沉降计算例题(试题学习)
化工原理-沉降-选择题(含答案解析)

1、含尘气体中的尘粒称为( )。
A. 连续相;B. 分散相;C. 非均相。
答案:B2、自由沉降的意思是_______。
A 、颗粒在沉降过程中受到的流体阻力可忽略不计B 、颗粒开始的降落速度为零,没有附加一个初始速度C 、颗粒在降落的方向上只受重力作用,没有离心力等的作用D 、颗粒间不发生碰撞或接触的情况下的沉降过程答案: D3、在长为L ,高为H 的降尘室中,颗粒的沉降速度为u T m/s ,气体通过降尘室的水平流速为u m/s ,则颗粒能在降尘室内分离的条件是:____。
A 、 L/u <H/uTB 、 L/uT <H/uC 、 L/uT ≥H/uD 、L/u ≥H/uT答案: D4、欲提高降尘宝的生产能力,主要的措施是 。
A. 提高降尘宝的高度;B. 延长沉降时间;C. 增大沉降面积答案:C5为使离心机有较大的分离因数和保证转鼓有关足够的机械强度,应采用 的转鼓。
A. 高转速、大直径;B. 高转速、小直径;C. 低转速、大直径;D. 低转速,小直径;答案:B6、有一含尘气流,尘粒的平均直径在20~70μm ,现要达到较好的除尘效果,可采A. 降尘室;B. 旋风分离器;C. 湿法除尘;D. 袋滤器答案:b7、旋风分离器的临界粒径是指能完全分离出来的 粒径。
A. 最小;B. 最大;C. 平均;答案:A8、长3m 、宽2.4m 、高2m 的降尘室与锅炉烟气排出口相接。
操作条件下,锅炉烟气量为m 35.2,气体密度为3720.0m kg ,黏度为s Pa •⨯-5106.2,灰尘可看作球型颗粒,密度为32200m kg 。
计算:(1)则能被完全分离出去的颗粒的临界直径= μm 。
A 、86.8B 、91.8C 、72.3D 、69.1答案:A9、长3m 、宽2.4m 、高2m 的降尘室与锅炉烟气排出口相接。
操作条件下,锅炉烟气量为s m 35.2,气体密度为3720.0m kg ,黏度为s Pa •⨯-5106.2,灰尘可看作球型颗粒,密度为32200m kg 。
向分层总和法计算基础中点最终沉降量案例

单向分层总和法计算基础中点最终沉降量已知柱下单独方形基础,基础底面尺寸为2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。
试用单向分层总和法计算基础中点最终沉降量。
解:按单向分层总和法计算(1)计算地基土的自重应力。
z自基底标高起算。
当z=0m,σsD=19.5×2=39(kPa)z=1m,σsz1=39+19.5×1=58.5(kPa)z=2m,σ=58.5+20×1=78.5(kPa)sz1z=3m,σ=78.5+20×1=98.5(kPa)sz1z=4m,σ=98.5+(20-10)×1=108.5(kPa)sz1z=5m,σ=108.5+(20-10)×1=118.5(kPa)sz1z=6m,σ=118.5+18.5×1=137(kPa)sz1z=7m,σ=137+18.5×1=155.5(kPa)sz1=20kN/m3。
(2)基底压力计算。
基础底面以上,基础与填土的混合容重取γ(3)基底附加压力计算。
(4)基础中点下地基中竖向附加应力计算。
用角点法计算,L/B=1,σzi=4K si·p0,查附加应力系数表得K si。
(5)确定沉降计算深度z n考虑第③层土压缩性比第②层土大,经计算后确定z n=7m,见下表。
例题4-1计算表格1z (m)zB/2Ksσz(kPa)σsz(kPa)σz/σsz(%)zn(m)0 1 2 3 4 5 6 70.81.62.43.24.04.85.60.250 00.199 90.112 30.064 20.040 10.027 00.019 30.014 8201160.790.2951.6232.2421.7115.5211.903958.578.598.8108.5118.5137155.529.7118.3211.337.6按7m计(6)计算基础中点最终沉降量。
沉降例题

