七年级下数学同步练习答案2020
初中数学同步训练必刷题(人教版七年级下册 6

初中数学同步训练必刷题(人教版七年级下册 6.2 立方根)一、单选题(每题3分,共30分)1.(2022七下·顺平期末)8的立方根是( )A .±2B .±4C .2D .4【答案】C【知识点】立方根及开立方【解析】【解答】由23=8可得8的立方根是2;故答案为:C .【分析】根据立方根的性质求解即可。
2.(2022七上·衢州期中)下列说法正确的是( )A .9的算术平方根是±3B .-8没有立方根C .-8的立方根-2D .8的立方根是±2【答案】C【知识点】算术平方根;立方根及开立方【解析】【解答】解:A 、9的算术平方根是3,故A 不符合题意;B 、-8的立方根为-2,故B 不符合题意;C 、-8的立方根为-2,故C 符合题意;D 、8的立方根是2,故D 不符合题意; 故答案为:C【分析】利用正数的算术平方根只有一个,可对A 作出判断;利用任何数都立方根,可对B 作出判断;利用正数的立方根是正数,负数的立方根是负数,可对C ,D 作出判断.3.(2022七上·萧县期中)−127立方根为( ) A .−13B .13C .−19D .19【答案】A【知识点】立方根及开立方【解析】【解答】解:∵(−13)3=−127,∴√−1273=−13,故答案为:A .【分析】利用立方根的性质求解即可。
4.(2022七上·苍南期中)下列选项中计算正确的是( )A .√4=±2B .√273=3C .43=12D .−32=9【答案】B【知识点】算术平方根;立方根及开立方;有理数的乘方 【解析】【解答】解:A 、√4=2,故A 选项不符合题意;B 、√273=3,故B 选项符合题意;C 、43=64,故C 选项不符合题意;D 、−32=−9,故D 选项不符合题意. 故答案为:B.【分析】A 选项的左边求的是4的算术平方根,而一个正数的算术平方根是一个正数,据此即可判断; B 选项左边求的是27的立方根,根据立方根的定义,一个数的立方等于a ,则这个数就是a 的立方根,据此可判断;C 选项的左边求的是4的立方,根据有理数乘方的意义,表示的是3个4相乘,据此即可判断;D 选项的左边求的是3的平方的相反数,根据有理数乘方的意义及相反数的概念即可判断.5.(2022七上·乐清期中)若a 是(−8)2的平方根,则√a 3等于( )A .-8B .2C .2或-2D .8或-8【答案】C【知识点】平方根;立方根及开立方【解析】【解答】解:∵(-8)2的平方根为:±√(−8)2=±|−8|=±8,∴a=±8,当a=8时,√a 3=√83=2, 当a=-8时,√a 3=√−83=−2,故答案为:C.【分析】首先根据平方根的定义求出a 的值,进而再根据立方根的定义算出答案.6.(2022八上·沈北新期中)√643的平方根是( )A .±8B .±4C .±2D .±√2【答案】C【知识点】平方根;立方根及开立方 【解析】【解答】解:∵√643=4,又∵(±2)2=4, ∴√643的平方根是±2, 故答案为:C .【分析】先化简,再利用平方根的性质求解即可。
2020—2021年浙教版七年级数学下册《分式的基本性质》同步练习题及答案解析精品试卷.docx

浙教版七年级下册第5章5.2分式的基本性质同步练习一、单选题(共11题;共22分)1、下列各式中,正确的是()A、=B、=C、=D、=-2、若2x+y=0,则的值为()A、-B、-C、1D、无法确定3、若=,则a的取值范围是()A、a>0且a≠1B、a≤0C、a≠0且a≠1D、a<04、a,b,c均不为0,若,则P(ab,bc)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限5、下列各式变形正确的是()A、=B、=C、=D、6、如果把分式中的x和y都扩大5倍,那么分式的值()A、扩大5倍B、扩大10倍C、不变D、缩小7、如果分式中的x、y都缩小到原来的倍,那么分式的值()A、扩大到原来的3倍B、扩大到原来的6倍C、不变D、缩小到原来的倍8、下列计算错误的是()A、=B、=a-bC、=D、9、如果把分式中的x、y的值都扩大5倍,那么分式的值()A、扩大5倍B、缩小5倍C、不变D、扩大25倍10、下列等式成立的是()A、(﹣)﹣2=B、=﹣C、0.00061=6.1×10﹣5D、=11、下列分式变形中,正确的是()A、=a+bB、=﹣1C、=n﹣mD、=二、填空题(共7题;共8分)12、已知,则=________13、已知a,b,c是不为0的实数,且,那么的值是________ .14、不改变分式的值,把分子分母的系数化为整数:=________ .15、不改变分式的值,把分子、分母中各项系数化为整数,结果是________ .16、若,则的值是________17、若分式的值为0,则x=________ ;分式=成立的条件是________ .18、分式的值是m,如果分式中x,y用它们的相反数代入,那么所得的值为n,则m,n的关系是________三、解答题(共6题;共30分)19、在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会如何变化.20、已知x>0,y>0,如果x、y都扩大原来的三倍,那么分式的值如何变化?21、问题探索:(1)已知一个正分数(m>n>0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数(m>n>0)中分子和分母同时增加2,3…k(整数k>0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.22、已知a,b,c,d都不等于0,并且,根据分式的基本性质、等式的基本性质及运算法则,探究下面各组中的两个分式之间有什么关系?然后选择其中一组进行具体说明.(1)和;(2)和;(3)和(a≠b,c≠d).23、附加题:若a=,b=,试不用将分数化小数的方法比较a、b的大小.观察a、b的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.24、在学完分式的基本性质后,小刚和小明两人对下面两个式子产生了激烈的争论:①=,②=.小刚说:“①②两式都对.”小明说:“①②两式都错.”你认为他们两人到底谁对谁错,为什么?答案解析部分一、单选题1、【答案】C【考点】分式的基本性质【解析】【解答】解;A、分式的分子分母都乘或除以同一个不为零的整式,故A错误;B、分子除以(a﹣2),分母除以(a+2),故B错误;C、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;D、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D错误;故选;C.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.2、【答案】B【考点】分式的基本性质【解析】【解答】解:∵2x+y=0,∴y=﹣2x,∴===﹣,故选B.【分析】由2x+y=0,得y=﹣2x,将其代入分式中求解.3、【答案】D【考点】分式的基本性质【解析】【解答】解:∵=,∴==,∴a<0,故选:D.【分析】直接利用分式与绝对值的基本性质,结合化简后结果得出a的取值范围4、【答案】A【考点】分式的基本性质【解析】【解答】解:∵abc<0.∴a,b,c中至少有一个是负数,另两个同号,可知三个都是负数或两正数,一个是负数,当三个都是负数时:若=abc,则x﹣y=a2bc>0,即x>y,同理可得:y>z,z>x这三个式子不能同时成立,即a,b,c不能同时是负数.则P(ab,bc)不可能在第一象限.故选A.【分析】应根据abc<0,得到这三个字母可能的符号,推出不存在的结论,进而得到不可能在的象限.5、【答案】D【考点】分式的基本性质【解析】【解答】解:A、原式=,所以A选项错误;B、原式=,所以B选项错误;C、原式=,所以C选项错误;D、,所以D选项正确.