重庆大学高等数学Ⅱ课程试卷A201301及参考答案
重庆大学2020年春季学期课程作业高等数学(II-1)

函数的间断点是()。
A、oB、oC、oD、无间断点•收藏该题2、若,则的取值范围是()。
oA、oB、oC、oD、•收藏该题3、设, 当从变到时,函数的增量为( ) 。
•oA、oB、oC、oD、•收藏该题4、( ) 。
•oA、oB、oC、oD、•收藏该题5、曲线所围平面图形的面积为( )。
•oA、oB、oC、oD、•收藏该题6、d( )=•oA、oB、oC、oD、•收藏该题7、函数,则()。
oA、oB、1oC、oD、不存在•收藏该题8、函数在处的导数等于( )。
•oA、1oB、2oC、3oD、4•收藏该题9、是()的一个原函数。
oA、oB、oC、oD、•收藏该题10、当时,下列函数是无穷小是( )。
•oA、oB、oC、oD、•收藏该题11、( )oA、oB、不存在oC、1oD、•收藏该题12、( )。
•oA、-1oB、1oC、oD、不存在•收藏该题13、三次曲线在处取极大值,点是拐点,则()。
oA、oB、oC、oD、全部都错•收藏该题14、若,则()。
•oA、1oB、-1oC、oD、•收藏该题15、若函数f(x)在点x o可导,下列说法错误的是( )。
oA、函数f(x)在点x o左导数存在oB、函数f(x)在点x o右导数存在oC、函数f(x)在点x o左右导数均存在oD、函数f(x)在点x o可导与左右导数是否存在无关•收藏该题16、下列式子中,正确的是()。
•oA、oB、oC、oD、•收藏该题17、无穷多个无穷小量之和,则( )。
•oA、必是无穷小量oB、必是无穷大量oC、必是有界量oD、是无穷小,或是无穷大,或有可能是有界量•收藏该题18、=( )。
•oA、1oB、4oC、2oD、不存在•收藏该题19、下列函数在区间上单调减少的是()。
•oA、oB、oC、oD、•收藏该题20、判断函数的极值点应该判断()。
•oA、一阶导数为0的点和一阶导数不存在的点oB、二阶导数为0的点和二阶导数不存在的点oC、只判断一阶导数为0的点oD、只判断二阶导数为0的点•收藏该题21、区间[0,+∞)表示不等式( )。
重庆大学高数(工学下)期末试题一(含答案)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。
重庆大学高数(下)期末试题六(含答案) (自动保存的)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分)1. 设函数),(y x f 在曲线弧L上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ (),t αβ≤≤其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且22()()0,t t ϕψ''+≠则曲线积分(,)().L f x y ds =⎰(A)⎰βαψϕdt t t f ))(),(( (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22(C) ⎰αβψϕdt t t f ))(),(( (D) ⎰'+'βαψϕψϕdt t t t t f )()())(),((22知识点:对弧长曲线积分公式;难度等级:1 答案: D2. 设级数∑∞=1n n a 为一交错级数,则().(A)该级数必收敛 (B)该级数必发散(C)该级数可能收敛,也可能发散(D)若0(),n a n →→∞则必收敛知识点:级数收敛的判断;难度等级:1 答案: C3. 下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是().(A)0)()(=++'x q y x p y (B) 0)()(=+'+''y x q y x p y(C) ()()()y p x y q x y f x '''++= (D) ()()0y p x y q x '''++=知识点:线性微分方程的解的性质;难度等级:1答案 答案: B微答4. 设函数(,)F x y 可微,如果曲线积分(,)()C F x y xdx ydy +⎰与路径无关,则(,)F x y 应满足().(A)(,)(,)y x yF x y xF x y ''= (B)(,)(,)y x F x y F x y ''=命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密(C)(,)(,)yy xx yF x y xF x y ''''= (D)(,)(,)y x xF x y yF x y ''= 知识点:曲线积分与路径无关;难度等级:1;答案: D 分析: 由曲线积分与路径无关的条件,计算可得. 5. 设2222:,x y z R Ω++≤则⎰⎰⎰Ω+dxdydz y x )(22().=(A) 538R π (B) 534R π (C)5158R π (D) 51516R π 知识点:三重积分计算;难度等级:2;答案: C 6. 已知曲线)(x y y =经过原点且在原点处的切线与直线062=++y x平 行,而)(x y 满足微分方程250,y y y '''-+=则曲线的方程为=y().(A)x e x 2sin - (B) )2cos 2(sin x x e x -(C) )2sin 2(cos x x e x - (D)x e x 2sin知识点:二阶线性齐次微分方程的通解;难度等级:1;答案: A二、填空题(每小题3分,共18分)7. 设2,yzt xz u e dt =⎰则__________.uz ∂=∂知识点:多元函数的偏导数,变限函数求导;难度等级:1。
最新高等数学Ⅱ-1试卷A201201答案

