高二数学圆锥曲线练习题及答案超经典习题
高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。
B. 椭圆的离心率大于1。
C. 椭圆的长轴和短轴相等。
D. 椭圆的焦点个数与离心率有关。
答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。
B. 双曲线的离心率等于1。
C. 双曲线的长轴和短轴相等。
D. 双曲线的焦点个数与离心率有关。
答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。
B. 抛物线的离心率等于1。
C. 抛物线的长轴和短轴相等。
D. 抛物线的焦点个数与离心率有关。
答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。
答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。
答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。
答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。
解:设椭圆的离心率为e,短轴长度为b。
根据椭圆的定义,焦距的长度为ae,即6 = ae。
由此可以解得椭圆的离心率为e = 6/a。
又已知长轴长度为10,即2a = 10,解得a = 5。
将a = 5代入离心率的公式,可得e = 6/5。
由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。
将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。
高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。
故A正确。
【考点】抛物线的定义。
3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。
(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. 2B. 12 C. 2 D.14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对8.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知动圆过定点F(0,2),且与定直线L:y=-2相切.求动圆圆心的轨迹C的方程。
【答案】【解析】动圆圆心到定点的距离与到定直线(切线)的距离相等(等于半径),由抛物线的定义可知动点的轨迹是抛物线,易得方程为.试题解析:依题意,圆心的轨迹是以F(0,2)为焦点,L:y=-2为准线的抛物线上因为抛物线焦点到准线距离等于4, 所以圆心的轨迹方程是x2=8y.【考点】抛物线的定义与方程2.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.3.已知曲线,求曲线过点的切线方程。
【答案】【解析】因为点不在曲线上,故先设所求切线的切点为,再求的导数则,由点斜式写出所求切线方程,再将切线上的已知点代入切线方程可求出,从而所求出切线方程.试题解析:,点不在曲线上,设所求切线的切点为,则切线的斜率,故所求的切线方程为.将及代入上式得解得:所以切点为或.从而所求切线方程为【考点】1、过曲线外一点求曲线的切线方程;2、导数的几何意义.4.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是()A.B.C.D.【答案】D【解析】根据题意,由于点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点(x,y),直线方程为,与联立方程组,并且有,,解得双曲线的离心率是,故选D.【考点】双曲线的性质点评:主要是考查了双曲线与抛物线的几何性质的运用,属于基础题。
高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
完整版高二数学圆锥曲线测试题及详细含
圆锥曲线测试题及详尽答案一、选择题:1、双曲线2 2x y10 21 的焦距为〔〕A. 3 2B. 4 2C. 3 3D. 4 32x22.椭圆y 1的两个焦点为 F1、F2,过 F1 作垂直于 x 轴的4直线与椭圆订交,一个交点为 P,那么| PF |= 〔〕2A.32 B.3 C.72D.42 y2 x y3.动点M 的坐标知足方程13 x |12 5 12| ,那么动点M 的轨迹是〔〕A. 抛物线B.双曲线C. 椭圆D.以上都不对2 y2x4.设 P 是双曲线1上一点,双曲线的一条渐近线方程为2a 9 3x 2y 0, F 、F2 分别是双曲线1的左、右焦点,假定| | 5PF 〔〕PF ,那么| |1 2A. 1 或 5B. 1 或 9C. 1D. 95、设椭圆的两个焦点分别为 F1、、F2,过 F2 作椭圆长轴的垂线交椭圆于点 P,假定△ F1PF2 为等腰直角三角形,那么椭圆的离心率是〔〕.A.22 B.2 12C. 2 2D. 2 12 2x y 6.双曲线1( mn 0)m n〔〕2离心率为 2,有一个焦点与抛物线y 4x 的焦点重合,那么 mn 的值为A.316 B.38C.163D.837. 假定双曲线2 2x 16y3 2p1 2=2px 的准线上 ,那么 p 的值为 ( )的左焦点在抛物线 y(A)2 (B)3 (C)4 (D)4 22 y2 x8.假如椭圆1的弦被点 (4 ,2) 均分,那么这条弦所在的直线方程是〔〕36 9A x 2y 0B x 2y 4 0C 2x 3y 12 0D x 2y 8 02 y29、不论为何值,方程x 2 sin 1所表示的曲线必不是〔〕A. 双曲线B.抛物线C. 椭圆D.以上都不对第 1 页2 22 ny m n10.方程mx ny 0与mx 1 ( 0) 的曲线在同一坐标系中的表示图应是〔〕A B C D2 y2x11.以双曲线19 16的右焦点为圆心,且与其渐近线相切的圆的方程是 ( )A. B.C . D.12.椭圆的中心在原点,离心率1e ,且它的一个焦点与抛物线22y 4x 的焦点重合,那么此椭圆方程为〔〕2 y2xA.14 32 y2xB.18 62x2C.y 122x2D.y 14二、填空题:2 y2 2 y2x x和双曲线113.关于椭圆116 9 7 9有以下命题:①椭圆的焦点恰巧是双曲线的极点 ; ②双曲线的焦点恰巧是椭圆的极点 ;③双曲线与椭圆共焦点 ; ④椭圆与双曲线有两个极点同样 .此中正确命题的序号是 .2 y2 x14.假定直线(1 a)x y 1 0与圆x 2 0 相切,那么a 的值为2 y2x的焦点为 F1 和 F2,点 P 在椭圆上,假如线段 PF1 中点在 y 轴上,15、椭圆 112 3那么|PF1|是|PF2|的2 2x y16.假定曲线1a 4 a 5的焦点为定点,那么焦点坐标是 .;三、解答题:2 y2x17.双曲线与椭圆1共焦点,它们的离心率之和为9 25 145,求双曲线方程 . 〔12 分〕2 y2x 上一点,18.P 为椭圆 125 9 F、F2 为左右焦点,假定F1PF2 601第 2 页〔1〕求△F1 PF 的面积;〔2〕求 P 点的坐标.〔14 分〕219、求两条渐近线为x 2y 0 且截直线x y 3 0所得弦长为8 33的双曲线方程 . 〔14 分〕20 在平面直角坐标系xOy 中,点 P 到两点(0, 3) ,(0,3) 的距离之和等于 4,设点 P 的轨迹为C .〔Ⅰ〕写出 C 的方程;uuur 〔Ⅱ〕设直线y kx 1与 C 交于 A,B 两点. k 为何值时OA u uru uuur?此时ABOB的值是多少?2y2、B是双曲线 x =1 上的两点,点 N(1,2) 是线段 AB的中点-2(1) 求直线 AB的方程;(2) 假如线段 AB的垂直均分线与双曲线订交于 C、D两点,那么 A、B、C、D四点能否共圆?为何?2 y2x22、点 A、B 分别是椭圆1长轴的左、右端点,点 F 是椭圆的右焦36 20点,点 P 在椭圆上,且位于x 轴上方,PA PF 。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
高二数学圆锥曲线测试题以及详细答案(完整资料).doc
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .
