数学解题之一题多解与多题一解完整版

合集下载

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践随着中国教育制度的不断改革,无论是教育目的还是方式方法,都是为了让学生拥有更加合理更加有效的学习环境而做出改变。

其中高中数学的教育目标,也不再单是让学生学会如何运用数学公式进行计算,除了针对学生对数学的学习兴趣以外,在实际解题方面,要求培养学生拥有更多更灵活的解题思路和方式,以改变统一性的教学模式。

就高中数学解题中“一题多解”与“多题一解”的解题方式加以分析研究。

高中数学解题方式思维模式学生在进入高中后,改变的不仅仅是学习的内容,学生自身的心智和思维模式也有较大的改变。

学生在思想成长的阶段,会出现种种的问题,这些问题会直接影响学生的学习情况,特别是数学。

因为高中阶段数学的难度将进一步加大,内容增多,因此学生解题的方式应更加的多样化。

因此,高中数学教学,首先要从学生解题过程中的思维模式入手,同时改变课堂教学的方式和内容,以此提高学生的学习成果。

一、“一题多解”在数学教学中的价值与实践(一)价值与实践在未来的社会发展中需求的人才将是多元化、多样化的,统一性思维的教育模式已经不再适用于现代社会。

因此,在高中数学教学中,“一题多解”的教学理念,是以学生学习为主,改变以老师为主导地位的教学模式。

因为每一个学生的受教育情况、性格、思维模式都不相同,因此一个固定性的解题方式不能最有效的适用于每一个学生,所以在数学教学的解题过程中,老师应引导学生多角度的去分析问题,让学生去探究、发现多样化的解题方式。

“一题多解”的根本在于问题本身,老师在创设和选择问题时,首先应考虑到问题自身是否具备多样化的解答模式。

同时,在培养学生多样化解题思维时,应注意调动学生解题的积极性,被动、消极的解题态度很难让学生产生多样化的解题思维。

所以针对这方面数学问题的内容应结合学生平时感兴趣的东西,让学生自觉的参与到多样化的解题中。

如有的学生喜欢足球,老师就把其融入习题中,让学生用原本感到枯燥的公式,运算他喜欢的与足球相关的问题。

利用一题多解、一题多变来提高初中学生的数学解题能力

利用一题多解、一题多变来提高初中学生的数学解题能力

利用一题多解、一题多变来提高初中学生的数学解题能力作者:苏淑妮来源:《中学课程辅导·教师教育(中)》2017年第04期(广东省惠州市惠阳区崇雅中学广东惠州 516000)【摘要】数学课程标准中,要求使学生站在不同角度,探索分析和解决问题的方法,此外,教育心理学也指出:问题解决有两种类型:一是常规性问题解决;二是创造性问题解决。

通过一题多解、一题多变训练,使学生能够体验到解决问题的多样性方式,能够掌握分析及解决问题的基本技巧和方法,使所学的知识得到活化,融会贯通,开阔思路,培养学生的发散、创新思维能力。

【关键词】一题多解一题多变初中数学发散思维【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2017)04-173-01先观察以下4个例题,是初中数学练习过程经常碰到的,具体的解答过程后文有详细的描述,以此四个例题用以论述本文的观点。

例1:相切两圆半径分别是4和6,求圆心距。

例2:在几何题型中:直角三角形两边长3和4,求第三边。

例3:一道求证题:顺次连接平行四边形各边中点所得的四边形是平行四边形变式1:顺次连接矩形各边中点所得的四边形是菱形变式2:顺次连接菱形各边中点所得的四边形是矩形变式3:顺次连接正方形各边中点所得的四边形变式4:顺次连接什么四边形各边中点可以得到平行四边变式5:顺次连接什么四边形各边中点可以得到矩形变式6:顺次连接什么四边形各边中点可以得到菱形例4:在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.一、一题多解、一题多变帮助学生循坏往复调动所学知识,强化记忆在学习生涯中,知识点是解题的基础和灵魂,千千万万的题目是从知识点出发延伸设计出来问题考察学生的。

由于时间和空间有限,学生不可能做完所有的题目,对于教师也不可能讲解完所有的题目。

而对于数学,单是一道题目中也不可能只有一个知识点的考察,例题1这道题中涉及的知识点有:相切圆、半径、圆心距,最终的问题虽然是求圆心距,但是如果没有正确的对于圆、半径以及相切的概念,那么也就无从下手。