重庆大学试卷 教务处07版 第 1 页 共 3 页重庆大学 高等数学11-1 课程试卷juanA卷B卷2011 ~2012学年 第 1学期 开课学院: 数学与统计 课程号:10019745考试日期: 20120109考试方式:开卷闭卷 其他 考试时间: 120分钟一、填空题(每小题2分,共10分)1.221x x y =+反函数为 2log 1y x y =-或2log 1xy x =-2.极限0limsin x x→= 1 3.摆线(sin ),(1cos )x a t t y a t =-=-在2t π=时的切线方程为 22ay x a π=-+4.若0()1f x '=,则000()()lim2h f x f x h h →--= 125.1ln x dx x +=⎰ 21(1ln )2x c ++或21ln ln 2x x c ++二、计算题(一)(每小题7分,共21分) 1.求函数()(1)xy x x =+的微分。
解:1ln ln(1)ln (ln )11x xy x x y x y y x y x x''=+⇒=+⇒=+++ 故(1)(ln )1xxdy x x dx x=+++2.设22()(1)x xf x x x -=-,判定函数()f x 的间断点为哪一类间断点。
解:22220000lim ()lim 1,lim ()lim 1(1)(1)x x x x x x x xf x f x x x x x ++--→→→→--====---- 故0x =为第一类(跳跃)间断点22111lim ()lim (1)2x x x x f x x x →→-==-,故1x =为()f x 的可去间断点。
2211lim ()lim (1)x x x x f x x x →-→--==∞--,故1x =-是()f x 的无穷间型间断点。
3.求由方程摆线0ye xy e +-=表示的曲线在(0,1)处的切线和法线方程。
2020年春季学期课程作业高等数学(II-1)第2次13616540-重庆大学网络教育学院-参考资料

重庆大学网络教育学院-2020年春季学期课程作业高等数学(II-1)第2次-参考资料
请认真阅读一下说明然后下载:题库有可能会换,不保证全部都有!请仔细核对是不是您需要的题目再下载!!!!
本文档的说明:如果题目顺序和你的试卷不一样,按CTRL+F在题库中逐一搜索每一道题的答案,预祝您取得好成绩百!
一、单项选择题 (共 30 题、63 / 90 分 )
1、
若,则的取值范围是()。
A、
B、
C、
D、
参考答案是:A
2、
骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。
A、
气温
B、
体温
C、
时间
D、
骆驼的体重
参考答案是:D
3、
在定义区间的最小值是()。
A、
B、
C、
1
D、
不存在
参考答案是:D
4、
曲线所围平面图形的面积为( )。
A、
B、。
重庆大学高数(下)期末试题二(含答案)

重庆大学《高等数学(工学类)》课程试卷第1页共1页重庆大学《高等数学(工学类)》课程试卷A卷B卷20 —20 学年第学期开课学院: 数统学院课程号: 考试日期:考试方式:开卷闭卷 其他考试时间: 120 分题号一二三四五六七八九十总分得分一、选择题(每小题3分,共18分)1. 设向量a与三轴正向夹角依次为,,,αβγ则当cos0β=时有().(A) a⊥xoy面(B) a//xoz面(C) a⊥yoz面(D) a xoz⊥面知识点:向量与坐标的位置关系,难度等级:1.答案: (B)分析:cos0,β=,2πβ=a垂直于y轴,a//xoz面.2. 若某个三阶常系数线性齐次微分方程的通解为212323,y C C x C x=++其中123,,C C C为独立的任意常数,则该方程为().(A)0y y'''+=(B) 30yy'''+'=(C)0y y'''-=(D) 0y'''=知识点:通过微分方程的通解求微分方程,难度等级:2.答案: (D)分析:由通解中的三个独立解21,,x x知,方程对应的特征方程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y'''=故应选(D).3. 设D由14122≤+≤yx确定.若1221,DI dx yσ=+⎰⎰222(),DI x y dσ=+⎰⎰223ln(),DI x y dσ=+⎰⎰则1,I2,I3I之间的大小顺序为().(A)321III<<(B)231III<<(C)132III<<(D)123III<<知识点:二重积分比较大小,难度等级:1.答案:(D)分析:积分区域D由22114x y≤+≤确定.在D内,2222221ln(),x y x yx y+<+<+故321.I I I<<只有D符合.4.设曲线L是由(,0)A a到(0,0)O的上半圆周22,x y ax+=则曲线积分命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密考试提示1.严禁随身携带通讯工具等电子设备参加考试;2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.(sin )(cos )().xx Ley my dx e y m dy -+-=⎰(A)0 (B)22m a π (C)28m a π (D)24m a π知识点:对坐标的曲线积分,格林公式,难度等级:2. 答案:(B)分析:补充直线段1:0(:0),L y x a =→则1L L +为封闭曲线在上使用格林公式可得12,2L L Dm mdxdy a π+==⎰⎰⎰而10.L =⎰选B.5. 已知向量23,a m n =+则垂直于a 且同时垂直于y 轴的单位向量().e =(A))i j k ++ (B))i j k -+ (C))2i k ±- (D)()2i k ±+知识点:向量垂直,单位向量,难度等级:1. 