2021年高中数学课下能力提升二新人教A版选修
2020_2021学年高中数学第二章随机变量及其分布2.2.1条件概率学案含解析新人教A版选修2_3

2.2 二项分布及其应用2.2.1 条件概率内容 标 准学 科 素 养 1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.利用数学抽象 发展数学建模 提升数学运算授课提示:对应学生用书第32页[基础认识]知识点 条件概率预习教材P 51-53,思考并完成以下问题(1)三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?提示:如果三张奖券分别用X 1,X 2,Y 表示,其中Y 表示那张中奖奖券,那么三名同学的抽奖结果共有六种可能:X 1X 2Y ,X 1YX 2,X 2X 1Y ,X 2YX 1,YX 1X 2,YX 2X 1.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含两个基本事件:X 1X 2Y ,X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为P (B )=26=13.(2)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?提示:因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有X 1X 2Y ,X 1YX 2,X 2X 1Y 和X 2YX 1.而“最后一名同学抽到中奖奖券”包含的基本事件仍是X 1X 2Y 和X 2X 1Y .由古典概型计算概率的公式可知,最后一名同学抽到中奖奖券的概率为24,即12.知识梳理 1.条件概率 (1)事件个数法:P (B |A )=n AB n A(2)定义法:P (B |A )=P AB P A(1)0≤P (B |A )≤1.(2)如果B 和C 是两个互斥的事件,则P (B ∪C |A )=P (B |A )+P (C |A ).[自我检测]1.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34 答案:C2.某人一周晚上值班2次,在已知他周日一定值班的条件下,他在周六晚上或周五晚上值班的概率为________.答案:13授课提示:对应学生用书第32页探究一 求条件概率[阅读教材P 53例1]在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 题型:求事件的概率及条件概率方法步骤:(1)先计算出不放回地依次抽2次的试验结果总数; (2)分别计算出第1次抽到理科题和两次都抽到的试验结果总数; (3)由概率的计算公式得出所求概率.[例1] 盒内装有除型号和颜色外完全相同的16个球,其中6个是E 型玻璃球,10个是F 型玻璃球.E 型玻璃球中有2个是红色的,4个是蓝色的;F 型玻璃球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是E 型玻璃球的概率是多少?[解析] 由题意得球的分布如下:E 型玻璃球F 型玻璃球总计 红 2 3 5 蓝 4 7 11 总计61016设A ={取得蓝球法一:∵P (A )=1116,P (AB )=416=14,∴P (B |A )=P AB P A =141116=411. 法二:∵n (A )=11,n (AB )=4, ∴P (B |A )=n AB n A=411. 方法技巧 求条件概率P (B |A )的关键就是抓住事件A 为条件和A 与B 同时发生这两点,公式P (B |A )=n AB n A=P AB P A既是条件概率的定义,也是求条件概率的公式,应熟练掌握.跟踪探究 1.集合A ={1,2,3,4,5,6},甲、乙两人各从A 中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下.(1)求乙抽到的数比甲抽到的数大的概率; (2)求乙抽到偶数的概率;(3)集合A ={1,2,3,4,5,6},甲乙两人各从A 中任取一球.若甲先取(放回),乙后取,若事件A :“甲抽到的数大于4”;事件B :“甲、乙抽到的两数之和等于7”,求P (B |A ).解析:(1)设“甲抽到奇数”为事件C , “乙抽到的数比甲抽到的数大”为事件D ,则事件C 包含的基本事件总数为C 13·C 15=15个,事件CD 同时发生包含的基本事件总数为5+3+1=9个, 故P (D |C )=915=35.(2)在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P =915=35.(3)甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P (B |A )=212=16.探究二 条件概率的性质及应用[阅读教材P 53例2]一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 题型:互斥事件的条件概率方法步骤:(1)不超过2次就按对包含“第1次按对”和“第1次没按对,第2次按对”两事件的和事件;(2)分别求出“第1次按对”和“第1次没按对,第2次按对”的概率; (3)由互斥事件概率的计算公式得出所求概率.[例2] 在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620, P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P A P D+P BPD =210C 62012 180C 620+2 520C 62012 180C 620=1358. 故获得优秀成绩的概率为1358.方法技巧 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P (B ∪C |A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.跟踪探究 2.在一个袋子中装有除颜色外其他都相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在摸出的第一个球是红球的条件下,第二个球是黄球或黑球的概率.解析:法一:设“摸出的第一个球为红球”为事件A ,“摸出的第二个球为黄球”为事件B ,“摸出的第二个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130.∴P (B |A )=P AB P A =145110=1045=29, P (C |A )=P AC P A =130110=13. ∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.故所求的条件概率为59.法二:∵n (A )=1×C 19=9,n [(B ∪C )∩A ]=C 12+C 13=5,∴P (B ∪C |A )=59.故所求的条件概率为59.授课提示:对应学生用书第33页[课后小结](1)条件概率:P (B |A )=P AB P A=n AB n A.(2)概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.[素养培优]1.因把基本事件空间找错而致错一个家庭中有两名小孩,假定生男、生女是等可能的.已知这个家庭有一名小孩是女孩,问另一名小孩是男孩的概率是多少?易错分析:解决条件概率的方法有两种,第一种是利用公式P (B |A )=P AB P A.