高中数学圆锥曲线压轴题集锦1

高中数学圆锥曲线压轴题集锦1
高中数学圆锥曲线压轴题集锦1

圆锥曲线60道题

一.解答题(共60小题)

1.在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,

直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.

(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;

(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;

(3)若a=2,且k OA?k OB=﹣,求证:△OAB的面积为定值.

2.已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.

(1)求椭圆Γ的方程;

(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;

(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.

3.已知椭圆C1:=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:

y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=.

(Ⅰ)求椭圆C1的方程;

(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B,D在直线7x﹣7y+1=0上,求直线AC的方程.

4.已知F1(﹣2,0),F2(2,0),点P满足|PF1|﹣|PF2|=2,记点P的轨迹为E.

(1)求轨迹E的方程;

(2)若直线l过点F2且与轨迹E交于P、Q两点.

(i)无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.

(ii)在(i)的条件下,求△MPQ面积的最小值.

5.在平面直角坐标平面中,△ABC的两个顶点为B(0,﹣1),C(0,1),平面内两点P、Q 同时满足:

①++=;②||=||=||;③∥.

(1)求顶点A的轨迹E的方程;

(2)过点F(,0)作两条互相垂直的直线l1,l2,直线l1,l2与点A的轨迹E的相交弦分别为A1B1,A2B2,设弦A1B1,A2B2的中点分别为M,N.

(ⅰ)求四边形A1A2B1B2的面积S的最小值;

(ⅱ)试问:直线MN是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.

6.在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.

(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的

斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.

7.已知椭圆的中心在原点,焦点在x轴上,F1、F2分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且||=2.

(1)求椭圆方程;

(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于P、Q两点,若存在x 轴上的点S,使得对符合条件的L恒有∠PST=∠QST成立,我们称S为T的一个配对点,当T 为左焦点时,求T 的配对点的坐标;

(3)在(2)条件下讨论当T在何处时,存在有配对点?

8.在平面直角坐标系xOy中,抛物线E:x2=4y的焦点F是椭圆(a>b>0)的

一个顶点.过点F且斜率为k(k≠0)的直线l交椭圆C于另一点D,交抛物线E于A、B两点,线段DF的中点为M,直线OM交椭圆C于P、Q两点,记直线OM的斜率为k',满足

(1)求椭圆C的方程;

(2)记△PDF的面积为S1,△QAB的面积为S2,设,求实数λ的最大值及取得

最大值时直线l的方程.

9.给定椭圆C:=1(a>b>0),称圆心在坐标原点O,半径为的圆是椭圆m

的“伴随圆”.若椭圆C的一个焦点为F2(,0),其短轴上的一个端点到F2距离为.(Ⅰ)求椭圆C及其“伴随圆”的方程;

(Ⅱ)若过点P(0,m)(m<0)的直线l与椭圆C只有一个公共点,且l截椭圆C的“伴随

圆”所得的弦长为2,求m的值;

(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,试判断直线l1,l2的斜率之积是否为定值,并说明理由.

10.平面直角坐标系中,O为坐标原点,已知两点M(1,﹣3)、N(5,1),若点C满足=t+(1﹣t)(t∈R),点C的轨迹与抛物线:y2=4x交于A、B两点.

(Ⅰ)求证:⊥;

(Ⅱ)在x轴上是否存在一点P(m,0)(m∈R),使得过P点的直线交抛物线于D、E两点,并以该弦DE为直径的圆都过原点.若存在,请求出m的值及圆心的轨迹方程;若不存在,请说明理由.

11.若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”.

(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;

(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M 点(异于A、B),设,,问λ1+λ2是否为定值?说明理由.

12.已知动点P与定点F(﹣1,0)的距离和它到定直线x=﹣4的距离的比是1:2,记动点P的轨迹为曲线E.

(Ⅰ)求曲线E的方程;

(Ⅱ)设A是曲线E上的一个点,直线AF交曲线E于另一点B,以AB为边作一个平行四边形,顶点A,B,C,D都在轨迹E上,判断平行四边形ABCD能否为菱形,并说明理由;(Ⅲ)当平行四边形ABCD的面积取到最大值时,判断它的形状,并求出其最大值.