答案:(C) 分析:向量111010i j ki k =-+垂直于a 且同时垂直于y 轴,其模为6. 设∑为球面2222,x y z R ++=则22()().84x y I dS ∑=+=⎰⎰(A)24R π (B)545R π (C)24R π (D)R π4知识点:对面积的曲面积分,对称性,难度等级:2. 答案:(C)分析: 由于积分曲面关于三个坐标面对称,且满足轮换,故有2222224114()4.333x dS x y z dS R R R ππ∑∑=++=⋅=⎰⎰⎰⎰利用上述结论所求I 为23.8x dS ∑⎰⎰故选C.二、填空题(每小题3分,共18分)7. 幂级数21!n nn n x n ∞=∑的收敛半径为__________.知识点:幂级数收敛半径,难度等级:1. 答案分析:1`22222(1)(1)(1)!lim lim 1!n n n n n n n n n xn n x ex x n n x n ++→∞→∞+++==<⇒< 8. 由原点向平面引垂线,垂足的坐标是),,(c b a ,此平面的方程为__________.知识点:平面方程,难度等级:1.答案:23120.x y z -+-=分析:该平面的法向量为22350,x y z -+-=且过点22350,x y z -+-=则其平面的方程23120.x y z -+-=9. 设L 为椭圆221,34x y +=其周长记为,a 则求22(243)Lxy x y ds ++⎰__________.=知识点:对坐标的曲线积分,难度等级:1. 答案:12.a10. 设区域D 为222,x y R +≤则()DR y dxdy +⎰⎰__________.=知识点:二重积分的计算,对称性,难度等级:2. 答案:3.R π分析:所求几何体为一圆柱体被一平面劈开剩下部分,由几何形状知其为圆柱体体积一半,可得结果.或直接由被积函数奇偶分开,及积分区域对称立得. 11.3222(2cos )(12sin 3)__________,Lxy y x dx y x x y dy -+-+=⎰其中为抛物线22x y π=上由到的一段弧.知识点:对坐标的曲线积分,积分与路径无关,难度等级:2答案:2.4π解: 322cos ,P xy y x =-2212sin 3,Q y x x y =-+262cos .Q P xy y x x y∂∂⇒=-=∂∂ 3222(2cos )(12sin 3)L xy y x dx y x x y dy ⇒-+-+⎰与积分路径无关.⇒取L 为由(0,0),(,0),(,1)22ππ组成的折线,则2132222203(2cos )(12sin 3)0(12).44L xy y x dx y x x y dy y y dy ππ-+-+=+-+=⎰⎰12. 设∑为曲面2221x y z ++=的外侧,则333I x dydz y dzdx z dxdy∑=++⎰⎰__________.=知识点:对坐标的曲面积分,球坐标,难度等级:3. 答案:12.5π分析: 由高斯公式,2122240123()3sin .5I x y z dV d d r dr ππθϕϕΩ=++==⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题2(2)|1x ydy x y dxy ==+⎧⎨=⎩的解.知识点:齐次微分方程的初值问题,求解,难度等级:1. 分析:所给方程为齐次微分方程,作代换yu x=化为可分离变量的微分方程. 解:将方程改写为2.dy x y dx y+= 这是齐次方程.令,y xu =则.dy du u x dx dx=+ 代入上式得L (0,0))1,2(π21.du u xdx u+=+ 这是变量分离方程,且有(2)1(2).22y u ==积分得21ln |2|ln |1|0.33x u u C +-+++= 代入初值可解得32ln .2C =--故原方程的特解为213ln |2|ln |1|2ln 0.332y y x x x +-++--=14. 求级数11(4)!n n ∞=∑的和. 知识点:级数和,难度等级:3分析:利用级数之和,幂级数的逐项求导解: 0,.!nx n x e x R n ∞==∈∑(1),.!n nx n x e x R n ∞-=-⇒=∈∑20,.(2)!2n x xn x e e x R n -∞=+⇒=∈∑又 20(1)cos ,.(2)!n nn x x x R n ∞=-=∈∑ 40cos 2,.(4)!2x xn n e e x x x R n -∞=++⇒=∈∑ 111cos112.(4)!2n e e n -∞=++⇒=∑ 15. 计算222()L ydx xdy x y -+⎰,其中L 为圆周22(1)2,x y -+=L 的方向为逆时针方向.知识点:对坐标的曲线积分,积分与路径无关,取特殊路径;难度等级:3.分析:先注意积分与路径无关,后根据分母特点取特殊路径积分.解:当(,)(0,0)x y ≠时,22222.2()P x y Qy x y x∂-∂==∂+∂作小圆222:,C x y ε+=取逆时针方向,则222222222112.2()2()22L C Cx y ydx xdy ydx xdy ydx xdy dxdy x y x y επεε+≤--==-=-=-++⎰⎰⎰⎰⎰16. 求力(,,)F y z x =沿有向闭曲线L 所作的功,其中L 为平面1x y z ++=被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,顺时针方向.知识点:变力没曲线作功,难度等级:2.分析: 曲线积分的边界已为闭,用斯克斯公式,或化为平面曲线积分用格林公式.