入即可.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠AC B=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.24.已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+),∴y=﹣x2+x+2.(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴==3,∴=,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴=,∴=,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=+t,∴(+t)2=1+(﹣t)2,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴==,∴EG最大时,EH最大,∵EG=GN′﹣EN′=﹣(t+1)2+(t+1)+2﹣(5﹣t)=﹣t2+t+=﹣(t﹣2)2+.∴t=2时,EG最大值=,∴EH最大值=.∴t=2时,EH最大值为.。
2016年四川省资阳市中考数学试题及参考答案(word解析版)

2016年四川省资阳市中考数学试题及参考答案与解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.12B.12C.﹣2 D.22.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)23.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1085)A.2和3 B.3和4 C.4和5 D.5和66.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:则该班同学筹款金额的众数和中位数分别是()A.11,20 B.25,11 C.20,25 D.25,207.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A.2 B.3 C.4 D.无法确定8.在Rt△ABC中,∠ACB=90°,AC=B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A .23πB .23πC .43πD .23π 9.如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若EF=2,∠H=120°,则DN 的长为( )A B C D . 10.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A (x 1,m )、B (x 1+n ,m )两点,则m 、n 的关系为( )A .12m n =B .14m n =C .212m n =D .214m n = 二、填空题(本大题共6小题,每小题3分,共18分)11x 的取值范围是 .12.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB= .13.已知关于x 的方程mx+3=4的解为x=1,则直线y=(m ﹣2)x ﹣3一定不经过第 象限.14.如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是 .15.设一列数中相邻的三个数依次为m 、n 、p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,﹣7,b…,则b= .16.如图,在等腰直角△ABC 中,∠ACB=90°,CO ⊥AB 于点O ,点D 、E 分别在边AC 、BC 上,且AD=CE ,连结DE 交CO 于点P ,给出以下结论:①△DOE 是等腰直角三角形;②∠CDE=∠COE ;③若AC=1,则四边形CEOD 的面积为14;④AD 2+BE 2﹣2OP 2=2DP•PE ,其中所有正确结论的序号是 .三、解答题(本大题共8小题,共72分)17.(7分)化简:211121a a a a ⎛⎫+÷ ⎪--+⎝⎭. 18.(8分)近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R 为纯电动续航行驶里程,图中A 表示“纯电动乘用车”(100km≤R <150km ),B 表示“纯电动乘用车”(150km≤R <250km ),C 表示“纯电动乘用车”(R≥250km ),D 为“插电式混合动力汽车”.19.(8分)某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.20.(8分)如图,在⊙O 中,点C 是直径AB 延长线上一点,过点C 作⊙O 的切线,切点为D ,连结BD .(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.21.(9分)如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线kyx(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.22.(9分)如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.(11分)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.24.(12分)已知抛物线与x轴交于A(6,0)、B(54-,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH 是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.参考答案与解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.12-B.12C.﹣2 D.2【知识考点】倒数.【思路分析】根据倒数的定义即可求解.【解答过程】解:﹣2的倒数是12 -.故选:A.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【知识考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.【思路分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答过程】解:x4与x2不是同类项,不能合并,A错误;。
四川省资阳市中考数学真题试题(含解析)