四年级一题多解的数学题

四年级一题多解的数学题

四年级一题多解的数学题
1、水波小学每间教室有3个窗户,每个窗户安装12块玻璃,8间教室一共安装多少块玻璃?
2、白塔村计划修一条288米的水渠。

前两天一共修了48米,照这样的进度,还要几天能修完?
3、虹光宾馆购进100条毛巾,每条4元。

如果用这些钱购买8元一条的毛巾,可以买多少条?
4、生产队在15平方米的土地上共育苗135棵,照这样计算,要育苗1215棵,需要多大面积的土地?
5、有一筐苹果连筐重42千克,卖掉一半苹果后,连筐重22千克,这个筐重多少千克?
6、上衣50元,裤子25元,买4套这样的服装共需要多少元?
7、哥哥有81张邮票,弟弟有75张,哥哥给多少张给弟弟,他们就一样多了。

8、一块正方形木板,钜去一个角,剩余的木板还有几个角?(画出简单示意图)
9、一家公司为开展体育活动,准备去买篮球和排球,已知买4个篮球、3个排球得
用500元,如果买2个篮球和6个排球得用520元,那么一个篮球多少元?一个排球多少元?。

《一题多解与一题多变在中学数学中的应用开题报告2000字》

《一题多解与一题多变在中学数学中的应用开题报告2000字》
一题多解和一题多变是数学中经常遇到的问题,学生通过自己的思考和研究,对于一道问题进行多种解答,从而在其中找到最优的解决方法,在解决问题的过程中,体验学习的乐趣,从而感受到自己学习的主体地位,意识到自己在学习中的创造和自学能力,这样能使学生大大的提高学习数学的信心,在无形中提高了学生的发散性思维。通过一题多解和一题多变的训练,让学生从各个方面进行反复的思考,从中联想各个知识点的联系,让其融会贯通,找出最简洁、最优化的解题思路。
[4] 黄跃惠. 一题多解与一题多变在初中数学教学中的运用[J]. 试题与研究:高考版, 2019(28):1.
[5] 宫代印. 浅谈"一题多解"和"一题多变"在高中数学教学中的应用[J]. 试题与研究:教学论坛, 2019(2):1.
[6] 王菊香. 一题多变和多解成就智慧课堂[J]. 考试周刊, 2019(87):2.
[13] 江猷敏. "一题多解和一题多变"在培养学生数学思维能力的应用策略探析[J]. 考试周刊, 2020(66).
[14] 章勇. "一题多解"与"一题多变"在培养学生思维能力中的应用[J]. 新教育时代电子杂志(学生版), 2020(24):2.
八.指导教师意见
指导教师签字:
年 月 日
九.系意见
系主任签字:
年 月 日
十.学院毕业论文(设计)工作领导小组意见
负责人签字:
年 月 日
[7] 颜天伦. 初中数学教学中"一题多变","一题多解"渗透[J]. 中学课程辅导:教学研究, 2019.
[8] 张海玲. 谈利用"一题多解与一题多变"培养学生的思维能力[J]. 新智慧, 2021(6):2.

“一题多解”与“多题一解”在高中数学解题中的应用

“一题多解”与“多题一解”在高中数学解题中的应用

教学研究“一题多解”与“多题一解”在高中数学解题中的应用李凤悦(青海省湟中县多巴中学,青海西宁811601)摘要:“一题多解”与“多题一解”是提高数学教学质量和培养学生解题能力的有效途径和方法,本文对该教学方法的应用原则和模式、以及在新授课和复习课中的应用方式进行了探索。

关键词:一题多解;多题一解;解题应用为了提高高中数学教学的有效性,开展数学教学要以学生发展为中心,通过设计和运用符合学生身心特点的教学方法,就能高效地实现教学目标,完成教学任务。

但是在目前的高中数学教学中,面对高考的压力,许多教师仍然采用“题海战术”的方式进行教学,这样不但无助于提高教学有效性,而且增加了学生的负担,使学生失去对数学的学习兴趣。