解: 用斯托克斯公式,取∑为平面1x y z ++=的下侧被L 所围的部分,∑1,1,1).--- 力F 所做的功为LW ydx zdy xdz =++⎰x y y z ∑---=∂∂∂∂⎰⎰3.2===⎰⎰四、解答题(每小题6分,共12分)17.设(),u yxf z =其中()f z 二阶可导,(,)z z x y =由方程2ln 10x y z +-+=所确定,求22.ux∂∂知识点:方程组的二阶偏导数,难度等级:2. 分析:()u yxf z =对x 求二阶偏导数得22,ux ∂∂但其中会包含z 对x 的二阶偏导数22zx ∂∂.2ln 10x y z +-+=两边对x两次求偏导数,可求出22zx∂∂.解:()(),u z yf z xyf z x x∂∂'=+∂∂ 222222()()()(),u z z zyf z xyf z xyf z x x x x∂∂∂∂''''=++∂∂∂∂221,1,z z x zz zz x x∂==∂∂∂==∂∂2222()()().uyzf z xyz f z xyzf z x∂''''=++∂ 18. 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.知识点:高斯公式,球面坐标,极坐标,难度等级3. 分析: 补充辅助面用高斯公式,再用球面坐标.解: 设222:,0x y a S z ⎧+≤⎨=⎩取下侧,则∑与S 围成的区域为,ΩS 在xoy 面的投影区域为.D 于是323232()()()SI x az dydz y ax dzdx z ay dxdy ∑+=+++++⎰⎰323232()()()Sx az dydz y ax dzdx z ay dxdy -+++++⎰⎰22223()Dx y z dv ay dxdy Ω=+++⎰⎰⎰⎰⎰222222203sin sin a a d d r r dr a d r rdr πππθϕϕθθ=⋅+⋅⎰⎰⎰⎰⎰555615429.20a a a πππ=+=五、 证明题(每小题6分,共12分)19. 证明:()()0()()().ay am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰知识点:二重积分交换积分次序,难度等级:1分析: 将二次积分化为定积分,注意到被积函数不含变量,y 先对y 积分,故将积分区域D 由y 型区域化为x 型区域计算可得证明结果证明: 积分区域为,0,{()0|},D x y y a x y =≤≤≤≤并且D 又可表示为,0,{(}.)|D x y x a x y a =≤≤≤≤ 所以()()()0()()()().ay a a am a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰20. 设在半平面0x >内有力3()kF xi yj ρ=-+构成力场,其中k 为常数,ρ=证明:在此力场中场力所作的功与所取路径无关. 知识点:变力沿曲线作功,难度等级:1 分析: 验证积分与路径无关. 证明 场力所作的功2232,()Lxdx ydyW k x y +=-+⎰其中L 为力场内任一闭曲线段.223222523;()()Q y xyx x x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 223222523.()()P x xy y y x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 可见,,P Qy x∂∂=∂∂且,P Q 在半平面0x >内有连续偏导数,所以0.W =即场力作用与路径无关.六、应用题 (每小题8分,共16分)21. 已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…,第n 年取出109n +万元,问a 至少为多少时,可以一直取下去?知识点:幂级数的和函数,难度等级:2解:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109).n n A r n -=++ 故1111110919102009.(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设1(),(1,1),n n S x nx x ∞==∈-∑ 则21()()(),(1,1).1(1)n n x x S x x x x x x x ∞=''===∈---∑所以11()()4201 1.05S S r ==+万元,故20094203980A =+⨯=万元,即至少应存入3980万元.22.按照牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比.已知空气温度为30,︒物体在15分钟内从100︒冷却到70︒时,求物体冷却到40︒时所需要的时间?知识点:微分方程数学模型,难度等级:2分析:根据冷却定律建立微分方程初值问题并求解. 解:设在时间t 时,物体的温度为.T C ︒ 根据冷却定律列出方程(30).dTk T dt=-- 分离变量,并积分得,30dTkdt T =-- ln(30)ln .T kt c -=-+故有0.3kt T ce -=+由初始条件:015|100,|70.t t T T ==== 代入可解得1770,ln ,154c k ==即有 17(ln )154.3070t T e-=+当40T =时,由上式可解得15ln 7527ln 4t ==(分).。
重庆大学高数(下)期末试题11(含答案)