四川省资阳市xx年中考数学真题试题一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.(3.00分)﹣的相反数是()A.3 B.﹣3 C.D.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.3.(3.00分)下列运算正确的是()A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a64.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形 D.正方形5.(3.00分)﹣0.00035用科学记数法表示为()A.﹣3.5×10﹣4B.﹣3.5×104C.3.5×10﹣4D.﹣3.5×10﹣36.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.887.(3.00分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a28.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.010.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是.12.(3.00分)已知a、b满足(a﹣1)2+=0,则a+b= .13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.14.(3.00分)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.(3.00分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A xx的坐标是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
历年中考数学模拟试题(含答案) (16)

2016年四川省资阳市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)23.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1085.的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和66.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款金额5 10 15 20 25 30(元)人数 3 7 11 11 13 5则该班同学筹款金额的众数和中位数分别是()A.11,20 B.25,11 C.20,25 D.25,207.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A.2 B.3 C.4 D.无法确定8.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π9.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣10.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B (x1+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m=n2D.m=n2二、填空题.(本大题共6小题,每小题3分,共18分)11.若代数式有意义,则x的取值范围是.12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=.13.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第象限.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.15.设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=.16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD 的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是.三、解答题.(本大题共8小题,共72分)17.化简:(1+)÷.18.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”,B表示“纯电动乘用车”,C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.19.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.24.已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.2016年四川省资阳市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.3.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【考点】几何体的展开图.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.5.的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和6【考点】估算无理数的大小.【分析】根据无理数的大小比较方法得到<<,即可解答.【解答】解:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选:D.6.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:筹款金额5 10 15 20 25 30(元)人数 3 7 11 11 13 5则该班同学筹款金额的众数和中位数分别是()A.11,20 B.25,11 C.20,25 D.25,20【考点】众数;中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中25元是出现次数最多的,故众数是25元;将这组数据已从小到大的顺序排列,处于中间位置的两个数是20、20,那么由中位数的定义可知,这组数据的中位数是20;故选:D.7.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A.2 B.3 C.4 D.无法确定【考点】三角形的面积.【分析】设空白出的面积为x,根据题意列出关系式,相减即可求出m﹣n的值.【解答】解:设空白出图形的面积为x,根据题意得:m+x=9,n+x=6,则m﹣n=9﹣6=3.故选B.8.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△AB C﹣S扇形C B D即可得出结论.【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△AB C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.9.