第二种为P (B |A )=n AB n A,其中找对基本事件空间是关键.考查数学建模的学科素养.自我纠正:法一:一个家庭的两名小孩只有4种可能:{两名都是男孩},{第一名是男孩,第二名是女孩},{第一名是女孩,第二名是男孩},{两名都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,“其中一名是女孩”为事件A ,“其中一名是男孩”为事件B ,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24=12,P (A )=34.∴P (B |A )=P AB P A =1234=23. 法二:由方法一可知n (A )=3,n (AB )=2. ∴P (B |A )=n AB n A =23. 2.“条件概率P (B |A )”与“积事件的概率P (A ·B )”混同袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.易错分析:本题错误在于P (AB )与P (B |A )的含义没有弄清,P (AB )表示在样本空间S 中,A 与B 同时发生的概率;而P (B |A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率.考查数学建模的学科素养.自我纠正:P (C )=P (AB )=P (A )·P (B |A )=410×69=415.。
2021新教材人教版高中数学A版必修第二册模块练习题--总体取值规律的估计、总体百分位数的估计

9.2用样本估计总体9.2.1总体取值规律的估计9.2.2总体百分位数的估计基础过关练题组一频率分布表1.一个容量为80的样本中,数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组2.一个容量为100的样本,其数据的分组与各组的频数如下:分组[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数1213241516137则样本数据落在[10,40)上的频率为()A.0.13B.0.39C.0.52D.0.643.将容量为72的样本中的数据分成5组,已知第一组、第五组的频数,则第三组的频数为()都为8,第二组、第四组的频率都为29A.16B.20C.24D.364.某农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.65.8 5.56.0 6.5 5.1 6.5 5.3 5.9 5.5 5.86.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.56.8 6.0 6.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.77.46.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.65.36.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.05.66.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.75.8 5.37.06.0 6.0 5.9 5.4 6.0 5.2 6.06.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表,并估计在这块试验田里长度在[5.75,6.35)之间的麦穗所占的百分比.题组二频率分布直方图5.一个样本量为100的样本的频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在[6,10)内的频数为a,样本数据落在[2,10)内的频率为b,则a,b分别为()A.32,0.4B.8,0.1C.32,0.1D.8,0.46.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=.7.某样本的频率分布直方图中共有8个小长方形,若最后一个小长方,且样本量为200,则第8形的面积等于其他7个小长方形的面积和的14组的频数为.8.某企业在2020年的招聘考试成绩中随机抽取100名应聘者的笔试成绩(单位:分),按成绩分组得到如下频率分布表:组号分组频数频率第1组[160,165)50.05第2组[165,170)①0.35第3组[170,175)30②第4组[175,180)200.20第5组[180,185]100.10合计100 1.00(1)请求出频率分布表中①②处应填写的数据,并完成如图所示的频率分布直方图;(2)为了选拔出最优秀的应聘者,该企业决定在笔试成绩高的第3,4,5组中用比例分配的分层随机抽样方法抽取6名应聘者进入第二轮面试,求第3,4,5组每组各应抽取多少名应聘者进入第二轮面试.题组三条形图、扇形图、折线图9.(多选)下列说法正确的是()A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽必须一样大D.频数分布直方图中每个小矩形的高就是该组的频数10.如图是根据某市3月1日至3月10日的最低气温(单位:℃)情况绘制的折线统计图,试根据折线统计图反映的信息完成下列问题.(1)绘制该市3月1日到3月10日最低气温(单位:℃)的扇形统计图;(2)绘制该市3月1日到3月10日最低气温(单位:℃)的条形统计图;(3)比较以上折线统计图、扇形统计图、条形统计图的特点.11.有一容量为200的样本,数据的分组以及各组的频数如下:分组[-20,-15)[-15,-10)[-10,-5)[-5,0)[0,5)[5,10)[10,15)[15,20]频数711154049412017(1)列出样本的频率分布表;(2)画出频率分布直方图和折线图;(3)求样本数据不足0的频率.题组四总体百分位数的估计12.某地8名新冠肺炎病患者的潜伏期(单位:天)分别为7,8,8,10,12,13,13,16,则它们的50%分位数是()A.10或12B.12C.10D.1113.已知100个数据的第75百分位数是9.3,则下列说法正确的是()A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据按从小到大的顺序排列后,9.3是第75个数据C.把这100个数据按从小到大的顺序排列后,9.3是第75个数据和第76个数据的平均数D.把这100个数据按从小到大的顺序排列后,9.3是第74个数据和第75个数据的平均数14.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是.15.从某珍珠公司生产的珍珠中任意抽取12颗,得到它们的质量(单位:g)如下:7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0.(1)分别求出这组数据的第25,75,95百分位数;(2)请找出珍珠质量较小的前15%的珍珠质量;(3)若用第25,50,95百分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准.能力提升练题组一统计图、表的综合应用1.()在抽查某产品尺寸的过程中,将其尺寸分成若干个小组,[a,b)是其中一组,抽查出的个体数在该组内的频率为m,在频率分布直方图中该组的高度为h,则|a-b|=()A.hmB.mℎC.ℎmD.h+m2.