故选D.【分析】根据分式的基本性质把分子分母都乘以﹣1可对A、D进行判断;根据分子与分母同乘(或除以)一个不等于0的整式,分式的值不变对B、C进行判断.6、【答案】C【考点】分式的基本性质【解析】【解答】解:依题意得:===原式,故选C.【分析】解此题时,可将分式中的x,y用5x,5y代替,用此方法即可解出此题.7、【答案】C【考点】分式的基本性质【解析】【解答】解:分式中的x、y都缩小到原来的倍,那么分式的值不变,故C符合题意;故选:C.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数或者整式,分式的值不变,可得答案.8、【答案】B【考点】分式的基本性质【解析】【解答】解:A、分子分母都除以a2b2,故A正确;B、分子除以(a﹣b),分母除以(b﹣a),故B错误;C、分子分母都乘以10,故C正确;D、同分母分式相加减,分母不变,分子相加减,故D正确;故选:B.【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.9、【答案】A【考点】分式的基本性质【解析】【解答】解:如果把分式中的x、y的值都扩大5倍,那么分式的值扩大5倍,故选;A.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.10、【答案】D【考点】分式的基本性质【解析】【解答】解:A、负整数指数幂与正整数指数幂互为倒数,故A错误;B、=﹣,故B错误;C、0.00061=6.1×10﹣4,故C错误;D、分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,故D正确;故选:D.【分析】根据负整数指数幂与正整数指数幂互为倒数,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变;科学记数法表示小数,可得答案.11、【答案】C【考点】分式的基本性质【解析】【解答】就饿:A、分子分母除以不同的整式,故A错误;B、分子分母除以不同的整式,故B错误;C、分子分母都除以(n﹣m)2,故C正确;D、m=0时无意义,故D错误.故选:C.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.二、填空题12、【答案】【考点】分式的基本性质【解析】【解答】解:设=k,则x=2k,y=3k,z=4k,则===.故答案为.【分析】首先设恒等式等于某一常数,然后得到x、y、z与这一常数的关系式,将各关系式代入求值.13、【答案】【考点】分式的基本性质【解析】【解答】解:∵=,∴=3,即+=3①;同理可得+=4②,+=5③;∴①+②+③得:2(++)=3+4+5;++=6;又∵的倒数为,即为++=6,则原数为.故答案为.14、【答案】【考点】分式的基本性质【解析】【解答】解:不改变分式的值,把分子分母的系数化为整数:=,故答案为:.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.15、【答案】【考点】分式的基本性质【解析】【解答】解:分子分母都乘以6,得.故答案为:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),结果不变,可得答案.16、【答案】6【考点】分式的基本性质【解析】【解答】解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.【分析】若,可以得到:a﹣b=﹣4ab.代入所求的式子化简就得到所求式子的值.17、【答案】﹣2 ;x≠﹣2【考点】分式的基本性质【解析】解:∵分式的值为0,∴x2﹣4=0且x﹣2≠0,解得:x=﹣2,分式=成立的条件是x+2≠0,即x≠﹣2,故答案为:﹣2,x≠﹣2.【分析】根据分式值为0得出x2﹣4=0且x﹣2≠0,求出即可;分式有意义的条件得出x+2≠0,求出即可.18、【答案】m+n=0【考点】分式的基本性质【解析】【解答】解:∴m+n=0.【分析】把分式中的分子,分母中的x,y都同时变成﹣x,﹣y看得到的式子与原式子的关系.三、解答题19、【答案】解:中,字母m,n,p的值分别扩大为原来的2倍,得=×,在分式中,字母m,n,p的值分别扩大为原来的2倍,则分式的值会缩小为原来的.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.20、【答案】解:x>0,y>0,如果x、y都扩大原来的三倍,那么分式的值扩大为原来的3倍,答:式的值扩大为原来的3倍.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.21、【答案】解:(1)<(m>n>0)证明:∵﹣=,又∵m>n>0,∴<0,∴<.(2)根据(1)的方法,将1换为k,有<(m>n>0,k>0).(3)设原来的地板面积和窗户面积分别为x、y,增加面积为a,由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;则可得:>,所以住宅的采光条件变好了.【考点】分式的基本性质【解析】【分析】(1)使用作差法,对两个分式求差,有﹣=,由差的符号来判断两个分式的大小.(2)由(1)的结论,将1换为k,易得答案,(3)由(2)的结论,可得一个真分数,分子分母增大相同的数,则这个分数整体增大;结合实际情况判断,可得结论.22、【答案】解:例如:取a=1,b=2,c=3,d=6,有,则(1);(2);(3)观察发现各组中的两个分式相等.现选择第(2)组进行说明证明.已知a,b,c,d都不等于0,并且,所以有:,所以有:=.【考点】分式的基本性质【解析】【分析】先利用具体的数计算,然后发现各组中的两个分式相等;再对(2)进行证明:等式两边加上1,通分即可.23、【答案】解:a、b的特征是分母比分子大1;∵a==1﹣,b==1﹣,∴a<b,∴当分子比分母小1时,分子(或分母)越大的数越大.【考点】分式的基本性质【解析】【分析】当分子比分母小1时,分子(或分母)越大的数越大.24、【答案】解:都错了①=分子分母都除以a,故①正确;②=,a=0时,分子分母都乘以a无意义,故②错误;∴两人的说法都错误.【考点】分式的基本性质【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),分式的值不变,可得答案.。
苏科版2020-2021学年七年级数学下册7.4认识三角形考点同步训练(含答案)

苏科版2020-2021 学年七年级数学下册7.4 认识三角形考点同步训练考点一.三角形:1.如图,图中直角三角形共有()A.1 个B.2 个C.3 个D.4 个2.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有个三角形出现.3.如图,直角三角形的个数为.4.过A、B、C、D、E 五个点中任意三点画三角形;(1)其中以AB 为一边可以画出个三角形;(2)其中以C 为顶点可以画出个三角形.考点二.三角形的角平分线、中线和高:5.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A.B.C.D.6.以下是四位同学在钝角三角形△ABC 中画AC 边上的高,其中正确的是()A.B.C.D.7.在数学课上,同学们在练习画边AC 上的高时,出现下列四种图形,其中正确的是()A.B.C.D.8.如图,△ABC 中,∠BAC 是钝角,AD⊥BC、EB⊥BC、FC⊥BC,则下列说法正确的是()A.AD 是△ABC 的高B.EB 是△ABC 的高C.FC 是△ABC 的高D.AE、AF 是△ABC 的高9.如图,已知P 为直线l 外一点,点A、B、C、D 在直线l 上,且PA>PB>PC>PD,下列说法正确的是()A.