一、选择选题(单选)1.在滞流区颗粒的沉降速度正比于()。
D(A)(ρs-ρ)的1/2次方(B)μ的零次方(C)粒子直径的0.5次方(D)粒子直径的平方2.自由沉降的意思是()。
D(A)颗粒在沉降过程中受到的流体阻力可忽略不计(B)颗粒开始的降落速度为零,没有附加一个初始速度(C)颗粒在降落的方向上只受重力作用,没有离心力等的作用(D)颗粒间不发生碰撞或接触的情况下的沉降过程3.颗粒的沉降速度不是指()。
B(A)等速运动段的颗粒降落的速度(B)加速运动段任一时刻颗粒的降落速度(C)加速运动段结束时颗粒的降落速度(D)净重力(重力减去浮力)与流体阻力平衡时颗粒的降落速度4.回转真空过滤机洗涤速率与最终过滤速率之比为()。
A(A) l (B)1/2 (C) 1/4 (D)1/35.以下说法是正确的()。
A(A)过滤速率与A(过滤面积)成正比(B)过滤速率与A2成正比(C)过滤速率与滤液体积成正比(D)过滤速率与滤布阻力成反比6.叶滤机洗涤速率与最终过滤速率的比值为()。
D(A) 1/2 (B)1/4 (C) 1/3 (D) l7.过滤介质阻力忽略不计,滤饼不可压缩进行恒速过滤,如滤液量增大一倍,则( C )。
(A)操作压差增大至原来的倍(B)操作压差增大至原来的4倍(C)操作压差增大至原来的2倍(D)操作压差保持不变8.恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量(C )。
(A)增大至原来的2倍(B)增大至原来的4倍(C)增大至原来的2倍(D)增大至原来的1.5倍9.以下过滤机是连续式过滤机()。
C(A)箱式叶滤机(B)真空叶滤机(C)回转真空过滤机(D)板框压滤机10.过滤推动力一般是指()。
B(A)过滤介质两边的压差(B)过滤介质与滤饼构成的过滤层两边的压差(C)滤饼两面的压差(D)液体进出过滤机的压差11.板框压滤机中,最终的过滤速率是洗涤速率的()。
C(A)一倍(B)一半(C)四倍(D)四分之一12.助滤剂应具有以下性质()。
地基沉降计算试题集

地基沉降计算一、填空1、前期固结压力大于现有自重应力的土称为土。
2、某土在压力为100kPa,200kPa时对应的孔隙比分别为0.85和0.82,则该土的压缩性。
3、饱和土体渗流固结完成的条件是土中孔隙水应力,或有效应力。
4、饱和土体在荷载作用下,孔隙中自由水随时间缓慢,体积逐渐的过程,称为土的固结。
5、在饱和土体的渗流固结理论中假定土中水和土粒。
6、饱和土的渗透固结过程中应力消散,应力增加。
7、在饱和土体的渗流固结理论中假定土中水的渗流服从。
8、根据OCR的大小可把粘性土分为_________ 、__________和__________三类。
9、土的压缩试验是在___________条件下完成的。
压缩系数反映了________。
10、在应力历史上地基土所经受的最大有效应力称为________。
11、前期固结压力与现有的自重应力的比值称为________。
12、饱和土体在荷载作用下,孔隙中的水逐渐被排出,土的体积逐渐被压缩的过程称为________。
二、单项选择1、室内压缩试验中,完全侧限意味着()A.水的体积不变B.土样的体积不变C.土颗粒不变D.土样的横载面不变2、下列土中,压缩曲线最平缓的是()A.杂质土B.淤泥C.淤泥质土D. 密实砂土3、室内压缩试验采用的仪器为()A.直剪仪B.固结仪C.液限仪D.十字板剪力仪4、基础最终沉降量包括()A.主固结沉降B.瞬时沉降C.次固结沉降D.以上三者5、其他条件相同时,单面排水所需固结时间是双面排水的()A.0.5倍B.1倍C.2倍D.4倍6、室内压缩曲线越陡土的()A.压缩模量越大B.压缩系数越小C.压缩指数越小D.压缩性越高7、关于分层总和法计算基础最终沉降量描述不正确的是()A.假定地基土仅有竖向变形B.按基础中心点下的附加应力计算C.考虑了地基基础的协同作用D.一般情况下取附加应力与自至应力之比为20%的点处8、土的固结程度越大,土的()A.强度越高B.强度越低C.压缩性越低D.A和C9、土的压缩性随应力水平的增加而()。
沉降及固结计算题

e=0.55.求该土层的压缩量.
若沉降稳定后,又加盖2层,在土中增加的平均附加应力为50 kPa,求由此引起的沉降量.
0.0m -2.0m
-5.0m
砂 γ=19kN/m3 γ,=9kN/m3
γ,=10kN/m3 粘土
-15.0m 基岩
100kN/m2
e0
A
B
0.42e0 115
C 心部位的孔隙比:0.726 粘土层中下一层中心部位的孔隙比:0.623
• 某正常固结土层厚2.0m,平均自重应力为 100kPa,压缩实验数据如下:建筑物平均附 应力为200kPa,该土层的最终沉降量为多 12.91cm
压力 kPa
孔隙 比e
0
50 100 200 300 400
0.984 0.900 0.828 0.752 0.710 0.680
• 某方形基础,边长为4.0m,基础埋深为2m,地 面以上荷载F=4720kN,地基表层为细砂, γ1=17.5kN/m3,ES1=8.0MPa,厚度为6.0m, 第二层为粉质粘土, ES2=3.33MPa ,厚度为 3.0m,第三层为碎石, 厚度为4.5m, ES3=22MPa,用分层总和法计算粉质粘土层 的沉降量.
平均附加应力σz =200kPa,试问这种情况 该土层的最终变形为多少?
P0+ σz > Pc S=H/(1+e0)(CSlg(Pc/P0)+CClg((P0+ σz )/Pc)=16.05cm S2=H/(1+e0)(CSlg((P0+ σz )/P0)=5.61cm
桩基沉降计算例题