(2019山西大同铁一中期末考试,)为了解某校高三学生的身体状况,用分层随机抽样的方法抽取部分男生和女生的体重,将男生体重的数据整理后,画出了如图所示的频率分布直方图,已知图中从左到右前三个小组的频率之比为1∶2∶3,第二小组的频数为12,若全校男、女生比例为3∶2,则全校抽取的学生数为.3.()为了了解学生参加体育活动的情况,某校对学生进行了随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”共有4个选项可供选择:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图中提供的信息解答以下问题:(1)本次一共调查了多少名学生?(2)在图(1)中将选项B对应的部分补充完整;(3)若该校有3000名学生,试估计全校学生平均每天参加体育活动的时间在0.5小时以下的人数.题组二总体百分位数的估计4.(2020山东济南历城二中高一下5月学情检测,)已知甲、乙两组按顺序排列的数据:甲组:27,28,37,m,40,50;乙组:24,n,34,43,48,52.若这两组数据的第30百分位数、第50百分位数分别对应相等,则mn等于()A.127B.107C.43D.745.()如图是一样本的频率分布直方图,样本数据共分3组,分别为[5,10),[10,15),[15,20].估计样本数据的第60百分位数是(深度解析)A.14B.15C.16D.176.()从某校高一新生中随机抽取一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152,155,158,164,164,165,165,165,166,167,168,168,169,170,170, 170,171,x,174,175.若样本数据的第90百分位数是173,则x的值为()A.171B.172C.173D.1747.(2020福建师大附中高二期末,)从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如下频数分布表:月销售额分组[12.25,14.75)[14.75,17.25)[17.25,19.75)[19.75,22.25)[22.25,24.75]频数4102484(1)作出这些数据的频率分布直方图;(2)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.答案全解全析基础过关练1.B根据列频率分布表的步骤,得极差组距=140−5110=8.9,所以应将样本数据分为9组.2.C样本数据落在[10,40)上的频数为13+24+15=52,故其频率为52100=0.52.3.C由题意得,第二组、第四组的频数都为72×29=16,所以第三组的频数为72-2×8-2×16=24.4.解析(1)计算极差:7.4-4.0=3.4;(2)决定组距与组数:若取组距为0.3,则3.40.3≈11.3,即可以将这些数据分为12组,所以取组距为0.3,组数为12;(3)将数据分组:由于组距为0.3,12个组距的长度超过极差,所以可以使第一组的左端点略小于数据中的最小值,最后一组的右端点略大于数据中的最大值,按如下方式把样本数据以组距0.3分为12组:[3.95,4.25),[4.25,4.55),…,[7.25,7.55];(4)列频率分布表:分组频数频率[3.95,4.25)10.01[4.25,4.55)10.01[4.55,4.85)20.02[4.85,5.15) 5 0.05 [5.15,5.45) 11 0.11 [5.45,5.75) 15 0.15 [5.75,6.05) 28 0.28 [6.05,6.35) 13 0.13 [6.35,6.65) 11 0.11 [6.65,6.95) 10 0.10 [6.95,7.25) 2 0.02 [7.25,7.55] 1 0.01 合计1001.00从表中数据可以看到,样本数据落在[5.75,6.35)之间的频率是0.28+0.13=0.41,所以可以估计在这块试验田里长度在[5.75,6.35)之间的麦穗约占41%. 5.A 由样本的频率分布直方图知:落在[6,10)内的频率是4×0.08=0.32,∴a=100×0.32=32.落在[2,10)内的频率为4×(0.02+0.08)=0.4,∴b=0.4. 6.答案 60解析 设第一组至第六组数据的频率分别为2x,3x,4x,6x,4x,x,则2x+3x+4x+6x+4x+x=1,解得x=0.05,所以前三组数据的频率分别是0.1,0.15,0.2,所以(0.1+0.15+0.2)×n=27,解得n=60. 7.答案 40解析 设最后一个小长方形的面积为x,则其他7个小长方形的面积和为4x,从而x+4x=1,所以x=0.2.故第8组的频数为200×0.2=40. 8.解析 (1)由题意可知,第2组的频数为0.35×100=35,第3组的频率为30100=0.30,故①处应填35,②处应填0.30. 频率分布直方图如图所示.(2)因为第3,4,5组共有60名应聘者,所以利用分层随机抽样的方法在60名应聘者中抽取6名应聘者的抽样比为660=110,故第3组应抽取30×110=3名应聘者,第4组应抽取20×110=2名应聘者,第5组应抽取10×110=1名应聘者,所以第3,4,5组应抽取的应聘者人数分别为3,2,1.9.BD 频率分布直方图中每个小矩形的面积是该组的频率,且各个小矩形的面积之和为1,故A 错,B 正确;数据分组时,可以是等距的,也可以是不等距的,要根据数据的特点而定,所以频率分布直方图中各小矩形的宽不一定都是一样大的,故C 错;根据频数分布直方图的特点可知D 正确.10.解析该城市3月1日至3月10日的最低气温(单位:℃)情况如下表:日期12345678910最低气-3-20-1120-122温(℃)其中最低气温为-3℃的有1天,占10%;最低气温为-2℃的有1天,占10%;最低气温为-1℃的有2天,占20%;最低气温为0℃的有2天,占20%;最低气温为1℃的有1天,占10%;最低气温为2℃的有3天,占30%.(1)绘制的扇形统计图如图所示.(2)绘制的条形统计图如图所示.(3)折线统计图能很好地描述数据随时间的变化趋势;扇形统计图更多用于描述各类数据占总数的比例;从条形统计图中可以更直观地看出事物的不同类型或分组数据的频数和频率.11.解析(1)频率分布表如下:分组频数频率[-20,-15)70.035[-15,-10)110.055[-10,-5)150.075[-5,0)400.200[0,5)490.245[5,10)410.205[10,15)200.100[15,20]170.085合计2001(2)频率分布直方图和折线图如图所示.(3)样本数据不足0的频率为0.035+0.055+0.075+0.200=0.365.12.D50%分位数即中位数,为12×(10+12)=11.13.C因为100×75%=75,为整数,所以第75个数据和第76个数据的平均数为第75百分位数.14.答案8.4解析因为8×30%=2.4,所以30%分位数是第三个数据8.4.15.解析(1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为12×25%=3,12×75%=9,12×95%=11.4,所以第25百分位数是8.0+8.32=8.15,第75百分位数是8.6+8.92=8.75,第95百分位数是第12个数据9.9.(2)因为12×15%=1.8,所以第15百分位数是第2个数据7.9,所以产品质量较小的前15%的珍珠有2个,它们的质量分别为7.8,7.9.