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣【考点】矩形的性质;菱形的性质;翻折变换(折叠问题).【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP 的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:C.10.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B (x1+n,m)两点,则m、n的关系为()A.m=n B.m=n C.m=n2D.m=n2【考点】抛物线与x轴的交点.【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.二、填空题.(本大题共6小题,每小题3分,共18分)11.若代数式有意义,则x的取值范围是x≧2.【考点】二次根式有意义的条件.【分析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.【解答】解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.【考点】多边形内角与外角.【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=÷2=36°;故答案为:36°.13.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第一象限.【考点】一次函数与一元一次方程.【分析】关于x的方程mx+3=4的解为x=1,于是得到m+3=4,求得m=1,得到直线y=﹣x﹣3,于是得到结论.【解答】解:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m﹣2)x﹣3为直线y=﹣x﹣3,∴直线y=(m﹣2)x﹣3一定不经过第一象限,故答案为:一.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【考点】概率公式;等腰三角形的判定.【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.15.设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=128.【考点】规律型:数字的变化类.【分析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故答案为:128.16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△AB C=×1×1=,S四边形DC EO=S△DOC+S△C EO=S△C DO+S△AD O=S△AOC=S△AB C即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△AB C=×1×1=,S=S△DOC+S△C EO=S△C DO+S△ADO=S△AOC=四边形DC E OS△AB C=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.三、解答题.(本大题共8小题,共72分)17.化简:(1+)÷.【考点】分式的混合运算.【分析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.【解答】解:原式=÷=•=a﹣1.18.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”,B表示“纯电动乘用车”,C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)首先由A的数目和其所占的百分比可求出总数,进而可求出D 的数目,问题得解;(2)由D的数目先求出它所占的百分比,再用百分比乘以360°,即可解答;(3)计算出补贴D类产品的总金额,再除以每辆车的补助可得车的数量.【解答】解:(1)补贴总金额为:4÷20%=20(千万元),则D类产品补贴金额为:20﹣4﹣4.5﹣5.5=6(千万元),补全条形图如图:(2)360°×=108°,答:“D”所在扇形的圆心角的度数为108°;(3)根据题意,16年补贴D类“插电式混合动力汽车”金额为:6+4.5×=7.35(千万元),∴7350÷3=2450(辆),答:预测该省16年计划大约共销售“插电式混合动力汽车”2450辆.19.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据题意结合购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【考点】切线的性质.【分析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【考点】反比例函数与一次函数的交点问题;平行四边形的性质.【分析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y=(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC交y轴于点E,∴S△C DE=S△EDA+S△ADC=,即△CDE的面积是3.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=,进而求出答案;(2)根据题意结合已知得出当点B在A′的南偏东75°的方向上,则A′B平分∠CBA,进而得出等式求出答案.【解答】解:(1)如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=40,答:点A到岛礁C的距离为40海里;(2)如图所示:过点A′作A′N⊥BC于点N,可得∠1=30°,∠BA′A=45°,A′N=A′E,则∠2=15°,即A′B平分∠CBA,设AA′=x,则A′E=x,故CA′=2A′N=2×x=x,∵x+x=40,∴解得:x=20(﹣1),答:此时“中国海监50”的航行距离为20(﹣1)海里.23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【考点】几何变换综合题.【分析】(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出,,最后判断出△AFD∽△BED,代入即可.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.24.已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+),∴y=﹣x2+x+2.(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴==3,∴=,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴=,∴=,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=+t,∴(+t)2=1+(﹣t)2,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴==,∴EG最大时,EH最大,∵EG=GN′﹣EN′=﹣(t+1)2+(t+1)+2﹣(5﹣t)=﹣t2+t+=﹣(t﹣2)2+.∴t=2时,EG最大值=,∴EH最大值=.∴t=2时,EH最大值为.。