13.已知O为坐标原点,直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.

(1)求点P的坐标;

(2)求证:直线AB恒过定点M;

的最小值.

(3)在(2)的条件下过M向x轴做垂线,垂足为N,求S

四边形OANB

14.已知圆B:(x+)2+y2=16,定点A(,0),P是圆周上任一点,线段AP的垂直平分线与BP交于点Q.

(I)求点Q的轨迹C的方程;

(II)直线l过点A且与x轴不重合,直线l交曲线C于M、N两点,过B且与l垂直的直线与圆B交于D,E两点,求四边形MDNE面积的取值范围.

15.已知圆E:(x+)2+y2=16,点F(,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于点Q.

(1)求动点Q的轨迹Γ的方程;

(2)过点C(﹣2,0)作两条互相垂直的直线l1,l2,若l1,l2分别与轨迹Γ相交于点A,B,直线AB与x轴交于点M,过点M作直线l交轨迹Γ于G,H两点,求△OGH面积的最大值.16.一青蛙从点A0(x0,y0)开始依次水平向右和竖直向上跳动,其落点坐标依次是A i(x i,y i)(i∈N*),(如图所示,A0(x0,y0)坐标以已知条件为准),S n表示青蛙从点A0到点A n所经过的路程.

(1)若点A0(x0,y0)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p.

(2)若点A n(x n,y n)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且

,试写出(不需证明);

(3)若点A n(x n,y n)要么落在所表示的曲线上,要么落在所表示的曲线上,并且A0(0,4),求S n的表达式.

17.已知为抛物线y2=2px(p>0)的焦点,点N(x0,y0)(y0>0)为其上一点,点M与点N关于x轴对称,直线l与抛物线交于异于M,N的A,B两点,且.(I)求抛物线方程和N点坐标;

(II)判断直线l中,是否存在使得△MAB面积最小的直线l′,若存在,求出直线l′的方程和△MAB面积的最小值;若不存在,说明理由.

18.⊙F1:(x+1)2+y2=9.⊙F2:(x﹣1)2+y2=1.动圆M与⊙F1内切,与⊙F2外切.

(1)求M点的轨迹C的方程;

(2)设动直线l:y=kx+m与曲线C交于A,B两点,(O为原点)满足|+|=|﹣|.对满足条件的动直线l中取两条直线l1,l2,其交点是N,当||=时,求l1,l2的夹角.19.已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为

半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足+=t (O为坐标原点),当|﹣|<时,求实数t取值范围.

20.已知可行域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长

轴,离心率.

(1)求圆C及椭圆C1的方程;

(2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线于点Q,判断直线PQ与圆C的位置关系,并给出证明.

21.已知直线x﹣y+1=0经过椭圆S:的一个焦点和一个顶点.

(1)求椭圆S的方程;

(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.

①若直线PA平分线段MN,求k的值;

②对任意k>0,求证:PA⊥PB.

22.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;

(1)求曲线E的方程;

(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,

)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.

23.已知椭圆C的中心在坐标原点,它的一条准线为,离心率为.

(1)求椭圆C的方程;

(2)过椭圆C的右焦点F作直线l交椭圆于A、B两点,交y轴于M点,若

,求λ1+λ2的值.

24.设点A,B分别是x,y轴上的两个动点,AB=1.若=λ(λ>0).

(Ⅰ)求点C的轨迹Г;

(Ⅱ)过点D作轨迹Г的两条切线,切点分别为P,Q,过点D作直线m交轨迹Г于不同的两点E,F,交PQ于点K,问是否存在实数t,使得+=恒成立,并说明理由.

25.已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四

边形F1AF2B是边长为2的正方形.

(1)求椭圆的方程;

(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证

明:为定值.

(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

26.已知椭圆E:=1(a>b>0)的左、右焦点分别为F1、F2,离心率e=,P为椭

圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为2.

(Ⅰ)求椭圆E的方程;

(Ⅱ)设直线l:x=my+1(m∈R)交椭圆E于A、B两点,试探究:点M(3,0)与以线段AB为直径的圆的位置关系,并证明你的结论.