单桩、单排桩、桩中心距大于6倍桩径的疏桩基础的沉降计算例题(JGJ94-2007 5.5.14条和附录F)3.87某高层为框架-核心筒结构,基础埋深26m(7层地下室),核心筒采用桩筏基础。
外围框架采用复合桩基,基桩直径1.0 m,桩长15 m,混凝土强度等级C25,桩端持力层为卵石层,单桩承载力特征值为R a= 5200 kN ,其中端承力特征值为2080kN,梁板式筏形承台,筏板厚度h b=1.2 m,梁宽b l=2.0 m,梁高 h l=2.2 m(包括筏板厚度),承台地基土承载力特征值f ak=360kP a,土层分布:0~26 m土层平均重度=18 kN/m3;26m~27.93 m为中沙⑦1,=16.9kN/m3; 27.93m~32.33 m 为卵石⑦层,=19.8kN/m3,E S=150MP a; 32.33m~38.73m为粘土⑧层,=18.5kN/m3,E S=18Mp a; 38.73m~40.53 m为细砂⑨1层,=16.5kN/m 3,ES=75MP a; 40.53m~45.43 m为卵石⑨层,=20kN/m3,E S=150MP a; 45.43m~48.03 m为粉质粘土⑩层,=18kN/m3,E S=18MP a; 48.03m~53.13 m为细中砂⒀层,=16.5kN/m3,E S=75MP a;桩平面位置如图3—61,单柱荷载效应标准值F K=19300 kN,准永久值F=17400 kN。
试计算0±1桩的最终沉降量。
图3—61基础平面和土层剖面图解:1 按5.2.5条计算基桩所对应的承台底净面积A C:A C=(A-nA PS)/nA为1/2柱间距和悬臂边(2.5倍筏板厚度)所围成的承台计算域面积(图3-61),A=9.07.5 m=67.5㎡ ,在此承台计算域A内的桩数n=3,桩身截面积A ps=0 .785㎡,所以A C=(67.5-30.785)/3=65.14/3=21.7㎡2 按已知的梁板式筏形承台尺寸计算单桩分担的承台自重G K:G K=(67.5 1.2+92 1.0+(3.5+2)2 1.0)24.5/3 =106⨯24.5/3=866 kN(898)3 计算复合基桩的承载力特征值R ,验算单桩竖向承载力:为从表5.2.5查承台效应系数ηc ,需要s a/d和B c/l,故先计算桩距桩距/按表5.2.5 内插得:0.27考虑承台效应的复合基桩竖向承载力特征值R 及荷载应 标准组合轴心竖向力作用下,复合基桩的平均竖向力N k :52000.2736021.7520021093193003866 满足要求4 沉降计算,采用荷载效应准永久值组合.31740038666666kN 承台底土压力21.7(若根据5.5.14 条按取值:=0.27360应该说这两种取值方法都不尽合理,此处用67.6kP a ) 5 0#桩的沉降按公式(5.5.14-2、3、4、5)计算:1uzci k i ck k p σα==∑在荷载效应准永久组合作用下,桩顶的附加荷载:6666kN j Q =第j 桩总桩端阻力与桩顶荷载之比:以0# 桩为圆心、以0#桩的沉降有0.60.6159.0l m =⨯=,在此范围内有9根桩分别为1#和1`桩(n 1= =0.2);2#桩(n 2=0.25);3#、3′桩(n 3=0.44);4#、4′桩(n 4=0.41)和5#、5′桩(n 5=0.6)。
3-2地基沉降典型范例