四川省资阳市中考数学真题试题含答案

-1资阳市高中阶段教育学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a2 4.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,35.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-5的点P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定-2是A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形8.如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB .261cmC .61cmD .234cm10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF+BE=EF ;④MG •MH =12,其中正确结论为A .①②③B .①③④C .①②④D .①②③④第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______. 13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()226230a b b ++--=,则224b b a --的值为_________. 15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和k y x =(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.16.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3(不含2)超过3人 数7101419图5- 3抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年四川省资阳市中考真题数学一、选择题.(本大题共10小题,每小题3分,共30分)1. -2的倒数是( )A.-1 2B.1 2C.-2D.2解析:根据倒数的定义即可求解.答案:A.2. 下列运算正确的是( )A.x4+x2=x6B.x2·x3=x6C.(x2)3=x6D.x2-y2=(x-y)2解析:x4与x2不是同类项,不能合并,A错误;x2·x3=x5,B错误;(x2)3=x6,C正确;x2-y2=(x+y)(x-y),D错误.答案:C.3. 如图是一个正方体纸盒的外表面展开图,则这个正方体是( )A.B.C.D.解析:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.答案:C.4. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×108解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.答案:B.( )A.2和3B.3和4C.4和5D.5和6即56,5和6两个连续整数之间.答案:D.6. 我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:则该班同学筹款金额的众数和中位数分别是( )A.11,20B.25,11C.20,25D.25,20解析:在这一组数据中25元是出现次数最多的,故众数是25元;将这组数据已从小到大的顺序排列,处于中间位置的两个数是20、20,那么由中位数的定义可知,这组数据的中位数是20.答案:D.7. 如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m-n等于( )A.2B.3C.4D.无法确定解析:设空白出图形的面积为x,根据题意得:m+x=9,n+x=6,则m-n=9-6=3.答案:B.8. 在Rt △ABC 中,∠ACB=90°,,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A.23πB.23πC.43π D.23π 解析:∵D 为AB 的中点,∴BC=BD=12AB , ∴∠A=30°,∠B=60°.∵∴BC=AC ·tan30°=3=2,∴S 阴影=S △ABC-S 扇形CBD=260222360132ππ⨯⨯-=. 答案:A.9. 如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C与点O 重合,折痕MN 恰好过点G 若,EF=2,∠H=120°,则DN 的长为( )B.2+D.解析:长EG 交DC 于P 点,连接GC 、FH ;如图所示:则CP=DP=12GCP 为直角三角形, ∵四边形EFGH 是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG ⊥FH ,∴OG=GH ·sin60°=2×2由折叠的性质得:OM=CM ,∠MOG=∠MCG ,∴2=, ∵OG ∥CM ,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴,根据题意得:PG 是梯形MCDN 的中位线,∴,∴答案:C.10. 已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m)、B(x 1+n ,m)两点,则m 、n 的关系为( ) A.m=12n B.m=14n C.m=12n 2 D.m=14n 2 解析:∵抛物线y=x 2+bx+c 与x 轴只有一个交点,∴当x=-2b 时,y=0.且b 2-4c=0,即b 2=4c. 又∵点A(x 1,m),B(x 1+n ,m),∴点A 、B 关于直线x=-2b 对称, ∴A(22n b --,m),B(22n b -+,m), 将A 点坐标代入抛物线解析式,得m=(22n b --)2+(22n b --)b+c ,即m=2244n b - +c , ∵b 2=4c ,∴m=14n 2. 答案:D.二、填空题.(本大题共6小题,每小题3分,共18分)11. x的取值范围是_____.∴x-2≥0,∴x≥2.答案:x≥2.12. 如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.