线段PD 的长是点P 到直线l 的距离B.线段PC 可能是△PAB 的高C.线段PD 可能是△PBC 的高D.线段PB 可能是△PAC 的高10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形11.如图,在四边形ABCD 中,AB∥CD,3AB=4AD=6CD,E 为AB 的中点.萧钟同学用无刻度的直尺先连接CE 交BD 于点F,再连接AF.则线段AF 是△ABD 的()A.中线B.高线C.角平分线D.中线、高线、角平分线(三线合一)12.如图,D、E 分别是△ABC 的边AC、BC 的中点,则下列说法不正确的是()A.DE 是△ABC 的中线B.BD 是△ABC 的中线C.AD=DC,BE=EC D.DE 是△BCD 的中线13.如图,AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A,在△ABC 中,AB边上的高为()A.AD B.GA C.BE D.CF14.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD⊥BC 于D,BE⊥AC 于E,AD 与BE 交于H,则∠CHD=.15.在△ABC 中,AC=5cm,AD 是△ABC 中线,若△ABD 周长与△ADC 的周长相差2cm,则BA=cm.16.如图,在△ABC 中(AB>BC),AB=2AC,AC 边上中线BD 把△ABC 的周长分成30和20 两部分,求AB 和BC 的长.17.如图,△ABC 的周长是21cm,AB=AC,中线BD 分△ABC 为两个三角形,且△ABD的周长比△BCD 的周长大6cm,求AB,BC.18.已知:∠MON=40°,OE 平分∠MON,点A、B、C 分别是射线OM、OE、ON 上的动点(A、B、C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO 的度数是;②当∠BAD=∠ABD 时,x=;当∠BAD=∠BDA 时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.考点三.三角形的面积:19.如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB=3,AC=5,DE=2,那么点D 到AB 的距离是()A. B. C. D.2 20.如图,在△ABC 中,已知点E、F 分别是AD、CE 边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A.1cm2 B.2cm2 C.8cm2 D.16cm221.已知AD 是△ABC 的中线,BE 是△ABD 的中线,若△ABC 的面积为18,则△ABE 的面积为(A.5 )B.4.5C.4 D.922.如图,D,E,F 分别是边BC,AD,AC 上的中点,若S 四边形的面积为3,则△ABC的面积是()A.5 B.6 C.7 D.8 23.如图,长方形ABCD 中,AB=4cm,BC=3cm,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E.若点P 运动的时间为x 秒,那么当x =时,△APE 的面积等于5.24.把一张三角形的纸折叠成如图后,面积减少,已知阴影部分的面积是50 平方厘米,则这张三角形纸的面积是平方分米.考点四.三角形的稳定性:25.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角26.下列图形中不具有稳定性是()A.B.C.D.27.用八根木条钉成如图所示的八边形木架,要使它不变形,至少要钉上木条的根数是()A.3 根B.4 根C.5 根D.6 根考点五.三角形的重心:28.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点29.在Rt△ABC 中,AD 是斜边BC 边上的中线,G 是△ABC 重心,如果BC=6,那么线段AG 的长为.考点六.三角形三边关系:30.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3 31.如图,为估计池塘岸边A、B 两点的距离,小方在池塘的一侧选取一点O,测得OA=15 米,OB=10 米,A、B 间的距离不可能是()A.5 米B.10 米C.15 米D.20 米32.已知关于x 的不等式组至少有两个整数解,且存在以3,a,7 为边的三角形,则a 的整数解有()A.4 个B.5 个C.6 个D.7 个33.若a、b、c 为△ABC 的三边长,且满足|a﹣4|+=0,则c 的值可以为()A.5 B.6 C.7 D.834.已知三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.1635.△ABC 中,AB=10,BC=2x,AC=3x,则x 的取值范围.36.在△ABC 中,若AB=4,BC=2,且AC 的长为偶数,则AC=.37.若a、b、c 为三角形的三边,且a、b 满足+(b﹣2)2=0,第三边c 为奇数,则c=.38.三角形的两边长分别是3 和4,第三边长是方程x2﹣13x+40=0 的根,则该三角形的周长为.39.如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.40.在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,则AD 的取值范围是.参考答案1.解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3 个,故选:C.2.解:∵①当四个点共线时,不能作出三角形;②当三个点共线,第四个点不在这条直线上时,能够画出3 个三角形;③若4 个点能构成凹四边形,则能画出4 个三角形;④当任意的三个点不共线时,则能够画出8 个三角形.∴0 或3 或4 或8.3.解:如图,直角三角形有:△ADC、△BCD、△CDE、△BDE、△ACE、△ACB,一共6 个,故答案为:6.4.解:(1)如图,以AB 为一边的三角形有△ABC、△ABD、△ABE 共3 个;(2)如图,以点C 为顶点的三角形有△ABC、△BEC、△BCD、△ACE、△ACD、△ CDE 共6 个.故答案为:(1)3,(2)6.5.解:B,C,D 都不是△ABC 的边BC 上的高,故选:A.6.解:A、高BD 交AC 的延长线于点D 处,符合题意;B、没有经过顶点B,不符合题意;C、做的是BC 边上的高线AD,不符合题意;D、没有经过顶点B,不符合题意.故选:A.7.解:AC 边上的高应该是过B 作垂线段AC,符合这个条件的是C;A,B,D 都不过B 点,故错误;故选:C.8.解:△ABC 中,画BC 边上的高,是线段AD.故选:A.9.解:A.线段PD 的长不一定是点P 到直线l 的距离,故本选项错误;B.线段PC 不可能是△PAB 的高,故本选项错误;C.线段PD 可能是△PBC 的高,故本选项正确;D.线段PB 不可能是△PAC 的高,故本选项错误;故选:C.10.解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.11.解:∵3AB=6CD,E 为AB 的中点,∴CD=AB,BE=AB,∴CD=BE,又∵AB∥CD,∴∠EBF=∠CDF,又∵∠EFB=∠CFD,∴△BEF≌△DCF(AAS),∴BF=DF,∴线段AF 是△ABD 的中线,故选:A.12.解:∵D、E 分别是△ABC 的边AC、BC 的中点,∴DE 是△ABC 的中位线,不是中线;BD 是△ABC 的中线;AD=DC,BE=EC;DE 是△BCD 的中线;故选:A.13.