而“一题多解”与“多题一解”教学方法的运用,能有效提高教学质量,培养学生的数学解题能力。

一、“一题多解”与“多题一解”教学原则和模式(一)教学原则在高中数学教学中,运用“一题多解”与“多题一解”进行教学应坚持以下原则:一是目标导向原则,以教学目标为牵引来选择和使用该教学方法,将渗透新课改的教学理念,就能较好完成教学目标;二是分层教学原则,运用该教学方式,要能满足不同层次学生的学习需要,使所有学生的学习能得到提高;三是选题典型原则,在教学中要发挥每个习题的作用,就要选择具有典型的题目根据学情开展变式教学;四是主体参与原则,运用该方式进行教学,要注重发挥学生的主体作用,让学生在积极的参与过程中提高解题能力;五是探究学习原则,利用该方式进行变式教学,要有利于学生开展自主、合作探究学习,使学生的学习能力得到增强。

(二)教学模式运用“一题多解”与“多题一解”进行教学,应坚持如下基本模式:“设置例题———引导探究———培养思维———变式拓展———变式训练”这样五个基本环节,这几个环节不是简单的递进关系,它是复合交叉,从学情出发,进行分层教学和因材施教的有效教学模式。

例1在研究y=A sin(ωx+φ)图像的画法时,可启发学生理解该函数图像与y=sin x的图像之间的关系,并把该题目设计成“题组”的形式,开展变式解题研究:如,(1)y=sin(x+1)如何是从y=sin x的图像变换出来的?(2)y=2sin x如何是从y=sin x的图像变换出来的?(3)y=sin2x如何是从y=sin x的图像变换出来的?(4)y=sin(2x-1)如何是从y=sin2x的图像变换出来的?(5)y=2sin(2x-1)如何是从y=sin x的图像变换出来的?通过这样进行“一题多解”就能让学生完整掌握正弦函数的图像变换过程。

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践作者:钱万毅来源:《中学课程辅导·教师教育(上、下)》2017年第02期摘要:经新课标的多次改革,高中数学教学由从前的教师为主导,逐渐演变为教师的作用为指导、引导,而学生为主体的自主多样性课堂,这样的课堂可以帮助学生更加主动地学习,锻炼学生思考、组织、分析、归纳等的能力。

其中“一题多解”和“多题一解”在高中数学教学中有良好的价值,值得实践与推广。

关键词:高中数学;解题方式;思维模式中图分类号:G633.6 文献标识码: A 文章编号:1992-7711(2017)02-057-01学生在进入高中学习后,不仅仅面临着学习内容的改变,学习的难度上了一个更高的台阶,还面临着思想的成熟和思维方式的养成。

在这一阶段,学生要学会用发散思维和提纲挈领的方法处理问题,而数学的学习,对培养学生这些能力都非常有益,其中“一题多解”与“多题一解”正是培养这些能力的关键教学实践方法。

在此阶段,注重数学教学的方式方法,传递给学生正确的思考方式,锻炼学生正确的思考能力,对于学生今后学习能力以及生活能力的提高都尤为重要。

一、“一题多解”在数学教学中的价值研究与实践(一)价值在传统的数学教学模式中,通常是老师在讲台上教授数学公式、概念等内容,学生在下面记笔记。

学生和老师都认为掌握了大量的定理、定义,以及数学公式,就能做好题,做对题,就能够在考试中取得好成绩。

在此背景和环境下,培养学生的发散性思维是很必要的。

老师不应该对数学题目只做生硬的讲解,只讲一种“标准答案”,这样只会禁锢学生的思维。

长久下去,学生只会变成“书呆子”。

教师应该多注重教学的有效性,应在课堂上观察学生的状态,倾听学生的需求,倾听学生的提问与回答,倾听学生的讨论。

这样才能使课堂互动起来。

数学的学习,本来就应该是丰富多彩的。

这样一个锻炼逻辑思维的学科,教师在教授的过程中应当充分发挥学科特点,让学生学习了数学,真正能有所用。

一题多解”与“多题一解”在高中数学教学中的价值研究与实践毛淑萍

一题多解”与“多题一解”在高中数学教学中的价值研究与实践毛淑萍

一题多解”与“多题一解”在高中数学教学中的价值研究与实践毛淑萍发布时间:2022-04-19T14:54:08.494Z 来源:《基础教育课程》2022年1月作者:毛淑萍[导读] 随着新课改的推出,我国教育的质量在随之得到提高。