,
而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)
一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
京翰提示:圆锥曲线的考题一般是两个选择、一个填空、一个解答题,客观题的难度为中等,解答题目相对较难,同时平面向量的介入,增加了本专题高考命题的广度圆锥曲线高考热点题型归纳。
正圆锥曲线的考题一般是两个选择、一个填空、一个解答题,客观题的难度为中等。
高二数学—圆锥曲线综合练习一、选择题(本大题共12小题,每小题5分,共60分) 1.已知|→a |=|→b |,→a⊥→b ,且(→a +→b )⊥(k →a -→b ),则k 的值是( ) A .1 B .-1 C .0 D .-22、已知3a =,23b =,3a b ⋅=-,则a 与b 的夹角是( ) A 、150︒ B 、120︒ C 、60︒ D 、30︒3、若)()(),1,2(),4,3(b a b x a b a -⊥+-==且,则实数x=( ) A 、23 B 、223 C 、323 D 、4234、已知(1,2)a =,(2,3)b x =-且a ∥b ,则x =( ) A 、-3B 、34-C 、0D 、345.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( )A .45 B .25 C .32D .456.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( )A .y x 82-= B .y x 82=C . y x 162-=D .y x 162=7.若过原点的直线与圆2x +2y +x 4+3=0相切,切点在第三象限,直线的方程是( )A .x y 3=B .x y 3-=C .x y 33=D .x y 33-=8.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍9.以原点为圆心,且截直线01543=++y x 所得弦长为8的圆的方程是 ( )A .422=+y x B .522=+y x C .1622=+y x D .2522=+y x10.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( )A .1条B .2条C .3条D .4条11.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 232=B .x y 32=C .x y 292=D .x y 92=12.已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为( )(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 二、填空题(本大题共4小题,每小题5分,共20分)13.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程为_____________________________.14.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为 .15.设点P 是双曲线1322=-y x 上一点,焦点F (2,0),点A (3,2),使|PA |+21|PF |有最小值时,则点P 的坐标是________________________________.16.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .三、解答题(本大题共6小题,共70分)17、已知1e 、2e 是夹角为60°的两个单位向量,1232a e e =-,1223b e e =-, (1)求a b ⋅; (2)求a b +与a b -的夹角.18 双曲线与椭圆1362722=+y x 有相同焦点,且经过点4),求双曲线的方程19.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F (1) 求△21PF F 的面积; (2) 求P 点的坐标.(12分)20.已知抛物线x y 42,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)21、已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22、(2010年高考题)设1F ,2F 分别是椭圆E :2x +22y b=1(0<b<1)的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列。
(Ⅰ)求AB ; (Ⅱ)若直线l 的斜率为1,求b 的值。
高二数学测试—圆锥曲线综合(2)参考答案一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCBBDCADCBB二、填空题(本大题共4小题,每小题5分,共20分)13.1273622=+y x 14.3022<+<n m , 15.)2,321( 16.3三、解答题(本大题共6题,共70分)17、①211=⋅ba ;②90018、解:12(0,3)(0,3)F F -由题意知双曲线焦点为,可设双曲线方程为222219y x a a-=-, 点15,4)在曲线上,代入得22436()a a ==或舍22145y x ∴-=双曲线的方程为 19.(12分)[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P 20.(12分)[解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=yy x x 21222,又Q 是OP 的中点∴⎪⎪⎩⎪⎪⎨⎧==221212y y x x ⇒⎩⎨⎧==-==yy y x x x 422422121,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .21、解 设椭圆方程为mx 2+ny 2=1(m >0,n >0),P (x 1,y 1),Q (x 2,y 2)由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0,Δ=4n 2-4(m +n )(n -1)>0, 即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0,∴nm nn m n --+-2)1(2+1=0,∴m +n =2 ① 又2)210()(4=+-+n m mn n m 2,将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =2122解:(1)由椭圆定义知22F +F |A ||AB |+|B |=4又2AB =AF F AB 224||||+|B |,||=3得 (2)L 的方程式为y=x+c,其中c =设1111(),B()A x x ,y ,y ,则A ,B 两点坐标满足方程组222y=x+cx 1y b +={ 化简得222(1)2120.b x cx b +++-= 则2121222212,.11c b x x x x b b --+==++因为直线AB 的斜率为1,所以21x x |-| 即2143x x =-| .则224212122222 84(1)4(12)8 ()49(1)11b b bx x x xb b b--=+-=-=+++解得2b=.。