解析:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°-108°)÷2=36°.答案:36°.13. 已知关于x的方程mx+3=4的解为x=1,则直线y=(m-2)x-3一定不经过第_____象限. 解析:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m-2)x-3为直线y=-x-3,∴直线y=(m-2)x-3一定不经过第一象限.答案:一.14. 如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是_____.解析:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34.答案:34.15. 设一列数中相邻的三个数依次为m、n、p,且满足p=m2-n,若这列数为-1,3,-2,a,-7,b…,则b=_____.解析:根据题意得:a=32-(-2)=11,则b=112-(-7)=128.答案:128.16. 如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为14;④AD2+BE2-2OP2=2DP·PE,其中所有正确结论的序号是_____.解析:①正确.如图,∵∠ACB=90°,AC=BC ,CO ⊥AB∴AO=OB=OC ,∠A=∠B=∠ACO=∠BCO=45°,在△ADO 和△CEO 中,OA OC A ECO AD CE ⎧=∠=∠=⎪⎨⎪⎩,∴△ADO ≌△CEO ,∴DO=OE ,∠AOD=∠COE ,∴∠AOC=∠DOE=90°,∴△DOE 是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D 、C 、E 、O 四点共圆,∴∠CDE=∠COE ,故②正确.③正确.∵AC=BC=1,∴S △ABC =12×1×1=12,S 四边形DCEO =S △DOC +S △CEO =S △CDO +S △ADO =S △AOC =12S △ABC = 14, 故③正确.④正确.∵D 、C 、E 、O 四点共圆,∴OP ·PC=DP ·PE ,∴2OP 2+2DP ·PE=2OP 2+2OP ·PC=2OP(OP+PC)=2OP ·OC ,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE ,∴△OPE ∽△OEC , ∴OP OE OE OC=, ∴OP ·OC=OE 2, ∴2OP 2+2DP ·PE=2OE 2=DE 2=CD 2+CE 2,∵CD=BE ,CE=AD ,∴AD 2+BE 2=2OP 2+2DP ·PE ,∴AD 2+BE 2-2OP 2=2DP ·PE.故④正确.答案:①②③④.三、解答题.(本大题共8小题,共72分)17. 化简:211121a a a a ⎛⎫+÷ ⎪--+⎝⎭. 解析:首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可. 答案:原式=()211a a a a ÷-- =()211a a a a-⋅- =a-1.18. 近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D ”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R 为纯电动续航行驶里程,图中A 表示“纯电动乘用车”(100km ≤R <150km),B 表示“纯电动乘用车”(150km≤R<250km),C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.解析:(1)首先由A的数目和其所占的百分比可求出总数,进而可求出D的数目,问题得解;(2)由D的数目先求出它所占的百分比,再用百分比乘以360°,即可解答;(3)计算出补贴D类产品的总金额,再除以每辆车的补助可得车的数量.答案:(1)补贴总金额为:4÷20%=20(千万元),则D类产品补贴金额为:20-4-4.5-5.5=6(千万元),补全条形图如图:(2)360°×620=108°,答:“D”所在扇形的圆心角的度数为108°;(3)根据题意,16年补贴D类“插电式混合动力汽车”金额为:6+4.5×620=7.35(千万元),∴7350÷3=2450(辆),答:预测该省16年计划大约共销售“插电式混合动力汽车”2450辆.19. 某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.解析:(1)根据题意结合购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.答案:(1)设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:23544268x y x y +=+=⎧⎨⎩, 解得:1210x y ==⎧⎨⎩.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元;(2)设购进a 台A 型污水处理器,根据题意可得:220a+190(8-a)≥1565,解得:a ≥1.5,∵A 型污水处理设备单价比B 型污水处理设备单价高,∴A 型污水处理设备买越少,越省钱,∴购进2台A 型污水处理设备,购进6台B 型污水处理设备最省钱.20. 如图,在⊙O 中,点C 是直径AB 延长线上一点,过点C 作⊙O 的切线,切点为D ,连结BD.(1)求证:∠A=∠BDC ;(2)若CM 平分∠ACD ,且分别交AD 、BD 于点M 、N ,当DM=1时,求MN 的长.解析:(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB ,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM ,即∠DMN=∠DNM ,根据勾股定理可求得MN 的长.答案:(1)如图,连接OD ,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴=21. 如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=kx(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.解析:(1)根据在平行四边形ABCD 中,点A 、B 、C 的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D 的坐标,又因为双曲线y=k x (k ≠0,x >0)过点D ,从而可以求得k 的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE 的面积等于三角形EDA 与三角形ADC 的面积之和,从而可以解答本题.