3 地基应力和沉降典型范例【例3-1】有一矩形基础放置在均质粘性土层上,如图所示。
基础长度l=10m,宽度b=5m,埋置深度d=1.5m,其上作用着中心荷载P=10000kN。
地基土的天然湿重度为20kN/m3,土的压缩曲线如图所示。
若地下水位距基底2.5m,试求基础中心点的沉降量。
【解题思路】本例题是典型的利用现有地基沉降量计算规范法计算建筑物地基沉降的算例,在计算中主要把握好规范法计算各个步骤,计算公式应用正确。
具体步骤可以见教材说明。
【解答】(1)基底附加压力由l/b=10/5=2<10可知,属于空间问题,且为中心荷载,所以基底压力为基底净压力为(2)对地基分层因为是均质土,且地下水位在基底以下2.5m处,取分层厚度H i=2.5m。
(3)各分界层面的自重应力计算(注意:从地面算起)根据分界层面上自重应力,绘制自重应力分布曲线,如图所示。
(4)各分界层面的附加应力计算该基础为矩形,属空间问题,故应用“角点法”求解。
为此,通过中心点将基底划分为4块相等的计算面积,每块的长度l1=5m,宽度b1=2.5m。
中心点正好在4块计算面积的公共角点上,该点下任意深度z i处的附加应力为任一分块在该处引起的附加应力的4倍,计算结果如下表所示。
附加应力计算成果表 位 置 z i z i/b l/b Kc0 0 0 2 0.2500 170 1 2.5 1.0 2 0.1999 136 2 5.0 2.0 2 0.1202 82 3 7.5 3.0 2 0.0732 50 4 10.0 4.0 2 0.047432 512.55.020.032822根据分界层面上附加应力,绘制附加应力分布曲线,如图所示。
(5)确定压缩层厚度从计算结果可知,在第4点处有 ,所以,取压缩层厚度为10m 。
(6)计算各分层的平均自重应力和平均附加应力 (7)初始孔隙比和压缩稳定后的孔隙比层 次平均自重应力 (kPa ) 平均附加应力 (kPa ) 加荷后总的应力(kPa ) 初始孔隙比压缩稳定后的孔隙比Ⅰ 55 153 208 0.935 0.870 Ⅱ 94 109 203 0.915 0.870 Ⅲ 122 66 188 0.895 0.875 Ⅳ 150 41 191 0.885 0.873(8)计算地基的沉降量分别计算各分层的沉降量,然后累加即地基最终沉降量【例3-2】柱荷载F=1190kN,基础埋深d=1.5m,基础底面尺寸l×b=4m×2m;地基土层如图所示,试用《地基规范》方法计算该基础的最终沉降量。
压缩性与沉降计算例题

解:
1.计算最终沉降量:
s
1
e1
zi hi
i
0.25 103 1 0.8
24010 0.33(m)
2.计算固结度
U t
1
8 e
2 4
Tv
2
Tv
Cv H2
t
Cv
k(1 e1 )
w
Cv
k(1 e1)
w
0.02 (1 0.8) 0.25 10 3 10
Ut
1
8
2
e
2 4
Tv
60%
查表4-9 计算
6.计算发生20cm沉降所需时间
Tv
Cv H2
t20cm
14.4 102
t20cm
0.287
Tv 0.287 t20cm 2 years
固结计算例题-2
25
1.5
0.04
1.82
5.32
50
1.5
0.175
8.0
10.64
75
1.50.ຫໍສະໝຸດ 520.415.96
90
1.5
0.84
38.2
19.17
固 结 计 算 例 题
-3
固结计算例题-4
固结计算例题-5
固结计算例题-6
土中自重应力的分布形式
附加应力计算例题
附加应力计算例题
l b
基底附加压力计算例题
分层总和法计算例题-1
分层总和法计算例题-2
规范法计算例题-1
规范法计算例题-2
固结计算例题-1
例题:
设饱和粘土层的厚度为10m,其下为不透水的非压缩性坚硬岩层,地面上作 用均布荷载p=240kN/m2。该粘土层的物理力学性质如下:初始孔隙比 e0=0.8,压缩系数α=0.25MPa-1,渗透系数k=2.0cm/年。试问: 1.加荷一年后地面沉降是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地基沉降量计算
地基变形在其表面形成的垂直变形量称为建筑物的沉降量。
在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。
一、分层总和法计算地基最终沉降量
计算地基的最终沉降量,目前最常用的就是分层总和法。
(一)基本原理
该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。
地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有:
变换后得:
或
式中:S--地基最终沉降量(mm);
e
--地基受荷前(自重应力作用下)的孔隙比;
1
e
--地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比;
2
H--土层的厚度。
计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。
然后按式(4-9)或(4-10)计算各分层的沉降量S。
最后将各分层的沉降量总和起来即为地基的最终沉降量:
i
(二)计算步骤
1)划分土层
如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。
2)计算基底附加压力p0
3)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。
4)确定压缩层厚度
满足σz=0.2σsz的深度点可作为压缩层的下限;
对于软土则应满足σz=0.1σsz;
对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。
5)计算各分层加载前后的平均垂直应力
p
=σsz; p2=σsz+σz
1
6)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标
7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量
S
i
8)按公式(4-11)计算总沉降量S。