解:∵AB 边上的高是指过顶点C 向AB 所在直线作的垂线段,∴在AD⊥BC 于D,BE⊥AC 于E,CF⊥AB 于F,GA⊥AC 于A 中,只有CF 符合上述条件.故选:D.14.解:延长CH 交AB 于点H,在△ABC 中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH 中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.15.解:如图,∵AD 是△ABC 中线,∴BD=CD,∴△ABD 周长﹣△ADC 的周长=(BA+BD+AD)﹣(AC+AD+CD)=BA﹣AC,∵△ABD 周长与△ADC 的周长相差2cm,∴|BA﹣5|=2,∴解得BA=7 或3.故答案为:3 或7.16.解:设AC=x,则AB=2x,∵BD 是中线,∴AD=DC=x,由题意得,2x+x=30,解得,x=12,则AC=12,AB=24,∴BC=20﹣×12=14.答:AB=24,BC=14.17.解:∵BD 是中线,∴AD=CD=AC,∵△ABD 的周长比△BCD 的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC 的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.18.解:(1)①∵∠MON=40°,OE 平分∠MON,∴∠AOB=∠BON=20°,∵AB∥ON,∴∠ABO=20°,②∵∠BAD=∠ABD,∴∠BAD=20°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°,∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°;故答案为:①20°;②120,60;(2)①当点D 在线段OB 上时,∵OE 是∠MON 的角平分线,∴∠AOB=∠MON=20°,∵AB⊥OM,∴∠AOB+∠ABO=90°,∴∠ABO=70°,若∠BAD=∠ABD=70°,则x=20若∠BAD=∠BDA=(180°﹣70°)=55°,则x=35若∠ADB=∠ABD=70°,则∠BAD=180°﹣2×70°=40°,∴x=50②当点D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20、35、50、125.19.解:∵AC=5,DE=2,∴△ADC 的面积为=5,∵AD 是△ABC 的中线,∴△ABD 的面积为5,∴点D 到AB 的距离是.故选:A.20.解:∵由于E、F 分别为AD、CE 的中点,∴△ABE、△DBE、△DCE、△AEC 的面积相等,∴S△BEC=2S△BEF=8(cm2),∴S△ABC=2S△BEC=16(cm2).故选:D.21.解:∵AD 是△ABC 的中线,∴S△ABD=S△ABC=×18=9,∵BE 是△ABD 的中线,∴S△ABE=S△ABD=×9=4.5.故选:B.22.解:∵D 为BC 的中点,∴S△ABD=S△ACD=S△ABC,∵E,F 分别是边AD,AC 上的中点,∴S△BDE=S△ABD,S△ADF=S△ADC,S△DEF=S△ADF,∴S△BDE=S△ABC,S△DEF=S△ADC=S△ABC,S△BDE+S△DEF=S△ADC+ S△ABC=S△ABC,∴S△ABC=S 阴影部分=×3=8.故选:D.23.解:①如图1,当P 在AB 上时,∵△APE 的面积等于5,∴x•3=5,x=;②当P 在BC 上时,∵△APE 的面积等于5,∴S 长方形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=5,∴3×4﹣(3+4﹣x)×2﹣×2×3﹣×4×(x﹣4)=5,x=5;③当P 在CE 上时,∴ (4+3+2﹣x)×3=5,x=<3+4,此时不符合;故答案为:或5.24.解:∵折叠后面积减少,∴阴影部分的面积占三角形纸的面积的(1﹣﹣)=,∴三角形纸的面积=50÷ =200 平方厘米=2 平方分米.故答案为:2.25.解:加上EF 后,原图形中具有△AEF 了,故这种做法根据的是三角形的稳定性.故选:B.26.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然B 选项中有四边形,不具有稳定性.故选:B.27.解:过八边形的一个顶点作对角线,可以做5 条,把八边形分成6 个三角形,因为三角形具有稳定性.故选:C.28.解:三角形的重心是三条中线的交点,故选:A.29.解:∵AD 是斜边BC 边上的中线,∴AD=BC=×6=3,∵G 是△ABC 重心,∴=2,∴AG=AD=×3=2.故答案为2.30.解:3+4<8,则3,4,8 不能组成三角形,A 不符合题意;5+6=11,则5,6,11 不能组成三角形,B 不合题意;5+6>10,则5,6,10 能组成三角形,C 符合题意;1+2=3,则1,2,3 不能组成三角形,D 不合题意,故选:C.31.解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B 间的距离在 5 和25 之间,∴A、B 间的距离不可能是5 米;故选:A.32.解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7 为边的三角形,∴4<a<10,∴a 的取值范围是5<a<10,∴a 的整数解有4 个,故选:A.33.解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5 符合条件;故选:A.34.解:设第三边的长为x,∵三角形两边的长分别是4 和10,∴10﹣4<x<10+4,即6<x<14.故选:C.35.解:根据题意得:3x﹣2x<10<3x+2x,解得:2<x<10.故答案为:2<x<10.36.解:因为4﹣2<AC<4+2,所以2<AC<6,因为AC 长是偶数,所以AC 为4,故答案为:4.37.解:∵a、b 满足+(b﹣2)2=0,∴a=9,b=2,∵a、b、c 为三角形的三边,∴7<c<11,∵第三边c 为奇数,∴c=9,故答案为9.38.解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3 和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.39.证明:延长ED 到H,使DE=DH,连接CH,FH,∵AD 是△ABC 的中线,∴BD=DC,∵DE、DF 分别为∠ADB 和∠ADC 的平分线,∴∠1=∠2=∠ADB,∠3=∠4=∠ADC,∴∠1+∠4=∠2+∠3=∠ADB+ ∠ADC=×180°=90°,∵∠1=∠5,∴∠5+∠4=90°,即∠EDF=∠FDH=90°,在△EFD 和△HFD 中,,∴△EFD≌△HFD(SAS),∴EF=FH,在△BDE 和△CDH 中,,∴△BDE≌△CDH(SAS),∴BE=CH,在△CFH 中,由三角形三边关系定理得:CF+CH>FH,∵CH=BE,FH=EF,∴BE+CF>EF.40.解:如图,延长AD 到E,使DE=AD,∵AD 是BC 边上的中线,∴BD=CD,在△ABD 和△ECD 中,,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=5,AC=3,∴5﹣3<AE<5+3,即2<AE<8,1<AD<4.故答案为:1<AD<4.。
9.2一元一次不等式(三) 同步练习 2020-2021学年人教版数学七年级下册