重庆大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年 第 学期开课学院: 数统学院 课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分一、 选择题(每小题3分,共18分)1. 设,yu xy x =+则22u x ∂=∂__________.答案:32.y x难度等级:1;知识点:偏导数.2. 已知级数1nn n a x ∞=∑满足11lim ,3n n na a +→∞=且lim 2,n n n ab →∞=则级数1n n n b x ∞=∑的收敛半径为__________.答案:3.难度等级:2;知识点:幂级数分析:1111111limlim 2, 3.233n n n n n n n n n n b b a a R b a a b +++→∞→∞+==⨯⨯== 3. 若曲线上任一点(,)x y 处的切线斜率等于(1),yx-+且过点(2,1),则该曲线方程是__________.答案:14.2y x x =-+难度等级:2;知识点:一阶线性微分方程4. 设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)__________.Lxy y dx x x dy -+-=⎰答案:18.π-难度等级:2;知识点:格林公式分析:利用格林公式可化为被积函数为2-的二重积分,而积分区域面积为9,π故得.5. 设()f t 具有连续导数, (0)0,(0)1,f f '=={}2222(,,)|,x y z x y z t Ω=++≤则1lim40I f d t t V π==⎰⎰⎰+Ω→__________. 答案:1.命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密难度等级:2;知识点:三重积分6. 求以向量23a m n =+和4b m n =-为边的平行四边形的面积为 ,其中,m n 是互相垂直的单位向量. 答案:11.难度等级:2;知识点:向量代数.分析:为了便于计算,令,m i n j ==,则23a i j =+,4b i j =-,230(0,0,11),140i j ka b ⨯==--平行四边形的面积为20011a b ⨯=+=二、填空题(每小题3分,共18分)7. 设非零向量,,a b c 满足条件0a b c ++=,则a b ⨯().=(A) c b ⨯ (B) b c ⨯ (C) a c ⨯ (D) b a ⨯ 答案:(B).难度等级:1;知识点:向量代数分析:在0a b c ++=的两边左乘以b得到()0,b a b c b ⨯++=⨯0,b a b b b c ⨯+⨯+⨯=即0.a b b c -⨯+⨯=于是.a b b c ⨯=⨯8. 设函数z f x y =(,)在点(,)x y 00处沿任何方向有方向导数,则z f x y =(,)在点(,)x y 00处().(A)偏导数存在(B)可微 (C)偏导数不一定存在 (D)偏导数连续 答案:(C).难度等级:2;知识点:偏导数与方向导数分析:函数z =(0,0)处沿任何方向的方向导数均为1,但偏导数不存在,所以应选(C).9. 微分方程22x y y '''=的通解是().(A)1221ln(1)C x y x C C -=--+ (B) 1211ln(1)C x x y C C C -=--+ (C)12211ln(1)C x x y C C C -=-+ (D) 12211ln(1)C x x y C C C -=--+ 答案: (D).难度等级:2;知识点:可降阶微分方程分析:方程为二阶非线性方程.令,u y '=则方程降为一阶方程22,x u u '=这是变量可分离方程.分离变量得22,du dxu x=积分得111.C u x =+将u y '=代入并积分可得12211,ln(1)C x x y C C C -=--+故应选(D).10.曲线2,x t y z t ===在点(4,8,16)处的法平面方程为().(A) 8132x y z --=- (B) 8140x y z ++= (C)x-y+8z=124 (D) 8116x y z +-=答案:(B).难度等级:1;知识点:多元微分学在几何上的应用 分析:法平面的法向量就是曲线的切向量,为(1,1,8),n =所以法平面方程为:(4)(8)8(16)0.x y z -+-+-=即 8140.x y z ++= 与(A)、(B)、(C)、(D)比较后知,应选B).11. 设有一分布非均匀的曲面,∑其面密度为(,,),x y z ρ则曲面∑对x 轴的转动惯量为().(A)xdS ∑⎰⎰ (B)(,,)x x y z dS ρ∑⎰⎰(C)2x dS ∑⎰⎰ (D)22()(,,)y z x y z dS ρ∑+⎰⎰答案:(D).难度等级:1;知识点:曲面积分的应用分析:A,C 明显不对,B 被积函数不对,D 是转动惯量. 12. 设流速场{0,0,1},v =则流过球面2222x y z R ++=的流量值为().(A)0 (B)24R π (C)334R π (D)1 答案:(A).难度等级:2;知识点:第二型曲面积分的应用.分析:通量00.dxdy dV ∑ΩΦ===⎰⎰⎰⎰⎰三、 计算题(每小题6分,共24分)13. 求微分方程3dy y dx x y =+的通解. 难度等级:2;知识点:一阶线性微分方程.分析 方程为一阶非线性方程,需变形为一阶线性方程求解.解 方程改写为21dx x y dy y-=, 这是关于()x x y =的一阶线性非齐次方程,故通解为2()dydyyyx ey edy C -⎰⎰=+⎰ 21()2y y C =+即32y x Cy =+.14. 设(,)z z x y =由方程(,)0f y x yz -=所确定,其中f 具有二阶连续偏导数,求22zx∂∂.