浙江省诸暨市湄池中学毛淑萍 311814摘要:随着新课改的推出,我国教育的质量在随之得到提高。

高中的教育是培养社会所需人才的主要场所,高中对于学生的学习和发展有着很重要的影响。

在高中教学中,怎样来提升学生学习知识的效率是现阶段最需要重视的问题。

在数学教学中,数学教师可以使用一题多解和多题一解的方法来进行教学,对于这两种方法的价值进行研究,并进行实践。

关键词:一题多解;多题一解;高中数学;价值和实践在高中教学中,对于数学这一学科而言,数学的理论知识比较复杂,而且学生一定要具备较强的思维能力,这样也就导致学生在学习数学知识的时候遇到了困难。

想要提升学生的数学成绩,数学教师就一定要培养学生的思维能力,让学生了解数学的解题方式。

因此,就可以使用一题多解和多题一解的方法来进行教学,从而有效地提升学生的数学成绩和教学的效率,促进学生可以更好的发展。

一、在高中数学中使用一题多解的教学方法(一)一题多解教学方法的价值分析对于高中数学教学而言,在以往的教学方法当中,一般都是数学教师把数学知识和公式等内容灌输给学生,让学生被动的学习数学知识,这样的教学方法是比较枯燥的。

在高中数学教学中,使用一题多解的方法可以让学生在解决数学问题的时候,培养自己的思维能力,对数学的特点进行发掘。

并且还可以丰富数学知识,活跃数学课堂的气氛,让学生对数学知识产生兴趣,主动的学习数学知识,解决数学问题,使学生的思维能力得到提高,让学生的综合能力得到发展。

(二)一题多解教学方法的实践在高中数学教学中,使用一题多解的教学方法时,数学教师一定要根据将要教学的内容来进行设计。

在开始教学前,要选择好数学题目,根据学生的兴趣来进行选择,这样才可以在进行教学的时候,激发学生学习的积极性。

例谈“一题多解”与“多题一解”之争

例谈“一题多解”与“多题一解”之争

: , = 一 , = 一 ,0 = 1 2 贝有 : + = , + 6
C× ; 3 A A 一8 ; ‘
方法三 对 同 色 球 不 加 区 别 , 认 为 3 只 红 球 都 是 相 即 同的 , 5只 白球 也 都 是 一 样 的 , 所 有 的 球 一 一 摸 出 排 成 一 把 排, 每种 排 法 作 为 一 个 基 本 事 件 , 基 本 事 件 总 数 为 n= 则
把 所 有 的 球 都 一 一 摸 出 依 次 排 成 一 排 , 一 种 排 法 作 为 一 每
个 基本事件 , 么基本事 件 的总数 为 n= :其 中第 4个球 那 A,
C XA:
内 的球 数 , 根 据 题 意 得 : 则
是红球的排法数为 m c × ; = A, 所以P —_ ÷. = n = -

以上四道题 目, 内容各有不 同 , 在 解答 时都采 用 了 虽 但 同 一种 放 法 —— 插 空 法 .
;×A5
^7
詈÷ ・
方 法 四 只 考 虑 第 4次 摸 出 的 球 的 每 一 种 可 能 作 为 基 本 事 件 , 么 基 本 事 件 总数 为 n: 那 3十5=8 而 摸 出 红 球 的基 ,

解 题 技 巧 与 方 法




.I _ ., .


题 臆
◎ 马俊 杰 ( 武威 二 中 730 ) 30 0
28 8 0种 排 法 .

插法 , 右端 插入 , 有 A 从 也 种 插 法 , 以 共 有 2×A 所 ×A =
【 要 】 高 中数 学 教 学 中 贯 彻 “ 题 多 解 ” “ 题 一 摘 在 一 与 多
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学解题之一题多解与多题一解浅谈一题多解培养学生发散思维摘要本文意在明确一题多解中学生思维能力的发展,从而使教师在数学解题教学过程屮更加重视解题方法对学生思维和发散思维的培养。