9.2一元一次不等式(三)【笔记】对于用不等式解决实际问题,主要是正确分析题意,找出满足条件的不等关系,然后根据不等关系列出不等式.解不等式的应用题,要注意题目中表示不等关系的词语,如“不大于”“不小于”“不超过”“不低于”等.解决实际问题的时候还要注意实际意义.例如材料选用一般是“进一法”.【训练】1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A.6折B.7折C.8折D.9折3.西宁市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A.至少20户B.至多20户C.至少21户D.至多21户4.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买瓶矿泉水时,第二种方案更便宜.( ) A.5 B.6 C.7 D.85.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过厘米.6.张老师带领学生到科技馆参观,门票每张25元,购票时发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是张老师买了50张票,结果发现所带的钱还有剩余,那么张老师和他的学生至少有人.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.8.(张家界中考)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗购买棵数比甲种树苗购买棵数的2倍还少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.9.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人,售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.10.(绍兴中考)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元.则所购商品的标价是元.11.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应该选哪种购买方案?请说明理由.12.某商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑进行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若购买超过5台,超过的部分每台按售价的八折销售.某公司一次性从该商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.13.甲、乙两商场以相同价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?参考答案9.2一元一次不等式(三)【训练】1.C2.B3.C4.C5.966.417.428.(1)购买甲种树苗140棵,购买乙种树苗240棵;(2)方案一:不购买甲种树苗,购买乙种树苗10棵;方案二:购买甲种树苗1棵,购买乙种树苗9棵;方案三:购买甲种树苗2棵,购买乙种树苗8棵;方案四:购买甲种树苗3棵,购买乙种树苗7棵.9.设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票时花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票时花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.10.100或8511.(1)设购买x台A型污水处理设备,则购买(10-x)台B型污水处理设备,由题意,得.故有3种购买方案:12x+10(10-x)≤105.解得x≤52方案一:购买0台A型污水处理设备,10台B型污水处理设备;方案二:购买1台A型污水处理设备,9台B型污水处理设备;方案三:购买2台A型污水处理设备,8台B型污水处理设备.(2)应选择购买1台A型污水处理设备,9台B型污水处理设备.理由:设购买a台A型污水处理设备,由题意,得240a+200(10-a)≥2040.解得a≥1.当a=1时,需资金12×1+10×9=102(万元);当a=2时,需资金12×2+10×8=104(万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.12.(1)设购买A型号笔记本电脑x台时的费用为w元.当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8-5)a×80%=7.4a,∵7.2a<7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元.(2)∵该公司采用方案二购买更合算,∴x>5.方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.5ax-4a=a+0.8ax,令0.9ax>a+0.8ax,解得x>10.∴x的取值范围是x>10.13.(1)当累计购买不超过50元时,在甲、乙商场购物都不享受优惠,且两商场以相同价格出售同样的商品,因此到两商场购物花费一样;(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少;(3)当累计购物超过100元时,设累计购物x(x>100)元.①若到甲商场购物花费少,则50+0.95(x-50)>100+0.9(x-100),解得x>150.则累计购物超过150元时,到甲商场购物花费少;②若到乙商场购物花费少,则50+0.95(x-50)<100+0.9(x-100),解得x<150.则累计购物超过100元而不到150元时,到乙商场购物花费少;③若50+0.95(x-50)=100+0.9(x-100),解得x=150.则累计购物为150元时,到甲、乙两商场购物花费一样.。
2020-2021人教版七年级数学下学期立方根同步练习含答案

课后作业
14.D15.B16.B17.0或-618.-4 - 19.4
20.(1)-10;
(2)4;
(3)-1;
(4)0.
21.(1) > ;
(2)- <-3.4.
22.(1)8x3=-125,x3=- ,x=- ;
(2)(x+3)3=-27,x+3=-3,x=-6.
4.立方根等于本身的数为__________.
5. 的平方根是__________.
6.若x-1是125的立方根,则x-7的立方根是__________.
7.求下列各数的立方根:
(1)0.216; (2)0; (3)-2 ; (4)-5.
8.求下列各式的值:
(1) ; (2) ; (3)- .
知识点2 用计算器求立方根
9.用计算器计算 的值约为( )
A.3.049 B.3.050 C.3.051D.3.052
10.估计96的立方根的大小在( )
A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间
11.计算: ≈__________(精确到百分位).
12.已知 =1.038, =2.237, =4.820,则 =__________, =__________.
21.比较下列各数的大小:
(1) 与 ; (2)- 与-3.4.
22.求下列各式中的x:
(1)8x3+125=0; (2)(x+3)3+27=0.
23.若 与(b-27)2互为相反数,求 - 的立方根.
24.很久很久以前,在古希腊的某个地方发生大旱,地里的庄稼都干死了,人们找不到水喝,于是大家一起到神庙里去向神祈求.神说:“我之所以不给你们降水,是因为你们给我做的正方体祭坛太小,如果你们做一个比它大一倍的祭坛放在我面前,我就会给你们降雨.”大家觉得很好办,于是很快做好了一个新祭坛送到神那里,新祭坛的棱长是原来的2倍.可是神愈发恼怒,他说:“你们竟敢愚弄我.这个祭坛的体积不是原来的2倍,我要进一步惩罚你们!”