27.已知椭圆(m>n>0)的离心率e的值为,右准线方程为x=4.如图所示,椭圆C左右顶点分别为A,B,过右焦点F的直线交椭圆C于M,N,直线AM,MB交于点P.(1)求椭圆的标准方程;

(2)若点P(4,),直线AN,BM的斜率分别为k1,k2,求.

(3)求证点P在一条定直线上.

28.若曲线C1:+=1(a>b>0),(y≤0)的离心率e=且过点P(2,﹣1),曲线

C2:x2=4y,自曲线C1上一点A作C2的两条切线切点分别为B,C.

(Ⅰ)求曲线C1的方程;

的最大值.

(Ⅱ)求S

△ABC

29.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A、B和C、D,记△AOC 的面积为S.

(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=|;(2)设l1:y=kx,,S=,求k的值;

(3)设l1与l2的斜率之积为m,求m的值,使得无论l1和l2如何变动,面积S保持不变.30.已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.

(1)求椭圆C1的方程;

(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足,求的取值范围.

31.已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径

的圆与直线相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C 于另一点E,证明直线AE与x轴相交于定点Q;

(Ⅲ)在(Ⅱ)的条件下,过点Q的直线与椭圆C交于M,N两点,求的取值范围.32.已知椭圆的中心在原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m

交椭圆于不同的两点A,B.

(Ⅰ)求椭圆的方程;

(Ⅱ)求m的取值范围;

(Ⅲ)若直线l不过点M,求证:直线MA、MB与x轴围成一个等腰三角形.

33.已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为.

(Ⅰ)求椭圆C的方程及离心率;

(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

34.已知抛物线C1:y2=2px(p>0)的焦点F以及椭圆C2:的上、下焦点及左、右

顶点均在圆O:x2+y2=1上.

(Ⅰ)求抛物线C1和椭圆C2的标准方程;

(Ⅱ)过点F的直线交抛物线C1于A、B两不同点,交y轴于点N,已知

,求证:λ1+λ2为定值.

(Ⅲ)直线l交椭圆C2于P、Q两不同点,P、Q在x轴的射影分别为P′、Q′,

,若点S满足:,证明:点S在椭圆C2上.

35.已知点P(4,4),圆C:(x﹣m)2+y2=5(m<3)与椭圆E:+=1(a>b>0)有一

个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

(Ⅰ)求m的值与椭圆E的方程;

(Ⅱ)设Q为椭圆E上的一个动点,求?的取值范围.

36.设函数f(x)=a2x2(a>0),g(x)=blnx.

(1)若函数y=f(x)图象上的点到直线x﹣y﹣3=0距离的最小值为,求a的值;

(2)关于x的不等式(x﹣1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m 和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

37.已知双曲线C:的一个焦点是F2(2,0),且.

(1)求双曲线C的方程;

(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x﹣1)2﹣y2=3上.(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB 为锐角?若存在,请求出m的范围;若不存在,请说明理由.

38.已知椭圆过点,且离心率e=.

(Ⅰ)求椭圆方程;

(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点,求k的取值范围.

39.已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为

半径的圆与直线x﹣y+=0相切.过点(m,0)作圆的切线l交椭圆C于A,B两点.

(1)求椭圆C的方程;

(2)将△OAB的面积表示为m的函数,并求出面积的最大值.

40.已知直线y=﹣x+1与椭圆=1(a>b>0)相交于A、B两点.

(1)若椭圆的离心率为,焦距为2,求椭圆的标准方程;

(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈时,求椭圆的长轴长的最大值.

41.已知抛物线C1:y2=2px(p>0)与直线x﹣y+1=0相切,椭圆C2:+=1(a>b>0)的一个焦点与抛物线C1的焦点F重合,且离心率为,点M(a2,0).

(1)求抛物线C1与椭圆C2的方程;

(2)若在椭圆C2上存在两点A,B使得=λ(λ∈[﹣2,﹣1]),求|+|的最小值.42.已知椭圆+=1(a>b>0)的离心率为,过右焦点F且垂直于x轴的直线被椭圆

截得的弦长为1,过点(m,0)(0<m<a)的直线与椭圆交于A,B两点.