答案:(1)∵在平行四边形ABCD 中,点A 、B 、C 的坐标分别是(1,0)、(3,1)、(3,3), ∴点D 的坐标是(1,2),∵双曲线y=k x (k ≠0,x >0)过点D , ∴2=1k ,得k=2, 即双曲线的解析式是:y=2x ; (2)∵直线AC 交y 轴于点E ,∴S △CDE =S △EDA +S △ADC =()()()201203122-⨯-⨯-+=1+2=3,即△CDE 的面积是3.22. 如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离;(2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号) 解析:(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=DC AC,进而求出答案;(2)根据题意结合已知得出当点B 在A ′的南偏东75°的方向上,则A ′B 平分∠CBA ,进而得出等式求出答案.答案:(1)如图所示:延长BA ,过点C 作CD ⊥BA 延长线与点D ,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°=60DC AC AC ==,解得:答:点A 到岛礁C 的距离为(2)如图所示:过点A ′作A ′N ⊥BC 于点N ,可得∠1=30°,∠BA ′A=45°,A ′N=A ′E ,则∠2=15°,即A ′B 平分∠CBA ,设AA ′=x ,则A ′E=2x ,故CA ′=2A ′N=2x ,,∴解得:-1),答:此时“中国海监50”的航行距离为海里.23. 在Rt △ABC 中,∠C=90°,Rt △ABC 绕点A 顺时针旋转到Rt △ADE 的位置,点E 在斜边AB 上,连结BD ,过点D 作DF ⊥AC 于点F.(1)如图1,若点F 与点A 重合,求证:AC=BC ;(2)若∠DAF=∠DBA ,①如图2,当点F 在线段CA 的延长线上时,判断线段AF 与线段BE 的数量关系,并说明理由;②当点F 在线段CA 上时,设BE=x ,请用含x 的代数式表示线段AF.解析:(1)由旋转得到∠BAC=∠BAD ,而DF ⊥AC ,从而得出∠ABC=45°,最后判断出△ABC 是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD ,再根据∠DAF=∠DBA ,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD ≌△BED ,即可;②根据题意画出图形,先求出角度,得到△ABD 是顶角为36°的等腰三角形,再用相似求出,AD BD =,最后判断出△AFD ∽△BED ,代入即可. 答案:(1)由旋转得,∠BAC=∠BAD ,∵DF ⊥AC ,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB ,(2)①由旋转得,AD=AB ,∴∠ABD=∠ADB ,∵∠DAF=∠ABD ,∴∠DAF=∠ADB ,∴AF ∥BB ,∴∠BAC=∠ABD ,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD ,∴∠FAD=∠BAC=∠BAD=13×180°=60°, 由旋转得,AB=AD ,∴△ABD 是等边三角形,∴AD=BD ,在△AFD 和△BED 中,90F BED FAD BED AD BD∠=∠=︒∠=∠=⎧⎪⎨⎪⎩,∴△AFD ≌△BED ,∴AF=BE ,②如图,由旋转得,∠BAC=∠BAD ,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD ,由旋转得,AD=AB ,∴∠ABD=∠ADB=2∠BAD ,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x ,作BG 平分∠ABD ,∴∠BAD=∠GBD=36°∴AG=BG=BC=x ,∴DG=AD-AG=AD-BG=AD-BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴BD DG AD DB=.∴BD AD BD AD BD-=,∴ADBD=,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴AD AF BD BE=,∴AF=ADBD×BE=12+x.24. 已知抛物线与x轴交于A(6,0)、B(-54,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.解析:(1)设抛物线解析式为y=a(x-6)(x+54),把点M(1,3)代入即可求出a ,进而解决问题. (2)①如图1中,AC 与OM 交于点G.连接EO ′,首先证明△AOC ∽△MNO ,推出OM ⊥AC ,在RT △EO ′M ′中,利用勾股定理列出方程即可解决问题.②由△GHE ∽△AOC 得EG AC HE CO==EG 最大时,EH 最大,构建二次函数求出EG 的最大值即可解决问题. 答案:(1)设抛物线解析式为y=a(x-6)(x+54),把点M(1,3)代入得a=-415, ∴抛物线解析式为y=-415(x-6)(x+54), ∴y=-415x 2+1915x+2. (2)①如图1中,AC 与OM 交于点G.连接EO ′.∵AO=6,OC=2,MN=3,ON=1, ∴AO MN OC ON==3, ∴AO OC MN ON =,∵∠AOC=∠MON=90°, ∴△AOC ∽△MNO ,∴∠OAC=∠NMO ,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM ⊥AC ,∵△M ′N ′O ′是由△MNO 平移所得,∴O ′M ′∥OM ,∴O ′M ′⊥AC ,∵M ′F=FO ′,∴EM ′=EO ′,∵EN ′∥CO , ∴EN AN CO AO''=, ∴526EN t '-=, ∴EN ′=13(5-t), 在RT △EO ′M ′中,∵O ′N ′=1,EN ′=13(5-t),EO ′=EM ′=43+13t , ∴(43+13t)2=1+(53-13t)2, ∴t=1.②如图2中,∵GH ∥O ′M ′,O ′M ′⊥AC ,∴GH ⊥AC ,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN ′+∠OAC=90°,∠HEG=∠AEN ′, ∴∠OAC=∠HGE ,∵∠GHE=∠AOC=90°,∴△GHE ∽△AOC ,∴EG AC HE CO== ∴EG 最大时,EH 最大,∵EG=GN ′-EN ′=-415(t+1)2+1915(t+1)+2-13(5-t)=-415t 2+1615t+43=-415(t-2)2+1215. ∴t=2时,EG 最大值=1215,∴EH最大值∴t=2时,EH最大值为.95考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。