2020-2021学年人教版数学 七年级下册 5.1 相交线 垂线段 同步练习

5.1 相交线垂线段基础训练知识点1 垂线段的定义1.下列说法正确的是()A.垂线段就是垂直于已知直线的线段B.垂线段就是垂直于已知直线并且与已知直线相交的线段C.垂线段是一条竖起来的线段D.过直线外一点向该直线作垂线,这一点到垂足之间的线段叫垂线段2.如图,下列说法不正确的是()A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AC是点A到BC的垂线段D.线段BD是点B到AD的垂线段知识点2 垂线段的性质3.如图,计划在河边建一水厂,过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是__________.4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B. B点C.C点D.D点5.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>ADB.AC<BCC.BC>BDD.CD<BD6.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD的长度的取值范围是()A.大于4 cmB.小于6 cmC.大于4 cm或小于6 cmD.大于4 cm且小于6 cm7.如图,在三角形ABC中,∠C=90°,AC=3,点P可以在直线BC上自由移动,则AP的长不可能是()A.2.5B.3C.4D.5知识点3 点到直线的距离8.如图所示的是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段的长度.9.下列图形中,线段PQ的长表示点P到直线MN的距离的是()10.如图,其长能表示点到直线(线段)的距离的线段的条数是()A.3B.4C.5D.611.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是()A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长12.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上的任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度13.如图,AB⊥AC,AD⊥BC,如果AB=4 cm,AC=3 cm,AD=2.4 cm,那么点C到直线AB的距离为()A.3 cmB.4 cmC.2.4 cmD.无法确定易错点对垂线段的性质理解不透彻而致错14.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离()A.等于4 cmB.等于2 cmC.小于2 cmD.不大于2 cm提升训练考查角度1 利用点到直线的距离的定义进行识别15.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条考查角度2 利用作垂线法作图16.如图,已知钝角三角形ABC中,∠BAC为钝角.(1)画出点C到AB的垂线段;(2)过点A画BC的垂线;(3)画出点B到AC的垂线段,并量出其长度.考查角度3 利用垂线段的性质比较大小17.如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?考查角度4 利用垂线段的性质解实际应用题18.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,设汽车行驶到点P位置时,离村庄M最近,行驶到点Q位置时,离村庄N最近,请你在AB上分别画出P,Q两点的位置.探究培优拔尖角度1 利用垂线段的性质进行方案设计(建模思想)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄的距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短?并说明根据.拔尖角度2 利用垂线段的性质解决绝对值问题(数形结合思想)20.在如图所示的直角三角形ABC中,斜边为BC,两直角边分别为AB,AC,设BC=a,AC=b,AB=c.(1)试用所学知识说明斜边BC是最长的边;(2)试化简|a-b|+|c-a|+|b+c-a|.参考答案1.【答案】D2.【答案】C3.【答案】垂线段最短4.【答案】A5.【答案】C6.【答案】D解:根据“垂线段最短”可知BC<BD<AB,所以BD大于4 cm且小于6 cm.7.【答案】A8.【答案】BN或AM9.【答案】A解:对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN 的距离.10.【答案】C解:线段AB的长度可表示点B到AC的距离,线段CA的长度可表示点C到AB的距离,线段AD的长度可表示点A到BC的距离,线段CD 的长度可表示点C到AD的距离,线段BD的长度可表示点B到AD的距离,所以共有5条.11.【答案】B12.【答案】D13.【答案】A解:因为AB⊥AC,所以点C到直线AB的距离是线段AC的长度,即3 cm.14.错解:B诊断:点到直线的距离是指这个点到直线的垂线段的长度.虽然垂线段最短,但是并没有说明PC是垂线段,所以垂线段的长度可能小于2 cm,也可能等于2 cm.正解:D15.【答案】D16.解:如图:(1)CD即为所求;(2)直线AE即为所求;(3)BF即为所求.长度略.17.解:(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.18.解:如图所示.19.解:(1)如图,连接AD,BC,交于点H,则H点为蓄水池的位置,它到四个村庄的距离之和最小.(2)如图,过点H作HG⊥EF,垂足为G,则沿HG开渠最短.根据:连接直线外一点与直线上各点的所有线段中,垂线段最短.分析:本题考查了垂线段的性质在实际生活中的运用.体现了建模思想的运用.20.解:(1)因为点C与直线AB上点A,B的连线中,CA是垂线段,所以AC<BC.因为点B与直线AC上点A,C的连线中,AB是垂线段,所以AB<BC.故AB,AC,BC中,斜边BC最长.(2)因为BC>AC,AB<BC,AC+AB>BC,所以原式=a-b-(c-a)+b+c-a=a.。
2020-2021学年北师大版七年级下册数学 1.4:整式的乘法 同步练习(含解析)

1.4整式的乘法同步练习一.选择题1.下列计算正确的是()A.a3+a3=a6B.a3•a3=a6C.(4a3)2=8a6D.a3•b3=ab32.若(x+a)(x+b)=x2+4x+3,则a+b的值为()A.3B.﹣3C.4D.﹣43.计算3a(5a﹣2b)的结果是()A.15a﹣6ab B.8a2﹣6ab C.15a2﹣5ab D.15a2﹣6ab4.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣35.在一次数学课上,学习了单项式乘多项式,小明回家后,拿出课堂笔记本复习,发现这样一道题:﹣3x(﹣2x2+3x﹣1)=6x3+□+3x,“□”的地方被墨水污染了,你认为“□”内应填写()A.9x2B.﹣9x2C.9x D.﹣9x6.若单项式﹣8x a y和x2y b的积为﹣2x5y6,则ab的值为()A.2B.30C.﹣15D.157.若2x+m与x+3的乘积中不含x的一次项,则m的值为()A.﹣6B.0C.﹣2D.38.某同学在计算﹣3x2乘一个多项式时错误的计算成了加法,得到的答案是x2﹣x+1,由此可以推断该多项式是()A.4x2﹣x+1B.x2﹣x+1C.﹣2x2﹣x+1D.无法确定9.根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b210.已知a、b、c三个数中有两个奇数,一个偶数,n是整数,如果S=(a+n+1)+(b+2n+2)+(c+3n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶不能确定二.填空题11.计算(﹣2a)3(﹣3a)2=.12.计算:(x﹣2y)(x+5y)=.13.一个长方体的长、宽、高分别是(3x﹣4)米,2x米和x米,则这个长方体的体积是.14.若(x+m)与(x+3)的乘积中不含x的一次项,则m=.15.已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=.三.解答题16.计算:(ab2﹣2ab)•ab.17.计算:6a2(ab﹣b2)﹣2a2b(a﹣b).18.小轩计算一道整式乘法的题:(2x+m)(5x﹣4),由于小轩将第一个多项式中的“+m”抄成“﹣m”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)请计算出这道题的正确结果.19.如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.参考答案一.选择题1.解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项正确;C、(4a3)2=16a6,故此选项错误;D、a3•b3=a3b3,故此选项错误;故选:B.2.解:∵(x+a)(x+b)=x2+4x+3,∴x2+(a+b)x+ab=x2+4x+3,∴a+b=4.故选:C.3.解:3a(5a﹣2b)=15a2﹣6ab.故选:D.4.解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.5.解:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+3x,故选:B.6.解:﹣8x a y×x2y b=﹣2x a+2y b+1=﹣2x5y6,∴a+2=5,b+1=6,解得a=3,b=5,∴ab=3×5=15,故选:D.7.解:(2x+m)(x+3)=2x2+(m+6)x+3m,∵2x+m与x+3的乘积中不含x的一次项,∴m+6=0,解得:m=﹣6.故选:A.8.解:根据题意得:多项式为x2﹣x+1﹣(﹣3x2),x2﹣x+1﹣(﹣3x2)=x2﹣x+1+3x2=4x2﹣x+1,故选:A.9.解:根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2,故选:A.10.