(3)由(1)可知,样本数据的第25百分位数是8.15g,第50百分位数为8.5g,第95百分位数是9.9g,所以质量小于或等于8.15g的珍珠为次品,质量大于8.15g且小于或等于8.5g的珍珠为合格品,质量大于8.5g且小于或等于9.9g的珍珠为优等品,质量大于9.9g的珍珠为特优品.能力提升练1.B根据频率分布直方图中小矩形的高为频率组距,可知m|a-b|=h,所以|a-b|=mℎ.故选B.2.答案80解析由题图得,第四小组与第五小组的频率和为(0.0375+0.0125)×5=0.25.因为从左到右前三个小组的频率之比为1∶2∶3,第二小组的频数为12,所以前三个小组的频数和为36,所以抽取的男生数为361−0.25=48.因为全校男、女生比例为3∶2,所以全校抽取的学生数为48×53=80.3.解析(1)由题图知,选A的共60名学生,占总学生数的30%,所以总学生数为60÷30%=200,即本次一共调查了200名学生.(2)被调查的学生中,选B的有200-60-30-10=100(名),补充完整的条形图如图所示.(3)3 000×5%=150(名),估计全校有150名学生平均每天参加体育活动的时间在0.5小时以下.4.B 因为30%×6=1.8,50%×6=3,所以甲组数据的第30百分位数为28,乙组数据的第30百分位数为n,甲组数据的第50百分位数为37+m2,乙组数据的第50百分位数为34+432=772. 所以{28=n,37+m2=772,解得{n =28,m =40.所以m n =4028=107.5.A 第1组[5,10)的频率为0.04×(10-5)=0.20, 第2组[10,15)的频率为0.10×(15-10)=0.50, 所以第60百分位数是10+5×0.60−0.200.70−0.20=14.方法技巧本题还可以利用方程思想,通过列方程求解.设第60百分位数是x,则0.04×5+(x-10)×0.10=60%,解得x=14. 6.B 因为20×90%=18,所以第90百分位数是第18项和第19项数据的平均数,即12×(x+174)=173,所以x=172.7.解析 (1)根据题意作出频率分布表.月销售 额分组 [12.25, 14.75) [14.75, 17.25) [17.25, 19.75) [19.75, 22.25) [22.25, 24.75] 频数 4 10 24 8 4 频率 0.08 0.20 0.48 0.16 0.08作出频率分布直方图如图所示:(2)由(1)得,月销售额小于17.875千元的频率为0.08+0.2+17.875−17.2519.75−17.25×0.48=0.4.所以有60%的职工能够完成该销售指标.。
2021_2022学年高中数学第2章圆锥曲线与方程测评含解析新人教A版选修2_1

第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.方程x 2+2y 2=4所表示的曲线是()A.焦点在x 轴的椭圆B.焦点在y 轴的椭圆C.抛物线D.圆 方程化为x 24+y 22=1,因此其表示焦点在x 轴的椭圆.2.已知椭圆x 2a 2+y 2b 2=1(a>b>0)分别过点A (2,0)和B (0,-1),则该椭圆的焦距为() A.√3 B.2√3 C.√5 D.2√5a=2,b=1,所以a 2=4,b 2=1,所以c=√a 2-b 2=√4-1=√3,所以2c=2√3.故选B .3.已知双曲线x 2a 2−y 2b 2=1(a>0,b>0)的渐近线方程为y=±2√33x ,则此双曲线的离心率为()A.√72B.√133C.53D.√213x 轴上,所以ba=2√33,于是e=ca=√1+(b a)2=√73=√213.4.已知抛物线C :y 2=8x 焦点为F ,点P 是C 上一点,O 为坐标原点,若△POF 的面积为2,则|PF|等于() A.5B.3C.72D.4F (2,0),设P (x 0,y 0),则12·2·|y 0|=2,所以|y 0|=2,于是x 0=12,于是|PF|=x 0+p2=52.5.已知一个动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x+8=0内切,则动圆圆心P 的轨迹是() A.双曲线的一支 B.椭圆 C.抛物线D.圆R ,依题意有|PO|=R+1,|PC|=R-1,因此|PO|-|PC|=2,而|OC|=3,由双曲线定义知点P 的轨迹为双曲线的右支.6.已知点A 是抛物线y 2=2px (p>0)上一点,点F 是抛物线的焦点,O 为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是()A.x=-1B.x=-3C.x=-1或x=-3D.y=-1∠BFA=∠OFA-90°=30°,过点A 作准线的垂线AC ,过点F 作AC 的垂线,垂足分别为C ,B.如图,A 点到准线的距离为d=|AB|+|BC|=p+2=4,解得p=2,则抛物线的准线方程是x=-1. 故选A.7.双曲线C :x 2-y 23=1的一条渐近线与抛物线M :y 2=4x 的一个交点为P (异于坐标原点O ),抛物线M 的焦点为F ,则△OFP 的面积为() A.2√33B.4√33C.23D.43解析双曲线C :x 2-y 23=1的一条渐近线方程为y=√3x ,将y=√3x 代入抛物线方程,可得3x 2=4x ,解得x=0(舍)或x=43,所以P 43,4√33,又抛物线y 2=4x 的焦点F (1,0),则△OFP 的面积为S=12×1×4√33=2√33.故选A .8.已知双曲线的中心在坐标原点,对称轴为坐标轴,若双曲线的一个焦点坐标为(0,√5),且圆x 2+(y-√5)2=1与双曲线的渐近线相切,则双曲线的方程是() A.x 24-y 2=1B.y 24-x 2=1C.x 26-y 2=1D.y 26-x 2=1(0,√5),则c=√5.由题意可知焦点在y 轴上, 设双曲线为y 2a2−x 2b 2=1,渐近线为by ±ax=0.焦点到渐近线的距离为1=√a 2+b 2=b ,即b=1,a=√c 2-b 2=2,则双曲线的方程是y 24-x 2=1,故选B.9.已知点P (x 0,y 0)在椭圆x 212+y 23=1上,其左、右焦点分别是F 1,F 2,若∠F 1PF 2为钝角,则x 0的取值X 围是() A.(-3,3)B.(-∞,-2√2)∪(2√2,+∞)C.(-∞,-3)∪(3,+∞)D.(-2√2,2√2)F 1(-3,0),F 2(3,0),所以PF 1⃗⃗⃗⃗⃗⃗⃗ =(-3-x 0,-y 0),PF 2⃗⃗⃗⃗⃗⃗⃗ =(3-x 0,-y 0),则PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =x 02+y 02-9,而y 02=3-14x 02, 所以PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =34x 02-6.又∠F 1PF 2为钝角,所以34x 02-6<0,解得-2√2<x 0<2√2.10.椭圆x 2a2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,上顶点为A ,若△AF 1F 2的面积为√3,且∠F 1AF 2=4∠AF 1F 2,则椭圆方程为() A.x 23+y 2=1B.x 23+y 22=1 C.x 24+y 2=1D.x 24+y 23=1△AF 1F 2中,AF 1=AF 2,∠F 1AF 2=4∠AF 1F 2,则∠AF 1F 2=30°,所以bc =√33. 