本文通过两道典型例题对一题多解型的讲解,通过不同的例题可以达到对学生思维能力的训练培养的目的。

通过一题多解,可以开阔学生思路、发散学生思维,让学生学会多角度分析和解决问题;对一题多解灵活运用,对培养学生发散思维,启发学生独立思考具有较好的指导意义。

关键词:一题多解发散思维思维能力一题多解对学生思维能力的培养同一数学问题用不同的数学方法可以达到异曲同工之效,我们称之为“一题多解”。

其特点就是对同一个问题从不同的角度、不同的结构形式、不同的思维方式去解答同一个问题。

一题多解能快速整合所学知识,重要的是培养学生细致的观察力、丰富的联想力和独立思考、解决问题的能力。

(-)提高分析、解决问题的能力•题多解,能够使学生开阔思维,把学过的知识和方法融合在•起,提高学生分析问题和解决问题的能力,培养学生独立思考的能力。

例1.甲乙两地相距450千米。

客车和货车同时从两地相向而行,客车行完全程需10小时,货车行完全程需15小时,相遇时两车各行多少千米?解法一:用路程问题的解法。

根据速度二路程÷时间可以求出客车的速度为450÷10二45(千米/小时),货车的速度为450÷15二30 (千米/小时)。

(1)几小时后两车相遇:450÷(45+30)二6 (小时)(2)相遇时客车行了多少千米:45X6二270(千米)(3)相遇时货车行了多少千米:30X6二180(千米)解法二:用比例分配的方法。

两车所需的时间之比是:10:15,根据距离一定,速度与时间成反比例关系进行解答。

(1)两车所需的时间之比是:10:15=2:3所以两车速度之比是:3:2(2)两车运行时间相同,所以路程与速度成正比例,即两车行驶路程之比是:3:23(3)相遇时客车行了多少千米:450×(- )=270(千米)52(4)相遇时货车行了多少千米:450×(- )=180(千米)^ 5答:相遇时客车行了270千米,货车行了180千米。

解法三:工程问题的方法解决客车行完全程要10小时,每小时行全程的1/10货车行完全程需15小时,每小时行全程的1/15相遇时间为:1÷(1/10 + 1/15) =6 (小时)6小时客车行了全程的:6X1/10=3/5所以客车行了: 450X3/5 = 270 (千米)所以货车行了:450-270 = 180 (千米)...?解法一:求出两车相遇时间,进而求出相遇时两车各自的行驶路程,这种方法是处理类似行问题最为i般的方法,也是最为普遍的解决方法,是解决更为复杂的工程问题的基础。

而解法二是通过对公式路程二速度X时间的灵活运用,只需求出两车的速度之比,进而运用比例对两车各自的行程进行分配,可以说是对公式的升华。

解法三用工程问题来解决,直接把路程看做1,通过效率来解决问题。

(-)提高多角度分析能力一题多解可以培养学生灵活、敏捷的思维能力,让学生学会对问题进行多角度、多层次的分析,达到对问题的全面理解,进而迅速准确的解决问题。

例2.6人站成一排,若甲不能站排头,乙不能站排尾,则不同的站法有多少种?解法二:甲在尾粧二120甲不在未(自然也不在头)二4x4x24二384共:A; + C:C:A:二120+384二504解法二:分析:设6人为ABCDEF甲不在A处,如甲占F位,则乙可在ABCDE, 5处任占一位,其它4人可在余下的4处各占一位,即:5×4×3×2×l=120;如甲在BCDE, 4处任占一位,则乙只能在BCDE除去一位或A共4处任占一位,其它4人可在余下的4处各占一位,即:4×4×4×3×2× 1 二384;所以一共有120+384二504 (种)站法。

5×4×3×2×l+4×4×4×3×2× 1=504答:共有504种站法。

解法三:(1)甲站排尾,乙有5种站法(2)甲站屮间的4个空有4种站法,乙除了甲站的空和排尾还有的空还有4种站法,共4×4=16种(3)甲乙共有5+16=21种站法(4)剩余4人共有4×3×2×1=24种站法(5)所以共有21x24二504种站法解法四:所有可能的排法有:A: =6!=720再考虑特殊情况.甲在排头,乙在排尾的可能减去即可.(1)甲在排头,乙不在排尾有4x∕√二4x4!二96(2)甲不在排头,乙在排尾有4×二4x4!二96(3)甲在排头,乙在排尾有二4!二24所以甲不能站排头,乙不能站排尾排法有720-96-96-24=5046!-5!-5!+4!=504解法五:若甲站排尾,则剩下的五人可以全排列,即5!二120.甲还可排在第二.三.四.五.5位,乙可排在第一.二.三.四.五。