(1)求椭圆的标准方程;

(2)过点P(,0)作垂直于x轴的直线l,在直线l上是否存在点Q,使得△ABQ为等边

三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.

43.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.

(Ⅰ)“抛物线三角形”一定是三角形(提示:在答题卡上作答);

(Ⅱ)若抛物线m:y=a(x﹣2)2+b(a>0,b<0)的“抛物线三角形”是直角三角形,求a,b满足的关系式;

(Ⅲ)如图,△OAB是抛物线n:y=﹣x2+tx(t>0)的“抛物线三角形”,是

否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

44.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.

45.设抛物线过定点A(﹣1,0),且以直线x=1为准线.

(Ⅰ)求抛物线顶点的轨迹C的方程;

(Ⅱ)若直线l与轨迹C交于不同的两点M,N,且线段MN恰被直线x=﹣平分,设弦MN 的垂直平分线的方程为y=kx+m,试求m的取值范围.

46.已知双曲线C1:x2﹣y2=m(m>0)与椭圆有公共焦点F1F2,点是

它们的一个公共点.

(1)求C1,C2的方程;

(2)过点F2且互相垂直的直线l1,l2与圆M:x2+(y+1)2=4分别相交于点A,B和C,D,求|AB|+|CD|的最大值,并求此时直线l1的方程.

47.如图,P是圆x2+y2=4上的动点,P点在x轴上的投影是D,点M满足.

(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;

(2)过点N(3,0)的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.

(3)若存在点Q(a,0),使得四边形QAFB为菱形(A,B意义同(2)),求实数a的取值范围.

48.已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1),

(Ⅰ)求抛物线的标准方程;

(Ⅱ)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线于不同的两点M,N,若抛物线上一点C满足(λ>0),求λ的取值范围.

49.已知椭圆C:的离心率为,点Q()在椭圆C上.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设P为椭圆C上异于其顶点的动点,O为坐标原点,过椭圆右焦点F2作OP平行线交椭圆C于A、B两点.

(i)试探究|OP|2和|AB|的比值是否为一个常数?若是,求出这个常数,若不是,请说明理由.

(ii)记△PF2A的面积为S1,△OF2B的面积为S2,令S=S1+S2,求证:S.

50.已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,以椭圆的短半轴为半

径的圆与直线x﹣y+=0相切.

(1)求椭圆C的方程;

(2)过椭圆的右焦点F的直线l1与椭圆交于A、B,过F与直线l1垂直的直线l2与椭圆交于C、D,与直线l3:x=4交于P;

①求证:直线PA、PF、PB的斜率k PA,k PF,k PB成等差数列;

②是否存在常数λ使得|AB|+|CD|=λ|AB|?|CD|成立,若存在,求出λ的值,若不存在,请说明理由.

51.已知抛物线C:y=ax2(a>0)上的点P(b,1)到焦点的距离为,

(Ⅰ)求a的值;

(Ⅱ)如图,已知动线段AB(B在A右边)在直线l:y=x﹣2上,且,现过A作C 的切线,取左边的切点M,过B作C的切线,取右边的切点为N,当MN∥AB,求A点的横坐标t的值.

52.椭圆=1(a>b>0)的离心率为,左焦点F到右准线l的距离为10,圆G:(x

﹣1)2+y2=1.

(1)求椭圆的方程;

(2)若P是椭圆上任意一点,过点P作圆G的切线,切点为Q,过点P作右准线l的垂线,垂足为H,求的取值范围;

(3)是否存在以椭圆上的点M为圆心的圆M,使得过圆M上任意一点N作圆G的切线(切

点为T)都满足?若存在,请求出圆M的方程;若不存在,请说明理

由.

53.如图,椭圆的左、右焦点为F1,F2,上、下顶点分别为B1,B2,离

心率为e,其右准线l:x=4,且过点P(1,3e).

(1)求椭圆的方程:

(2)连接B1F2并延长交椭圆于点M,连接B2M并延长交右准线l于点N,求点N的坐标:(3)是否存在非零常数λ,μ,使得对椭圆上任一点Q,总有且AB=μ(其中点A在x轴上,点B在y轴上),若存在,求出常数λ,μ的值;若不存在,请说明理由.