又△AF 1F 2面积为√3, 即S=12×2c×b=√3,解得b=1,c=√3,则a=√b 2+c 2=2, 所以椭圆方程为x 24+y 2=1.11.直线y=k (x-1)与椭圆C :x 24+y 22=1交于不同的两点M ,N ,椭圆x 24+y 22=1的一个顶点为A (2,0),当△AMN 的面积为√103时,则k 的值为()A.±√2B.±√3C.±1D.±√5y=k (x-1)与椭圆C 联立{y =k (x -1),x 24+y 22=1消元可得(1+2k 2)x 2-4k 2x+2k 2-4=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,∴|MN|=√1+k 2·√(x 1+x 2)2-4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2.∵A (2,0)到直线y=k (x-1)的距离为d=√1+k 2, ∴△AMN 的面积S=12|MN|d=|k |√4+6k 21+2k 2.∵△AMN 的面积为√103, ∴|k |√4+6k 21+2k 2=√103, ∴k=±1,故选C .12.如图所示,过抛物线y 2=2px (p>0)的焦点F 的直线l ,交抛物线于点A ,B.交其准线于点C ,若|BC|=√2|BF|,且|AF|=√2+1,则此抛物线的方程为()A.y 2=√2xB.y 2=2xC.y 2=√3xD.y 2=3x,过点A 作AD 垂直于抛物线的准线,垂足为D ,过点B 作BE 垂直于抛物线的准线,垂足为E ,点P 为准线与x 轴的交点,由抛物线的定义,|BF|=|BE|,|AF|=|AD|=√2+1,因为|BC|=√2|BF|,所以|BC|=√2|BE|,所以∠DCA=45°, |AC|=√2|AD|=2+√2,|CF|=2+√2−√2-1=1, 所以|PF|=√2=√22,即p=|PF|=√22,所以抛物线的方程为y 2=√2x ,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在双曲线C 的渐近线上,则C 的方程为.C :y 2a2−x 2b2=1的渐近线方程为y=±a bx ,∵双曲线C :y 2a 2−x 2b 2=1的焦距为4,点P (1,√3)在C 的渐近线上,可得a=√3b ,∴2c=4, ∵c 2=a 2+b 2,∴a 2=3,b 2=1, ∴双曲线C 的方程为y 23-x 2=1.故答案为y 23-x 2=1.2=114.若直线x-my+m=0经过抛物线x 2=2py (p>0)的焦点,则p=.直线x-my+m=0可化为x-m (y-1)=0,所以直线x-my+m=0过点(0,1), 即抛物线x 2=2py (p>0)的焦点F 为(0,1),∴p2=1,则p=2,故答案为2.15.已知双曲线E :x 2a2−y 2b 2=1(a>0,b>0)与抛物线C :y 2=2px (p>0)有共同的一个焦点,过双曲线E 的左焦点且与抛物线C 相切的直线恰与双曲线E 的一条渐近线平行,则E 的离心率为.,所以c=p2,p=2c ,抛物线方程为y 2=4cx ,设双曲线的左焦点为F 1,F 1(-c ,0),过F 1与一条渐近线y=ba x 平行的直线方程为y=ba (x+c ), 由{y 2=4cx ,y =ba(x +c )得by 2-4acy+4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a=b ,从而c=√a 2+b 2=√2a ,离心率为e=ca =√2. √216.已知椭圆方程为x 2a2+y 2b2=1(a>b>0),双曲线方程为x 2m2−y 2n 2=1(m>0,n>0),若该双曲线的两条渐近线与椭圆的四个交点以及椭圆的两个焦点恰为一个正六边形的六个顶点,则椭圆的离心率与双曲线的离心率之和为.椭圆方程为x 2a 2+y 2b 2=1(a>b>0),双曲线方程为x 2m 2−y 2n 2=1(m>0,n>0),若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标F 2(c ,0),F 1(-c ,0),正六边形的一个顶点Ac 2,√32c .|AF 1|+|AF 2|=(c2(√3c 2)(c2-c) (√3c 2)=2a , 因为√3c+c=2a ,所以椭圆离心率e 1=ca =√3-1,因为双曲线的渐近线的斜率为√3,即nm =√3,可得双曲线的离心率为e 2=√1+n 2m 2=2.所以e 1+e 2=√3-1+2=√3+1. 故答案为√3+1. √3+1三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知双曲线C 的一个焦点与抛物线C 1:y 2=-16x 的焦点重合,且其离心率为2. (1)求双曲线C 的方程;(2)求双曲线C 的渐近线与抛物线C 1的准线所围成三角形的面积.抛物线C 1:y 2=-16x 的焦点坐标为(-4,0),因此可设双曲线方程为x 2a2−y 2b 2=1(a>0,b>0),则依题意有{c =4,c a =2,解得a 2=4,b 2=12, 故双曲线C 的方程为x 24−y 212=1.(2)抛物线C 1的准线方程为x=4,双曲线C 的渐近线方程为y=±√3x , 于是双曲线C 的渐近线与抛物线C 1的准线的两个交点为(4,4√3),(4,-4√3), 所围成三角形的面积S=12×8√3×4=16√3.18.(本小题满分12分)已知抛物线x 2=-2py (p>0)上纵坐标为-p 的点到其焦点F 的距离为3. (1)求抛物线的方程;(2)若直线l 与抛物线以及圆x 2+(y-1)2=1都相切,求直线l 的方程.由已知得抛物线的准线方程为y=p2,则由抛物线的定义知p+p2=3,则p=2,所以抛物线的方程为x 2=-4y.(2)由题意知直线l 的斜率存在,设其方程为y=kx+b ,则有{y =kx +b ,x 2=-4y ,消去y 得x 2+4kx+4b=0,则有Δ=16k 2-16b=0,即k 2=b.又直线l 与圆x 2+(y-1)2=1都相切,所以√k 2+1=1.解方程组{√k 2+1=1,k 2=b ,得{k =0,b =0或{k =√3,b =3或{k =-√3,b =3,故所求直线l 的方程为y=0或y=√3x+3或y=-√3x+3. 19.(本小题满分12分)已知F 1,F 2是椭圆M :y 2a2+x 2b 2=1(a>b>0)的两个焦点,椭圆M 的离心率为√63,P (x 0,y 0)是M 上异于上下顶点的任意一点,且△PF 1F 2面积的最大值为2√2.(1)求椭圆M 的方程;(2)若过点C (0,1)的直线l 与椭圆C 交于A ,B 两点,AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,求直线l 的方程.据题意,得{ ca =√63,12×2c ×b =2√2,c 2=a 2-b 2,∴a 2=6,b 2=2.∴椭圆M 的方程为y 26+x 22=1.(2)据题设知,直线AB 的斜率存在,设直线l 的方程为y=kx+1. 据{y =kx +1,y 26+x 22=1,得(3+k 2)x 2+2kx-5=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2k3+k 2,x 1x 2=-53+k 2. ∵AC⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ , ∴(-x 1,1-y 1)=2(x 2,y 2-1). ∴x 1=-2x 2.