5位,剩下四人全排列4!,即4×5×4!=480,所以答案为120+480=600A二{6个人站一排的站法}, B二{甲站排头}, C二{乙站排尾}D二{甲不能站排头,乙不能站排尾},则A有6!, B, C各有5!,BnC共有4!D=A-B-C+β∩C, D 共有6!-5!-5!+4!二504。

五种解法中,第一种解法最为直接,即通过题干的条件一一进行确定,先确定甲不站排头,再确定乙不站排尾,最后再确定其他人位置,进而得出结果,调理清楚,顺理成章;第二种解法是对第一种解法的抽彖;第三种解法与前两种从人员分配入手的解法不同,该解法从位置角度入手,分别确定排头、排尾的三类站法,进而相加求出结果;第四种解法采取逆向思维,先不考虑题干具体要求,求出站法总数,然后再依据要求一一进行排除;解法五是用集合的思想入手,找出题目屮的限制条件,从而得出结论。

(三)培养发散思维及联想能力通过一题多解的训练,可以培养学生的发散性思维及联想能力,学会用不同的知识解决同一个问题,达到对多种知识的融会贯通。

例3.1 2- 1已知;a>O,b>O,a〃,求"的最小值。

解法一:利用不等关系1+Z>2.,∑•• « > 0√? > O, a b ∖ab•,1 _2 _ 1∙∙∙"≥8(当且仅当:丁㊁,即Q = 2,b = 4时取“二”号),.∙. ab的最小值是8o解法二:平方法ι+a=Ia >0,b> 0, ab ,1 2 , 1 4 4 C I 4 4 8(——I——)■ = 1 - 1 ≥ 2 ,------ 1 - =——.∙.1 二G b a2b2ab ~ ∖a1b1Ub ab(当且仅当1 _2_ 1 U = b = 2,即α = 2,b = 4 时取“二”号)O••• ”的最小值是8。

解法三:利用三角怛等关系换元cos2α∙sin2α sin22α(当且仅当- =Z r 二2 ,即a=2, b二4a b时取“二”号)。

G〃的最小值是8o解法四:均值换元:.ab l-4t2≥8j ( Vl-4r2∈(0, 1],当I-"二1,即r = 0, = 2C = 4 时,取“二”号)解法五:导数求最值G-I O2a22a(a - 2)令?(√∕)二荷(">l ・・・?" W)二(-L。

令?" W)二0,解得—= COS a1 2—I——• ∙ G>0">0, a b• ∙ α>O,b>O, a b• ∙ α>0">0, a ba = 2> I o当"(1,2)时,?" W)〈0,此时?(“)是减函数,当心(2, +8)时,?" W)〉0,此时?(")是增函数。

2×21.・・当“>1时,/⑺射、伯二/S)极小位二?(2)二2T二8。

(此时a = 2、b = 4 )五种解法,第一种利用不等关系求解,是解决类似问题最先想到的方法,也是最直接的解法;第二种的平方法,目的是通过对已知条件进行操作使Z出现所求的量,进而求解;第三、第四种都属于换元法,通过三角换元和均值换元,将所求的量变形为一元关系,即加或t的关系,进而求解;最后一种解法是通过导数求出函数单调性,进而求出最值,得出结果。

从知识面的角度来讲,这一道题目的五种解法,至少包含了五方面的知识,这不仅丰富了解法,同时也使一些知识点得到了充分的展示,更体现了数学知识的前后连贯性。

这种多知识点的解法,让学生真正体会到了数学的魅力,更深刻的理解了“条条大路通罗马”的寓意,对培养学生的发散思维能力起到了积极的影响作用。

参考文献:王平,组织一题多解,培养学生发散思维,雁北十分学院学报,2001年第17卷第6期.2、贾凤梅,屮学数学教学要注重培养学生的数学思维能力,教育理论与实践,2009年第29卷.3、杨玉东,徐文彬,数学解题中划归过程的心理学分析,浙江师范大学学报,2003年第26卷第3期.4、张宏,从一道试题的多解性看思维的探究策略,屮学数学研究,2004年第2期.5、董雪君,一题多解与发散性思维,滨州师专学报,1993年第9卷第2, 4期.6、张水芳,运用一题多解教学法发展学生创造性思维能力, 宜春学院学报,2008年第30卷.7、彭家寅,卿利,深入数学本质培养发散思维,内江师范学院学报,2002年第17卷第2期.。

相关文档
最新文档