54.已知椭圆E:+=1(a>b>0),椭圆E的右焦点到直线l:x﹣y+1=0的距离为.椭圆E的右顶点到右焦点与直线x=2的距离之比为.

(1)求椭圆E的标准方程;

(2)若直线l与椭圆E交于M,N两点,l与x轴,y轴分别交于C,D两点,记MN的中点为G,且C,D两点到直线OG的距离相等,当△OMN的面积最大时,求△OCD的面积.55.已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.(1)求双曲线E的离心率;

(2)如图,O点为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

56.如图,已知椭圆C1:+=1(a>b>0)的左右两焦点分别为F1,F2,P是椭圆上一点,

且在x轴上方,PF1⊥F1F2,PF2=3PF1,过P,F1,F2三点的圆C2截y轴的线段长为6,过点F2

做直线PF2的垂线交直线l:x=4于点Q

(Ⅰ)求椭圆C1的方程;

(Ⅱ)证明:直线PQ与椭圆C1只有一个交点;

(Ⅲ)若过直线l:x=4上任意一点A引圆C2的两条切线,切点分别为M,N,试探究直线MN是否过定点?若过定点,请求出该定点;否则,请说明理由.

57.已知点A,B的坐标分别是(0,﹣1),(0,1),直线AM,BM相交于点M,且它们的斜

率之积﹣.

(1)求点M轨迹C的方程;

(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点E、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).

58.已知圆C1的圆心在坐标原点O,且恰好与直线l1:相切.

(1)求圆的标准方程;

(2)设点A为圆上一动点,AN⊥x轴于N,若动点Q满足:,(其中m为非零常数),试求动点Q的轨迹方程C2;

(3)在(2)的结论下,当时,得到曲线C,与l1垂直的直线l与曲线C交于B、D两点,求△OBD面积的最大值.

59.如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点P处的切线与圆C2:x2+y2=1相切于点Q.

(Ⅰ)当直线PQ的方程为x﹣y﹣=0时,求抛物线C1的方程;

(Ⅱ)当正数p变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.

60.已知中心在原点O,左右焦点分别为F1,F2的椭圆的离心率为,焦距为2,A,B 是椭圆上两点.

(1)若直线AB与以原点为圆心的圆相切,且OA⊥OB,求此圆的方程;

(2)动点P满足:=+3,直线OA与OB的斜率的乘积为﹣,求动点P的轨迹方程.

圆锥曲线60道题

参考答案与试题解析

一.解答题(共60小题)

1.在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,

直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.

(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;

(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;

(3)若a=2,且k OA?k OB=﹣,求证:△OAB的面积为定值.

【分析】(1)根据△MF1F2是直角三角形,即可OF1=OM,分类讨论即可即可求得a的值方程;(2)将直线方程,代入椭圆方程,根据韦达定理,以及向量的数量积即可求出m2(a2+1)=2a2;

(3)将直线方程,代入椭圆方程,根据韦达定理及直线的斜率公式,求得2m2﹣4k2=1.由弦长公式及点到直线的距离公式,求得丨AB丨及d,根据三角形的面积公式,化简即可求得△AOB的面积为定值

【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,

∴△MF1F2为等腰直角三角形,

∴OF1=OM,

当a>1时,=1,解得a=,

当0<a<1时,=a,解得a=,

(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),

由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,

∴x1+x2=﹣,x1x2=,

∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,

∴?=0,

∴x1x2+y1y2=0,

∴+=0,

∴a2m2﹣a2+m2﹣a2=0

∴m2(a2+1)=2a2,

(3)证明:当a=2时,x2+4y2=4,

设A(x1,y1),(x2,y2),

∵k OA?k OB=﹣,

∴?=﹣,

∴x1x2=﹣4y1y2,

由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.

∴x1+x2=,x1x2=,

∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2

=++m2=,

∴=﹣4×,

∴2m2﹣4k2=1,

∴|AB|=?=?