∴x 1+x 2=-x 2=-2k3+k 2,则x 2=2k3+k 2.又x 1x 2=-2x 22=-53+k 2,∴(2k3+k 2)2=53+k 2×12, ∴k=±√5.故直线l 的方程为y=-√5x+1或y=√5x+1.20.(本小题满分12分)已知点F 是抛物线C :x 2=2py (p>0)的焦点,点M 是抛物线上的定点,且MF ⃗⃗⃗⃗⃗⃗ =(4,0). (1)求抛物线C 的方程;(2)直线AB 与抛物线C 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l 与AB 平行,且与抛物线C 相切,切点为N ,试问△ABN 的面积是否是定值.若是,求出这个定值;若不是,请说明理由. 设M (x 0,y 0),由题知F (0,p2),所以MF ⃗⃗⃗⃗⃗⃗ =(-x 0,p 2-y 0)=(4,0).所以{-x 0=4,p 2-y 0=0,即{x 0=-4,y 0=p 2. 代入x 2=2py (p>0)中,得16=p 2,解得p=4. 所以抛物线C 的方程为x 2=8y.(2)由题意知,直线AB 的斜率存在,设其方程为y=kx+b. 由{y =kx +b ,x 2=8y ,消去y ,整理得x 2-8kx-8b=0, 则x 1+x 2=8k ,x 1x 2=-8b.∴y 1+y 2=k (x 1+x 2)+2b=8k 2+2b ,设AB 的中点为Q , 则点Q 的坐标为(4k ,4k 2+b ). 由条件,设切线方程为y=kx+t , 由{y =kx +t ,x 2=8y ,消去y 整理得x 2-8kx-8t=0.∵直线与抛物线相切, ∴Δ=64k 2+32t=0. ∴t=-2k 2. ∴x 2-8kx+16k 2=0, ∴x=4k , ∴y=2k 2.∴切点N 的坐标为(4k ,2k 2). ∴NQ ⊥x 轴,∴|NQ|=(4k 2+b )-2k 2=2k 2+b. ∵x 2-x 1=m 2+1,又∵(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=64k 2+32b.∴2k 2+b=(m 2+1)232.∴S △ABN =12|NQ|·|x 2-x 1|=12·(2k 2+b )·|x 2-x 1|=(m 2+1)364.∵m 为常数,∴△ABN 的面积为定值,且定值为(m 2+1)364.21.(本小题满分12分)已知F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,点P -1,√22在椭圆E 上,且抛物线y 2=4x 的焦点是椭圆E 的一个焦点. (1)求椭圆E 的标准方程;(2)过点F 2作不与x 轴重合的直线l ,设l 与圆x 2+y 2=a 2+b 2相交于A ,B 两点,且与椭圆E 相交于C ,D 两点,当F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1时,求△F 1CD 的面积.y 2=4x 焦点为F (1,0),则椭圆E 的焦点F 1(-1,0),F 2(1,0). 2a=|PF 1|+|PF 2|=2√2. 解得a=√2,c=1,b=1,所以椭圆E 的标准方程为x 22+y 2=1.(2)由已知,可设直线l 方程为x=ty+1,A (x 1,y 1),B (x 2,y 2).联立{x =ty +1,x 2+y 2=3,得(t 2+1)y 2+2ty-2=0,易知Δ>0.则{y 1+y 2=-2tt 2+1,y 1y 2=-2t 2+1.F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B⃗⃗⃗⃗⃗⃗⃗ =(x 1+1)(x 2+1)+y 1y 2=(ty 1+2)(ty 2+2)+y 1y 2 =(t 2+1)y 1y 2+2t (y 1+y 2)+4=2-2t 2t 2+1.因为F 1A ⃗⃗⃗⃗⃗⃗⃗ ·F 1B ⃗⃗⃗⃗⃗⃗⃗ =1, 所以2-2t 2t 2+1=1,解得t 2=13.联立{x =ty +1,x 22+y 2=1,得(t 2+2)y 2+2ty-1=0,Δ=8(t 2+1)>0.设C (x 3,y 3),B (x 4,y 4), 则{y 3+y 4=-2tt 2+2,y 3y 4=-1t 2+2.S △F 1CD =12|F 1F 2|·|y 3-y 4|=√8(1+t 2)t 2+2=√8×4373=4√67. 22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的长轴长为2√2,离心率为√22.(1)求椭圆C 的方程;(2)过动点M (0,m )(m>0)的直线交x 轴于点N ,交椭圆C 于点A ,P (P 在第一象限),且点M 是线段PN 的中点.过点P 作x 轴的垂线交椭圆C 于另一点Q ,延长QM 交椭圆C 于点B.①设直线PM 、QM 的斜率分别为k ,k',证明kk '为定值;②求直线AB 斜率取最小值时,直线PA 的方程.由题意得2a=2√2,ca =√22, 所以a=√2,c=1,b=√a 2-c 2=√2-1=1. 故椭圆方程为x 22+y 2=1.(2)①设P (x 0,y 0)(x 0>0,y 0>0),由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ), 所以直线PM 的斜率k=2m -m x 0=m x 0,直线QM 的斜率k'=-2m -m x 0=-3mx 0.此时kk '=-13,所以kk '为定值-13.②设A (x 1,y 1),B (x 2,y 2),直线PA 的方程为y=kx+m ,直线QB 的方程为y=-3kx+m.联立{y =kx +m ,x 22+y 2=1,整理得(2k 2+1)x 2+4kmx+2m 2-2=0, 由{Δ=16k 2m 2-8(m 2-1)(2k 2+1)>0,x 0x 1=2m 2-22k 2+1, 可得x 1=2m 2-2(2k 2+1)x 0, y 1=kx 1+m=k 2m 2-2(2k 2+1)x 0+m ,同理x 2=2m 2-2(18k 2+1)x 0,y 2=-3kx 2+m=-3k2m 2-2(18k 2+1)x 0+m.所以x 1-x 2=32k 2(m 2-1)(2k 2+1)(18k 2+1)x 0, y 1-y 2=3k 2m 2-2(18k 2+1)x 0+k2m 2-2(2k 2+1)x 0,y 1-y 2=2k (m 2-1)24p 2+4(2k 2+1)(18k 2+1)x 0=8k (m 2-1)6k 2+1(2k 2+1)(18k 2+1)x 0,所以k AB =y 1-y 2x 1-x 2=6k 2+14k=146k+1k ,由m>0,x 0>0,可知k>0,所以6k+1k≥2√6,当且仅当k=√66时取等号.由P (x 0,2m ),m>0,x 0>0在椭圆C :x 22+y 2=1上,得x 0=√2-8m 2, k=m x 0=√2-8m 2,此时√2-8m2=√66,即m=√77,word11 / 11 由Δ>0得,m 2<2k 2+1,所以k=√66时,m=√77符合题意.所以直线AB 的斜率最小时,直线PA 的方程为y=√66x+√77.。
高中数学第四章数列 等差数列的前n项和公式课后提能训练新人教A版选择性必修第二册