解:(a+n+1)+(b+2n+2)+(c+3n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴S是偶数.故选:A.二.填空题11.解:原式=﹣8a3•9a2=﹣72a5.12.解:原式=x2+5xy﹣2xy﹣10y2=x2+3xy﹣10y2,故答案为:x2+3xy﹣10y2.13.解:由题意可得,这个长方体的体积是(3x﹣4)×2x×x=(3x﹣4)×2x2=(6x3﹣8x2)立方米.故答案为:(6x3﹣8x2)立方米.14.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故答案为:﹣3.15.解:由题意得:,解得:,则A+B=,故答案为:.三.解答题16.解:原式=ab2⋅ab﹣2ab⋅ab=a2b3﹣a2b2.17.解:原式=6a2×ab﹣6a2×b2﹣2a2b×a+2a2b×b =2a3b﹣6a2b2﹣2a3b+2a2b2=﹣4a2b2.18.解:(1)由题知:(2x﹣m)(5x﹣4)=10x2﹣8x﹣5mx+4m=10x2﹣(8+5m)x+4m=10x2﹣33x+20,所以8+5m=33或4m=20,解得:m=5.故m的值为5;(2)(2x+5)(5x﹣4)=10x2﹣8x+25x﹣20=10x2+17x﹣20.19.解:(1)根据题意,广场上需要硬化部分的面积是(2a+b)(3a+b)﹣(a+b)2=6a2+2ab+3ab+b2﹣(a+b)2=6a2+5ab+b2﹣(a2+2ab+b2)=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab答:广场上需要硬化部分的面积是(5a2+3ab)m2.(2)把a=30,b=10代入5a2+3ab=5×302+3×30×10=5400 m2答:广场上需要硬化部分的面积是5400m2.。
2020年人教版七年级数学下册同步单元试题第7章平面直角坐标系单元综合评价试卷含解析

2020年人教版七年级数学下册同步单元试题第7章平面直角坐标系单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共8小题)1.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)2.根据下列表述,能确定具体目标位置的是()A.电影院1号厅第2排B.普宁市大学路C.东经118°,北纬68°D.南偏西45°3.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)4.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.﹣1 B.9 C.12 D.6或125.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)6.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)7.Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是()A.(2,2)B.(1,)C.(,1)D.(2,2)8.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)二.填空题(共8小题)9.已知两点A(﹣2,3)、B(﹣1,﹣4),则A、B两点间的距离是.10.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.11.若点A(a,b)在第三象限,则点Q(a+1,3b﹣5)在第象限.12.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为.13.如图,已知点A(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为.14.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于.15.已知点A是直线x=2上的点,且到x轴的距离等于3,则点A的坐标为.16.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S△PAB=S四边形ABDC.则点P的坐标为.三.解答题(共7小题)17.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.18.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.19.如图,网格中每个小正方形的边长都是1,依次完成下列各问:(1)任选一点作为原点,建立平面直角坐标系;(2)写出A、B、C、D、E各点的坐标;(3)求五边形ABCDE的面积.20.已知点A在x轴上,点A与点B(1,¬3)的距离是5,求点A的坐标.21.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图(1)分别写出点B、B'的坐标:B,B' ;(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为;(3)求三角形ABC的面积.22.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.23.综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1,P2.探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.参考答案与试题解析一.选择题(共8小题)1.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【解答】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选:A.2.根据下列表述,能确定具体目标位置的是()A.电影院1号厅第2排B.普宁市大学路C.东经118°,北纬68°D.南偏西45°【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、电影院1号厅第2排,不能确定具体位置,故本选项不符合题意;B、普宁市大学路,不能确定具体位置,故本选项不符合题意;C、东经118°,北纬68°,能确定具体位置,故本选项符合题意;D、南偏西45°,不能确定具体位置,故本选项不符合题意.故选:C.3.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.4.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.﹣1 B.9 C.12 D.6或12【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.【解答】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5﹣3=2.则a+b=4+8=12,或a+b=2+4=6,故选:D.5.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,﹣3)D.(6,﹣3)【分析】四边形ABCD与点A平移相同,据此即可得到点A′的坐标.【解答】解:四边形ABCD先向左平移3个单位,再向上平移2个单位,因此点A也先向左平移3个单位,再向上平移2个单位,由图可知,A′坐标为(0,1).故选:B.6.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【分析】根据点的坐标的定义即可得.【解答】解:根据题意知小李所对应的坐标是(7,4),故选:C.7.Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是()A.(2,2)B.(1,)C.(,1)D.(2,2)【分析】过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.【解答】解:如图,过点C作CE垂直x轴于点E.∵A(2,﹣2),∴OB=2,AB=2,∵∠ABO=∠CBD=90°,∴∠DBO=∠CBA=60°,∵BO=BD,∴∠D=DOB=60°,DO=DB=BO=2,∴∠BCD=30°,CD=2BD=4,∴CO=CD﹣OD=4﹣2=2,∵∠COE=90°﹣∠COy=90°﹣60°=30°∴CE=OC=1,OE=,∴C(,1).故选:C.8.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,……,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,﹣1)D.(2020,0)【分析】计算点P走一个半圆的时间,确定第2019秒点P的位置.【解答】解:点运动一个半圆用时为秒∵2019=1009×2+1∴2019秒时,P在第1010个的半圆的中点处∴点P坐标为(2019,﹣1)故选:C.二.填空题(共8小题)9.已知两点A(﹣2,3)、B(﹣1,﹣4),则A、B两点间的距离是5.【分析】根据两点间的距离公式可直接解答.【解答】解:∵两点A(﹣2,3)、B(﹣1,﹣4),则A、B两点间的距离是:=5.故答案是:5.10.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为(3,2).【分析】根据平移的性质即可得到结论.【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)11.若点A(a,b)在第三象限,则点Q(a+1,3b﹣5)在第三或四象限.【分析】根据第三象限内点的坐标符号可得a<0,b<0,然后再确定a+1和3b﹣5的符号,进而可得答案.【解答】解:∵点A(a,b)在第三象限,∴a<0,b<0,∴a+1可能大于0,也可能小于0,3b﹣5<0,∴Q在第三或四象限,故答案为:三或四.12.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为().【分析】(1)先证明△AOB∽△BCD,所以=,因为DC=1,BC=2,所有=;(2)利用三角形相似与三角形全等依次求出F1,F2,F3,F4的坐标,观察求出F2019的坐标.