=2?=

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

高三数学解答题难题突破 圆锥曲线中的三点共线问题

高三数学解答题难题突破 圆锥曲线中的三点共线问题 【题型综述】 三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”. 【典例指引】 类型一 向量法证三点共线 例1 (2012北京理19)(本小题共14分)已知曲线C :22 (5)(2)8m x m y -+-=(m R ∈) (Ⅰ)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围; (Ⅱ)设m =4,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线4y kx =+与曲线交于不同的两点M ,N ,直线1y =与直线BM 交于点G ,求证:A ,G ,N 三点共线.

MB方程为: 6 2 M M kx y x x + =-,则 3 1 6 M M x G kx ?? ? + ?? ,, ∴ 3 1 6 M M x AG x k ?? =- ? + ?? ,,()2 N N AN x x k =+ ,, 欲证A G N ,,三点共线,只需证AG,AN共线 即 3 (2) 6 M N N M x x k x x k +=- + 成立,化简得:(3)6() M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证。 类型二斜率法证三点共线 例2.(2017?上海模拟)已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N. (1)求直线FN与直线AB的夹角θ的大小; (2)求证:点B、O、C三点共线.

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

高中数学圆锥曲线压轴题集锦2

高中数学圆锥曲线压轴题集锦2 一.解答题(共60小题) 1.如图,F1(﹣c,0),F2(c,0)分别是双曲线C:=1(a,b>0)的左,右焦点,过点F2作x轴的垂线交双曲线的上半部分于点P,过点F1作直线PF1的垂线交直线l:x=﹣ 于点Q. (1)若点P的坐标为(4,6),求双曲线C的方程及点P处的切线方程; (2)证明:直线PQ与双曲线C只有一个交点; (3)若过l:x=﹣上任一点M作双曲线C:=1(a,b>0)的两条切线,切点分别为T1,T2,问:直线T1T2是否过定点,若过定点,请求出该定点;否则,请说明理由. 2.已知曲线C1:+=1(a>b>0,x≥0)和曲线C2:x2+y2=r2(x≥0)都过点A(0,﹣1),且曲线C1所在的圆锥曲线的离心率为 (1)求曲线C1,C2的方程 (2)设点B,C分别在曲线C1,C2上,k1,k2分别为直线AB,AC的斜率,当k2=4k1时, ①直线BC是否经过定点?请说明理由 ②设E(0,1),求||?||的最大值.

3.已知B(﹣1,0),C(1,0),P是平面上一动点,且满足||?||=?. (1)求点P(x,y)的轨迹C对应的方程. (2)如果点A(m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD⊥AE,问直线DE是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由. 4.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且? 的最大值为1,最小值为﹣2. (1)求椭圆C的方程; (2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由. 5.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点. (Ⅰ)求圆C的方程; (Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l 的方程. 6.过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l. (Ⅰ)若k1>0,k2>0,证明:; (Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程. 7.如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4. (1)求椭圆C的方程; (2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

高考圆锥曲线压轴题型汇总

高考圆锥曲线压轴题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高考圆锥曲线压轴题型总结 直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三种类型,其中第一种类型的变式比较多。而方程思想,函数思想在这里也用得多,两种思想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数,。使用韦达定理时需注意成立的条件。 题型4有关定点,定值问题。将与之无关的参数提取出来,再对其系数进行处理。 (湖北卷)设A 、B 是椭圆 λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (I )解法1:依题意,可设直线AB 的方程为 λ=++-=2 23,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根, 0])3(3)3([422>--+=?∴k k λ ② ) 3,1(.3) 3(2221N k k k x x 由且+-= +是线段AB 的中点,得 .3)3(,1222 1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A .0))(())((33, 3212121212 2222121=+-++-??????=+=+y y y y x x x x y x y x λλ 依题意, . ) (3,2 12121y y x x k x x AB ++- =∴≠ . 04),1(3). ,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλΘ

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴题经典预测 一、圆锥曲线中的定值问题 y2 = b2 (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. y2 = b2

二、圆锥曲线中的最值问题 y2 = b2 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点. (i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标;

(Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值. 三、圆锥曲线与过定点(定直线)问题

四、圆锥曲线与求参数 ★★在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴 (Ⅰ)求椭圆C的方程; 的中点,射线OE交椭圆C与点P,设OP→=tOE→,求实数t的值. 五、存在性问题 y2 = b2

②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率k OA、k OB、k OC、k OD满足k OA+k OB+k OC+k OD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由. 六、轨迹方程

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

《圆锥曲线解题十招全归纳》

《圆锥曲线解题十招全归纳》 招式一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 招式二:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>, 且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论

招式三:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b += (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程; (II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =PQ 的斜率。 招式四:共线向量问题 1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N 点,0,2=?=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.