难度等级:2;知识点:隐函数的高阶偏导数. 分析 由方程(,,)0F x y z =所确定的隐函数的偏导数xzFz x F ∂=-∂,求出zx∂∂后再对x 求偏导数即可得22z x ∂∂.解11221f f z x yf y f -∂=-=∂ 21112221221222()()1z zf yf f f yf f z x x x y f ∂∂-+--+∂∂∂=⋅∂ 211121221232222f f f f fyf yf yf=-+-15.将函数()ln(f x x =+展成关于x 的幂级数. 难度等级:2;知识点:函数展开成幂级数分析:有对数,反三角函数需要求导后展开,然后逐项积分解:()f x '====0(21)!!(1).(2)!!n nn n x n ∞=-=-∑20(21)!!(),.(2)!!n n n f x x x R n ∞=-'⇒==∈∑ 21(21)!!()(1),.(2)!!21n knn n x f x dx x R n n +∞=-'⇒=-∈+∑⎰21(21)!!()(1),.(21)(2)!!nn n n f x x x R n n ∞+=-⇒=-∈+∑16. 计算2232(()(2),xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰其中∑为上半球体0z ≤≤表面的外侧.难度等级:2;知识点:高斯公式分析:题设曲面为封闭曲面,利用高斯公式,再用球面坐标化为三次积分.解: 2232(()(2)xz dydz x y z dzdx xy y z dxdy ∑+-++⎰⎰222()x y z dxdydz Ω=++⎰⎰⎰222205sin 2.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17. 设),(y x z z =是由0182106222=+--+-z yz y xy x 确定的函数,求函数),(y x z z =的极值点和极值.难度等级:3;知识点:多元函数极值解:方程0182106222=+--+-z yz y xy x 两边分别对,x y 求偏导数得到26220,(1)6202220.(2)x x y y x y yz zz x y z yz zz ---=⎧⎪⎨-+---=⎪⎩令00x yz z =⎧⎪⎨=⎪⎩得260,62020x y x y z -=⎧⎨-+-=⎩即3.x yz y =⎧⎨=⎩ 代入方程0182106222=+--+-z yz y xy x 得 3.y =±因此有两个驻点(9,3),(9,3).--相应的函数值为3, 3.-方程(1),(2)两边再次分别对,x y 求偏导数得到22222()20(3)622220(4)20422()20.(5)xx x xxx xy y x xy y yy y yy yz z zz z yz z z zz z yz z zz ⎧---=⎪⎪-----=⎨⎪----=⎪⎩将9,3,3,0,0x y x y z z z =====代入(3),(4),(5)得到21150,,,0.623xx xy yy A z B z C z AC B ==>==-==->故点(9,3)是(,)z z x y =的极小值点,极小值(9,3) 3.z = 同样将9,3,3,0,0x y x y z z z =-=-=-==代入(3),(4),(5)得到 21150,,,0.623xx xy yy A z B z C z AC B ==-<====--> 故点(9,3)--是(,)z z x y =的极大值点,极大值(9,3) 3.z --=-18. 计算23,ydx xzdy yz dz Γ-+⎰其中Γ为圆周222, 2.x y z z +==若从z 轴的正向看去,这圆周是取逆时针方向.难度等级:2,知识点:斯托克斯公式,曲面积分的概念,二重积分的性质分析:曲线的参数方程不易写出,积分路径为闭,用斯托克斯公式化为对面积的曲面积分.解:取∑为平面2z =被Γ所围成的部分的上侧,∑的法线向量为(0,0,1),n =其方向余弦为(cos ,cos ,cos )(0,0,1).αβγ=于是23ydx xzdy yz dz Γ-+⎰2cos cos cos 3(3)dS x y z yxzyzz dSαβγ∑∑∂∂∂=∂∂∂-=--⎰⎰⎰⎰ 2245520.x y dSdxdy π∑+≤=-=-=-⎰⎰⎰⎰五、证明题(每小题6分,共12分)19. 证明下列第二类曲线积分的估计式: .L xdx ydy LM +≤⎰其中L 为积分路径L 的弧长,M 为函数22y x +在L 上最大值.难度等级:3;知识点:第二类曲线积分分析:将题设积分转化为对弧长的积分,再进行估值,并注意将被积函数表成向量的点积.证明:设路径L 上的单位切向量为(cos ,sin ).αα利用两类曲线积分的联系可得(cos sin )LL xdx ydyx y dsαα+=+⎰⎰cos sin {,}{cos ,sin }LLx y ds x y dsαααα≤+=⋅⎰⎰.LMdsML =≤=⎰⎰20. 设函数)(0x f 在),(+∞-∞内连续,10()(),1,2,.xn n f x f t dt n -==⎰证明:(1)1001()()(),1,2,;(1)!xn n f x f t x t dt n n -=-=-⎰ (2)对于区间),(+∞-∞内的任意固定的,x 级数()∑∞=1n n x f 绝对收敛.