第四章 4.2 4.2.2A 级——基础过关练1.(2022年成都月考)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=9,S 6=21,则数列{a n }的公差是( )A .-1B .2C .1D .-2【答案】C 【解析】由已知条件a 3+a 6=9,S 6=21,可得⎩⎪⎨⎪⎧a 1+2d +a 1+5d =9,6a 1+6×52d =21,解得a 1=1,d =1,∴数列{a n }的公差是1.2.已知一个等差数列的前四项和为21,末四项和为67,前n 项和为286,则项数n 为( )A .24B .26C .27D .28【答案】B 【解析】由等差数列的定义和性质可得首项与末项之和等于21+674=22,再由前n 项和为286=n (a 1+a n )2=11n ,得n =26.3.(2022年哈尔滨六中月考)已知等差数列{a n }的前n 项和为S n ,若2+a 5=a 6+a 3,则S 7=( )A .28B .14C .7D .2【答案】B 【解析】由2+a 5=a 6+a 3,得(a 6-a 5)+a 3=2,即d +a 3=2,a 4=2,则S 7=7a 4=7×2=14.4.(2022年昆明模拟)已知等差数列{a n }各项均为正数,其前n 项和为S n ,若a 1=1,S 3=a 2,则a 8=( )A .12B .13C .14D .15【答案】D 【解析】设等差数列{a n }的公差为d ,由题意得3+3d =1+d ,解得d =2或d =-1(舍去),所以a 8=1+7×2=15.5.(2022年武汉模拟)已知数列{a n }满足a n +1=a n -45且a 1=4,设{a n }的前n 项和为S n ,则使得S n 取得最大值的n 的值为( )A .5B .6C .5或6D .6或7【答案】C 【解析】由a n +1=a n -45,得a n +1-a n =-45,又∵a 1=4,∴数列{a n }是首项为4,公差为-45的等差数列,∴S n =4n +n (n -1)2×⎝ ⎛⎭⎪⎫-45=-25n 2+225n ,易知对称轴为n =112,又∵n ∈N *,∴使得S n 取得最大值的n 的值为5或6.6.(多选)(2021年苏州期末)等差数列{a n }的前n 项和为S n ,若a 1>0,公差d ≠0,则下列命题正确的是( )A .若S 5=S 9,则必有S 14=0B .若S 5=S 9,则必有S 7是S n 中最大的项C .若S 6>S 7,则必有S 7>S 8D .若S 6>S 7,则必有S 5>S 6【答案】ABC 【解析】若S 5=S 9,则5a 1+10d =9a 1+36d ,得a 1=-13d 2.∵a 1>0,∴d <0.S 14=14(a 1+a 14)2=7(a 1+a 14)=7(a 1+a 1+13d )=7(2a 1+13d )=0,故A 对;S n =na 1+n (n -1)d 2=-13nd 2+n (n -1)d 2=[](n -7)2-49d 2,由二次函数的性质知S 7是S n 中最大的项,故B 对;若S 6>S 7,则a 7=a 1+6d <0,∴a 1<-6d ,∵a 1>0,∴d <0,∴a 6=a 1+5d <-6d +5d =-d >0,a 8=a 7+d <a 7<0,∴S 5<S 6=S 5+a 6,S 7>S 8=S 7+a 8,C 对,D 错.7.(2022年洛阳阶段)已知数列{a n },a n =2n +1,S n 为其前n 项和,则下列函数图象中,点(n ,S n )在图象上的是( )ABCD【答案】C 【解析】因为a n +1-a n =2(n +1)+1-(2n +1)=2,故数列{a n }为等差数列,则S n =n (a 1+a n )2=n (3+2n +1)2=n 2+2n .故选C .8.已知{a n }为等差数列,S n 为其前n 项和.若a 1+a 9=18,a 4=7,则S 10=________. 【答案】100 【解析】设等差数列{a n }的公差为d ,∵a 1+a 9=18,a 4=7,∴⎩⎪⎨⎪⎧2a 1+8d =18,a 1+3d =7,解得d =2,a 1=1,∴S 10=10+10×92×2=100.9.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110,则a =________,k =________.【答案】2 10 【解析】设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a .由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.10.已知等差数列{a n }中,a 3=2,3a 2+2a 7=0,其前n 项和为S n . (1)求等差数列{a n }的通项公式; (2)求S n ,试问n 为何值时S n 最大? 解:(1)设等差数列{a n }的公差为d , 依题意,a 1+2d =2,5a 1+15d =0, 解得a 1=6,d =-2,∴数列{a n }的通项公式为a n =-2n +8.(2)S n =6n +n (n -1)2·(-2)=-n 2+7n =-⎝ ⎛⎭⎪⎫n -722+494,∴当n =3或4时,S n 最大.B 级——能力提升练11.(2022年石家庄模拟)已知函数f (x )的图象关于直线x =-1对称,且f (x )在(-1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .-50D .0【答案】B 【解析】因为f (x )的图象关于直线x =-1对称,又f (x )在(-1,+∞)上单调,所以f (x )在(-∞,-1)上也单调.又因为f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=100(a 1+a 100)2=50(a 50+a 51)=-100.12.(多选)(2021年南通期末)设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( )A .a 6>0B .-247<d <-3C .S n <0时,n 的最小值为13D .数列⎩⎨⎧⎭⎬⎫S n a n 中最小项为第7项【答案】ABCD 【解析】依题意得a 3=a 1+2d =12,a 1=12-2d ,S 12=a 1+a 122×12=6(a 6+a 7)>0,而a 7<0,所以a 6>0,a 1>0,d <0,A 选项正确;由⎩⎪⎨⎪⎧a 7=a 1+6d =12+4d <0,a 6=a 1+5d =12+3d >0,a 6+a 7=2a 1+11d =24+7d >0,得-247<d <-3,B 选项正确;由于S 13=a 1+a 132×13=13a 7<0,而S 12>0,所以S n <0时,n 的最小值为13,C 选项正确;由上述分析可知,n ∈[]1,6时,a n >0,n ≥7时,a n <0,当n ∈[]1,12时,S n >0,当n ≥13时,S n <0,所以当n ∈[]7,12时,a n <0,S n >0,S na n<0,且当n ∈[]7,12时,||a n 为递增数列,S n 为正数且为递减数列,所以数列⎩⎨⎧⎭⎬⎫S n a n 中最小项为第7项.13.有两个等差数列2,6,10,…,190及2,8,14,…,200,这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项和为________.【答案】1472 【解析】等差数列2,6,10,…,190中,公差d 1=4.等差数列2,8,14,…,200中,公差d 2=6.∵4,6的最小公倍数是12,∴由这两个等差数列的公共项组成一个新数列公差d =12.