2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线2 14 y x =的焦点,离心率 为 5 .(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-. 3、已知△OFQ 的面积S=26, 且m FQ OF =?。设以O 为中心,F 为焦点的双曲线经过Q , 2)14 6 ( ,||c m c -==,当||取得最小值时,求此双曲线方程。 类型1——求待定字母的值 例1设双曲线C :)0(12 22>=-a y a x 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交 于点P ,且PA=PB 12 5 ,求a 的值

高中数学圆锥曲线试题(含答案)

理数 圆锥曲线 1. (2014大纲全国,9,5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上.若|F1A|=2|F2A|,则

cos∠AF2F1=() A. B. C. D. [答案] 1.A [解析] 1.由题意得解得|F2A|=2a,|F1A|=4a, 又由已知可得=2,所以c=2a,即|F1F2|=4a, ∴cos∠AF2F1===.故选A. 2. (2014大纲全国,6,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为() A.+=1 B.+y2=1 C.+=1 D.+=1 [答案] 2.A [解析] 2.由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1,选A. 3. (2014重庆,8,5分)设F1、F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为() A. B. C. D.3 [答案] 3.B

[解析] 3.设|PF1|=m,|PF2|=n,依题意不妨设m>n>0, 于是 ∴m·n=··?m=3n. ∴a=n,b=n?c=n,∴e=,选B. 4. (2014广东,4,5分)若实数k满足00,25-k>0. ∴-=1与-=1均表示双曲线, 又25+(9-k)=34-k=(25-k)+9, ∴它们的焦距相等,故选A. 5. (2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是() A.5 B.+ C.7+ D.6 [答案] 5.D [解析] 5.设Q(cos θ,sin θ),圆心为M,由已知得M(0,6), 则|MQ|=

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高中数学圆锥曲线压轴题集锦1

圆锥曲线60道题 一.解答题(共60小题) 1.在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2, 直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点. (1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值; (2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系; (3)若a=2,且k OA?k OB=﹣,求证:△OAB的面积为定值. 2.已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为. (1)求椭圆Γ的方程; (2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标; (3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP面积S的不同取值范围,讨论△AEP存在的个数,并说明理由. 3.已知椭圆C1:=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2: y2=4x的焦点,M是C1与C2在第一象限的交点,且|MF2|=. (Ⅰ)求椭圆C1的方程; (Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B,D在直线7x﹣7y+1=0上,求直线AC的方程. 4.已知F1(﹣2,0),F2(2,0),点P满足|PF1|﹣|PF2|=2,记点P的轨迹为E. (1)求轨迹E的方程;

(2)若直线l过点F2且与轨迹E交于P、Q两点. (i)无论直线l绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值. (ii)在(i)的条件下,求△MPQ面积的最小值. 5.在平面直角坐标平面中,△ABC的两个顶点为B(0,﹣1),C(0,1),平面内两点P、Q 同时满足: ①++=;②||=||=||;③∥. (1)求顶点A的轨迹E的方程; (2)过点F(,0)作两条互相垂直的直线l1,l2,直线l1,l2与点A的轨迹E的相交弦分别为A1B1,A2B2,设弦A1B1,A2B2的中点分别为M,N. (ⅰ)求四边形A1A2B1B2的面积S的最小值; (ⅱ)试问:直线MN是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由. 6.在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程. (Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的 斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率. 7.已知椭圆的中心在原点,焦点在x轴上,F1、F2分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且||=2.

(完整版)高中数学-圆锥曲线练习题含答案

圆锥曲线专题练习 一、选择题 1.已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A .116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 4.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 5.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 6.如果22 2=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 二. 填空题 7.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。 8.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三.解答题 9.已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

10、已知动点P 与平面上两定点(A B 连线的斜率的积为定值12- . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |= 3 24时,求直线l 的方程.

相关文档
最新文档