难度等级:3;知识点:无穷级数 证明:(1)由函数)(0x f 在),(+∞-∞内连续,1011000()(),1,2,()();(0)lim ()0,,(0)0(2).xn n nn xk x f x f t dt n f x f x f f t dt f k --→=='=⎧⎪⇒⎨===≥⎪⎩⎰⎰11()()(1)!xn f t x t dt n -⇒--⎰ 1101()()(1)!xn x t df t n -=--⎰ 1110102101(()()()())(1)!1()()(2)!xn x n xn x t f t f t d x t n f t x t dt n ---=----=--⎰⎰().n f x ==(2) 函数0()f t 在t x ≤上连续,⇒存在0()0,,()().M x t x f t M x >∀≤≤由(1),1001001()()()(1)!1()()()(1)!xn n xn n f x f t x t dt n f x f t x t dt n --=--⇒=--⎰⎰10()()()().(1)!!n xn n M x x M x f x x t dt n n -⇒≤-=-⎰ 由于0()!nn M x x n ∞=∑收敛,故级数()∑∞=1n n x f 绝对收敛.六、应用题 (每小题8分,共16分)21. 设均匀柱体密度为,ρ占有闭区域222,,{()|,0,}x y z x y R z h Ω=+≤≤≤ 求它对于位于点00,0(),)(M a a h >处单位质量的质点的引力. 分析:由空间物体引力公式和对称性,利用直角坐标计算即可 解:由柱体的对称性可知, 沿x 轴与y 轴方向的分力互相抵消, 故0,x y F F ==而 2223/2[()]z z aF G dv x y z a ρΩ-=++-⎰⎰⎰2222223/20()[()]hx y R dxdyG z a dzx y z a ρ+≤=-++-⎰⎰⎰ 2223/2000()[()]hRrdrG z a dz d r z a πρθ=-+-⎰⎰⎰012()[hG z a dz a z πρ=--⎰2[G h πρ=-22. 按P.F.Verhulst 人口增长规律:当人口数充分大时,大致按有机增长规律随时间成正比例增长(设比例系数为a ).如考虑到疾病和其它原因,有一个与人口数的平方成反比的的负增长率(设比例系数为b ).已知0t =时,人口数为0,x 求在时刻t 时的人口数(),x t 并问当t →∞时人口数如何?难度等级:3;知识点:常微分方程模型,可分离变量的微分方程的初值问题.分析:只需将二阶导数表示出来就可证之. 解:据题意可得如下初始值问题200.t dx ax bxdtx x =⎧=-⎪⎨⎪=⎩ 将方程分离变量,积分得020,xt x dxdt ax bx =-⎰⎰ 即有 00()1ln.()x a bx t ax a bx -=-解出x 得000.atatax e x a bx bx e=-+ 而且,当t →∞时,.a x b→。
重庆大学高等数学(工学类)课程试卷

2.若2lim ()x x a x x a xe dx x a
+∞-→+∞-=+⎰,求a 的值。
3、设函数()y y x =由方程322
2221y y xy x -+-=所确定,试求()y y x =的驻点,并判断它是否是极值点。
4. 计算
22(tan 1)x e x dx +⎰。
5. 设12
01()()1x f x xe f x dx x =-+⎰,求(),()f x f x '。
6. 已知1(2),(2)02
f f '==及20()1f x dx =⎰,求120(2)x f x dx ''⎰。
四、证明题(每小题9分,本题共18分)
1、证明方程0ln x x e π=
-⎰在区间(0,)+∞内有且仅有两个不同的实根。
2、设()f x 在[0,]π上连续,在(0,)π内可微,且0()sin 0f x xdx π
=⎰,0()cos 0f x xdx π
=⎰。
证明:在(0,)π内至少存在一点ξ,使得()0f ξ'=。
五、应用题(本题共10分)用自重200N 的抓斗将井深30米内开始时重2000N 的污泥提升到井口,已知铁链每米重50N ,提升速度为每秒3米,提升过程中污泥以每秒20N 的速度从抓斗的漏孔中漏掉,问克服重力作功多少焦耳?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学 高等数学Ⅱ-1 课程试卷juanA卷B卷2012 ~2013学年 第 1学期 开课学院: 数学 课程号: 10019565 考试日期: 20130114考试方式:开卷闭卷 其他 考试时间: 120 分钟一、单项选择题(每小题3分,共15分) 1.设()232xxf x =+-,则当0x →时,有【B 】A .()f x 与x 是等价无穷小B .()f x 与x 是同阶无穷小,但不等价C .()f x 是x 的高阶无穷小D .()f x 是x 的低阶无穷小因为:()000()232limlim lim 2ln 23ln 3ln 2ln 3x x x x x x x f x x x→→→+-==+=+ 2.设()f x 为可导函数,且满足条件0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(1,(1))f 处的切线的钭率为【D 】A .2B .1-C .12D .2- 因为:00(1)(1)1(1)(1)11limlim (1)(1)2222x x f f x f x f f f x x →→----''-===⇒=-- 3.设2sin ()sin x t xF x e tdt π+=⎰,则()F x 【A 】A .为正常数B .为负常数C .恒为零D .不为常数因为:222sin sin sin sin 00()sin sin sin sin x tttt xF x etdt etdt etdt e tdt πππππ+===+⎰⎰⎰⎰后一式作代换t u π-=,有2sin sin 0sin sin tu e tdt e udu πππ-=-⎰⎰,故sin sin 0()()sin 0t t F x e e tdt π-=->⎰4.01lim arctanx x→为【D 】 A .2πB .2π-C .1D .