【解答】解:(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴=,∵DC=1,BC=2,∴=,故答案为;(2)解:过C作CM⊥y轴于M,过M1作M1N⊥x轴,过F作FN1⊥x轴.根据勾股定理易证得BD==,CM=OA=,DM=OB=AN=,∴C(,),∵AF=3,M1F=BC=2,∴AM1=AF﹣M1F=3﹣2=1,∴△BOA≌ANM1(AAS),∴NM1=OA=,∵NM1∥FN1,∴,,∴FN1=,∴AN1=,∴ON1=OA+AN1=+=∴F(,),同理,F1(,),即()F2(,),即(,)F3(,),即(,)F4(,),即(,)…F2019(,),即(,405),故答案为即(,405).13.如图,已知点A(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为(,).【分析】垂线段最短,确定B点位置;解直角三角形求解.【解答】解:作AB⊥直线y=﹣x于点B.易知△OAB为等腰直角三角形,∠AOB=45°,OA=1.作BC⊥x轴于点C,可得OC=OA=,BC=OC=.∴当线段AB最短时,点B的坐标为(,).14.已知直角坐标平面内两点A(﹣3,1)和B(3,﹣1),则A、B两点间的距离等于2.【分析】根据两点间的距离公式d=解答即可.【解答】解:∵直角坐标平面内两点A(3,﹣1)和B(﹣1,2),∴A、B两点间的距离等于=2,故答案为2.15.已知点A是直线x=2上的点,且到x轴的距离等于3,则点A的坐标为(2,3)或(2,﹣3).【分析】根据平行于y轴的直线上的点的横坐标相同求出点A的横坐标,点到x轴的距离等于纵坐标的绝对值求出纵坐标,然后写出点A的坐标即可.【解答】解:∵点A是直线x=2上的点,且到x轴的距离等于3,∴点A的横坐标为2,纵坐标为±3,∴点A的坐标为(2,3)或(2,﹣3).故答案为:(2,3)或(2,﹣3).16.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S△PAB=S四边形ABDC.则点P的坐标为(0,﹣4)或(0,4).【分析】由平移可得,CD=AB=4,CD∥AB,即可得到四边形ABCD为平行四边形,再根据S△PAB=S四边形ABDC,可得OP=4,进而得出当点P在AB下方时,P(0,﹣4);当点P在AB上方时,P(0,4).【解答】解:由平移可得,C(0,2),D(4,2),∴CD=AB=4,CD∥AB,∴四边形ABCD为平行四边形,∴四边形ABCD面积=4×2=8,又∵S△PAB=S四边形ABDC,∴△PAB的面积为8,即×AB×OP=8,∴OP=4,∴当点P在AB下方时,P(0,﹣4);当点P在AB上方时,P(0,4),故答案为:(0,﹣4)或(0,4).三.解答题(共7小题)17.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.【分析】(1)根据点的坐标的定义即可写出答案;(2)根据上加下减,左减右加的原则写出答案即可;(3)先将三角形补成一个矩形,再减去三个直角三角形的面积即可.【解答】解:(1)点A、B、C分别在第三象限、第一象限和y轴的正半轴上,则A(﹣2,﹣2),B(3,1),C(0,2);(2)∵把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,∴横坐标减1,纵坐标加2,即A′(﹣3,0),B′(2,3),C(﹣1,4);(3)S△ABC=4×5﹣×5×3﹣×4×2﹣×1×3=20﹣7.5﹣4﹣1.5=7.18.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.【分析】(1)利用点A的坐标画出直角坐标系;根据点的坐标的意义描出点B;(2)利用三角形的面积得到△ABC的面积.【解答】解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.19.如图,网格中每个小正方形的边长都是1,依次完成下列各问:(1)任选一点作为原点,建立平面直角坐标系;(2)写出A、B、C、D、E各点的坐标;(3)求五边形ABCDE的面积.【分析】(1)根据坐标系的概念建立坐标系即可;(2)由坐标系可得点的坐标;(3)割补法求解即可.【解答】解:(1)如图所示:(2)A(0,2)、B(1,0)、C(3,0)、D(4,2)、E(3,3);(3)S五边形ABCDE=3×4﹣×1×2﹣×1×2﹣×1×3﹣×1×1=12﹣1﹣1﹣1.5﹣0.5=820.已知点A在x轴上,点A与点B(1,¬3)的距离是5,求点A的坐标.【分析】设点A的坐标为(x,0),根据两点间的距离公式列式求解即可,两点间的距离公式:d=.【解答】解:设点A的坐标为(x,0).(1分)根据题意,得.(2分)∴(x﹣1)2=42.(1分)∴x1=5,x2=﹣3.(1分)经检验:x1=5,x2=﹣3都是原方程的根.∴点A的坐标为(5,0)或(﹣3,0).(2分)21.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图(1)分别写出点B、B'的坐标:B(3,﹣4),B' (﹣2,0);(2)若点P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内的对应点P'的坐标为(a﹣5,b+4);(3)求三角形ABC的面积.【分析】(1)根据B′,C′的位置写出坐标即可.(2)根据平移规律解决问题即可.(3)利用分割法求出△ABC的面积即可.【解答】解:(1)观察图象可知B(3,﹣4),B′(﹣2,0).故答案为:(3,﹣4),(﹣2,0).(2)由题意△A′B′C′是由△ABC向左平移5个单位,向上平移4个单位得到,∴P′(a﹣5,b+4).故答案为(a﹣5,b+4).(3)S△ABC=4×4﹣×2×4﹣×4×1﹣×2×3=7.22.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.【分析】(1)由AB∥x轴,可以知道A、B两点纵坐标相等,解关于m的一元一次方程,求出m的值;(2)由(1)求得m值求出点A、B坐标,由A、B两点横坐标相减的绝对值即为AB的长度.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.23.综合与实践问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1(2,2),P2(﹣1,﹣2).探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.【分析】(1)根据坐标的确定方法直接描点,:分别读出各点的纵横坐标,即可得到各中点的坐标;(2)根据(1)中的坐标与中点坐标找到规律;(3)利用(2)中的规律进行分类讨论即可答题.【解答】解:(1)如图:A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB和CD中点P1、P2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.故答案为:.(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,)、(2,)、(0,3)∴①HG过EF中点(1,)时,=1,=解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,)时,=2,=解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,=0,=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学同步练习答案2020
第6章一元一次方程
§6.1 从实际问题到方程
一、1.D 2. A 3. A
二、1. x = - 6 2. 2x-15=25 3. x =3(12-x)
三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:
5.8-x=3x+0.6
2.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=17
3.解:设原来课外数学小组的人数为x,则可列方程为:
§6.2 解一元一次方程(一)
一、1. D 2. C 3.A
二、1.x=-3,x= 2.10 3. x=5
三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=
§6.2 解一元一次方程(二)
一、1. B 2. D 3. A
二、1.x=-5,y=3 2. 3. -3
三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)
x=-2
2. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2.
解得:x=7 (2)48人
3. (1)x=-7 (2)x=-3
§6.2 解一元一次方程(三)
一、1. C 2. D 3. B 4. B
二、1. 1 2. 3. 10
三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=
2. 3( x-2) -4(x- )=4 解得 x=-3
3. 3元
§6.2 解一元一次方程(四)
一、1. B 2.B 3. D
二、1. 5 2. , 3. 4. 15
三、1. (1)y = (2)y =6 (3)(4)x=
2. 由方程3(5x-6)=3-20x 解得x= ,把x= 代入方程a- x=2a+10x,得a =-8.
∴ 当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同
的解.
3. 解得:x=9
§6.2 解一元一次方程(五)
一、1.A 2. B 3. C
二、1.2(x +8)=40 2. 4,6,8 3.2x+10=6x+5 4. 15 5. 160
元三、1. 设调往甲处x人, 根据题意,得27+x=2[19+(20-x)]. 解得:x=17
2. 设该用户5月份用水量为x吨,依题意,得1.2×6+2(x-
6)=1.4 x.
解得 x=8. 于是1.4x=11.2(元) .。