不存在因为:左右极限存在不相等5.函数23()(2)f x x x x x =---不可导点的个数为【B 】 A .3 B .2 C .1 D .0因为:2222(2)(1)(1),1(2)(1)(1),10()(2)(1)(1),01(2)(1)(1),1x x x x x x x x x x f x x x x x x x x x x x⎧--+-<-⎪-+--≤<⎪=⎨--+-≤<⎪⎪-+-≤⎩(1)0,(1)0,(0)2,(0)2,(1)4,(1)4f f f f f f -+-+-+''''''-=-===-==-二、填空题(每小题3分,共15分)1.21lim(cos )x x x→∞= 12e - 2.设()y x 是由方程x yxy e+=确定的可导函数,则()y x '= x y x ye yx e++-- 3.= ln(x c +4.设2()x f x xe =,则(0)f '''= 6命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密5.曲线(sin ),(1cos )(0)x a t t y a t a =-=->,则在2t π=处的切线方程为202ax y a π--+=三、计算题(一)(每小题8分,共40分) 1.求极限21lim nn →∞⎛⎫+++。
21n≤+++≤+且1,lim1n n →∞==,故21lim 1n n →∞⎛⎫+=+ 2.设函数tan xy x=,求()y x 的间断点,并指出间断点类型。
解:间断点2x k ππ=+和,0,1,2,x k k π==±±因0lim1tan x xx→=,故0x =为可去间断点。
当0k ≠时,lim tan x k xxπ→=∞,故,0x k k π=≠为无穷型间断点。
2lim 0tanx k xxππ→+=,故2x k ππ=+为可去间断点。
3.求函数2arcsin (0)2a xya a=>的二阶导数。
解:222xa y '==y ''=4.计算不定积分21.2tan I dx x =+⎰解:()()()22222sec tan 2tan sec2tan 1tan x d xI dx x x x x ==+++⎰⎰ 22tan tan arctan(tan )1tan 2tan d x d x x c x x =-=-+++⎰⎰ 另解:令tan x u =,则222211112112I du dudu u u u u=⋅=-++++⎰⎰⎰arctan u c = arctan(tan )x c =+ 5.求广义积分201(1)(1)I dx x x α+∞=++⎰的值,其中α为正常数。
(作变换令1t x=) 解:令1t x=,则222000111(1)(1)(1)(1)(1)(1)t t I dx dt dt x x t t t t ααααα+∞+∞+∞+-===++++++⎰⎰⎰2011dt I t +∞=-+⎰,故[]200111arctan .2124I dt t t π+∞+∞===+⎰四、应用题(每小题8分,共16分)1.甲乙两用户共用一台变压器(如图所示),问变压器应设在输电干线何处时,所需电线最短?AB1km 1.5km解:设变压器在距A 处x 处,所需电线长度函数为()T x ,则()T x =()T x '=令()0T x '=,得 1.2x km =,故变压器应设在距A 处1.2千米处所需电线最短。
2.求曲线3ρ=及2(1cos )(02)ρϕϕπ=+≤≤所围成的平面图形的面积(公共部分)。
解:圆与心形线的交点的极坐标为(3,),(3,)33ππ-,由对称性可知,面积22303112324(1cos )22S d d πππθϕϕ=⋅+⋅+⎰⎰2334(12cos cos )7d πππϕϕϕπ=+++=⎰五、证明题(每小题7分,共14分) 1.设函数()f x 在[],ππ-上连续,且2()()sin 1cos xf x f x xdx xππ-=++⎰。
证明2()sin 2f x xdx πππ-=⎰。
证:设()sin f x xdx A ππ-=⎰,则2()1cos xf x A x=++ 2sin ()sin sin 1cos x xf x x A x x=++ 220sin sin ()sin sin 201cos 1cos x xx x f x xdx dx A xdx dx x x πππππππ---=+=+++⎰⎰⎰⎰ []2200sin 2arctan cos 21cos 2x dx x x πππππ=⋅=-=+⎰2.设函数()f x 在[],a b 上存在二阶导数,且满足()()0f a f b ==,()()0f a f b ''==证明(1)存在(,),()().a b f f ξξξ'∈= (2)存在(,),()().a b f f ξξξ''∈= 证(1)令()()xh x ef x -=,()h x 在[],a b 上可导,且()()0h a h b ==,由罗尔中值定理知:存在(,)a b ξ∈使()0h ξ'=,即[]()()0()().e f f f f ξξξξξ-''-=⇒= (2)令()()()g x f x f x '=+,()g x 在[],a b 上二阶可导,()()0g a g b == 由(1)知:存在(,)a b ξ∈,使()()g g ξξ'=,即()()()()()()f f f f f f ξξξξξξ''''''+=+⇒=。
另证(2):直接取()(()())xg x e f x f x -'=+或取()(()())xg x e f x f x '=-用罗尔中值定理。
cos )ϕx。