∵新数列最大项n ≤190,∴2+(n -1)×12≤190,解得n ≤503,∴n =16.∵新数列中第16项a 16=2+(16-1)×12=182,∴由这两个等差数列的公共项按从小到大的顺序组成一个新数列为2,14,26,…,182,各项之和为S 16=162×(2+182)=1472.14.(2022年青岛开学)设数列{a n }的前n 项和为S n ,且2S n =n (n -29),则数列{a n }的通项公式为________;若|a k |+|a k +1|+|a k +2|+…+|a k +20|=110,则k 的值是________.【答案】a n =n -15 5 【解析】n ≥2时,a n =S n -S n -1=n (n -29)2-(n -1)(n -30)2=n-15;当n =1时,a 1=S 1=-14,适合a n =n -15.综上,数列{a n }的通项公式为a n =n -15;当k ≥15时,|a k |+|a k +1|+|a k +2|+…+|a k +20|≥|a 15|+|a 16|+|a 17|+…+|a 35|=0+1+2+…+20=20(1+20)2=210>110,不适合题意;当k <15时,|a k |+|a k +1|+|a k +2|+…+|a k +20|=(15-k )+(14-k )+(13-k )+…+2+1+0+1+2+3+…+(k +5)=(15-k )(16-k )2+(k +5)(k +6)2=k 2-10k +135,于是k 2-10k +135=110,整理得k 2-10k +25=0,解得k =5.15.数列{a n }的前n 项和S n =33n -n 2. (1)求证:{a n }是等差数列; (2)求当S n 最大时n 的值;(3)设b n =|a n |,求数列{b n }的前n 项和S ′n . (1)证明:当n ≥2时,a n =S n -S n -1=34-2n ,又因为当n =1时,a 1=S 1=32=34-2×1满足a n =34-2n , 故{a n }的通项为a n =34-2n ,所以a n +1-a n =34-2(n +1)-(34-2n )=-2. 故数列{a n }是以32为首项,-2为公差的等差数列.(2)解:令a n ≥0,得34-2n ≥0,所以n ≤17,故数列{a n }的前17项大于或等于零. 又因为a 17=0,故数列{a n }的前16项或前17项的和最大. (3)解:由(2)知,当n ≤17时,a n ≥0;当n ≥18时,a n <0,所以当n ≤17时,S ′n =b 1+b 2+…+b n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =33n -n 2.当n ≥18时,S ′n =|a 1|+|a 2|+…+|a 17|+|a 18|+…+|a n |=a 1+a 2+…+a 17-(a 18+a 19+…+a n ) =S 17-(S n -S 17)=2S 17-S n =n 2-33n +544.故S ′n =⎩⎪⎨⎪⎧33n -n 2,n ≤17,n 2-33n +544,n ≥18.。
高中数学 第一章 计数原理 1.3 二项式定理 1.3.3 二项式定理习题课教案 新人教A版选修2-

二项式定理习题课教学目标知识与技能1.能熟练地掌握二项式定理的展开式及其有关概念.2.会用二项式定理解决与二项展开式有关的简单问题.3.能熟练掌握杨辉三角及二项式系数的有关性质.4.会用二项式系数的性质解决一些简单问题,并能熟练地使用赋值法.过程与方法1.能解决二项展开式的有关概念问题:项、二项式系数、系数、有理项、无理项、常数项、整数项等.2.能用二项式定理解决诸如整除、近似值、求和等有关问题.3.能用二项式系数的有关性质,解决诸如:最值、二项式系数和、系数和等问题.情感、态度与价值观1.培养学生对整个数学知识的驾驭能力,能在一定高度上进行数学知识的应用.2.培养学生观察、归纳的能力以及分析问题与解决问题的能力.3.进一步提升学生学好数学用好数学的积极性,进一步提升学生学习数学的兴趣.重点难点教学重点:掌握二项展开式,掌握二项式系数的有关性质,掌握解决二项式定理性质等有关问题的方法.教学难点:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题.教学过程复习巩顾前面我们学习了二项式定理,请回顾:1.(a+b)n=________________(n∈N*),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做(a+b)n的______________,其中C r n(r=0,1,2,…,n)叫做______________,通项是指展开式的第__________________项,共有____________项.其中二项式系数是____________,系数是____________.2.二项式系数的四个性质(杨辉三角的规律) (1)对称性:____________________. (2)性质2:______________________.(3)二项式系数的最大值________________________.(4)二项式系数之和____________________,所用方法是____________________. 答案:1.(a +b)n=C 0n a n+C 1n an -1b +C 2n an -2b 2+…+C r n an -r b r+…+C n n b n(n∈N )、展开式、二项式系数、r +1、n +1、C rn 、变量前的常数2.(1)C mn =-mn (2)C rn +1=C r -1n +C rn(3)当n 是偶数时,中间的一项取得最大值,即C n2n 最大;当n 是奇数时,中间的两项相等,且同时取得最大值,即C n -12n =C n +12n 最大(4)C 0n +C 1n +C 2n +…+C rn +…+C nn =2n赋值法典型示例类型一:二项展开式的有关概念 例1试求:(1)(x 3-2x 2)5的展开式中x 5的系数;(2)(2x 2-1x)6的展开式中的常数项;(3)在(3x +32)100的展开式中,系数为有理数的项的个数.思路分析:理解二项展开式的有关概念,什么是二项式系数,什么是系数,什么是项,什么是常数项、有理项、无理项等,其实都是由通项入手,根据变量的系数、指数进行判断,当指数为0时是常数项,当指数是整数时是有理项,当指数是分数时是无理项.解:(1)T r +1=C r5(x 3)5-r(-2x2)r =(-2)r C r 5x 15-5r ,依题意15-5r =5,解得r =2.故(-2)2C 25=40为所求x 5的系数.(2)T r +1=C r 6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r ,依题意12-3r =0,解得r =4.故(-1)4·22C 26=60为所求的常数项.(3)T r +1=C r 100(3x)100-r(32)r =C r100·350-r 2·2r 3x 100-r ,要使x 的系数为有理数,指数50-r 2与r 3都必须是整数,因此r 应是6的倍数,即r =6k(k∈Z ),又0≤6k≤100,解得0≤k≤1623(k∈Z ),∴x 的系数为有理数的项共有17项.点评:求二项展开式中具有某特定性质的项,关键是确定r 的值或取值X 围.应当注意的是二项式系数与二项展开式中各项的系数不是同一概念,要加以区分.[巩固练习]试求:(1)(x +2)10(x 2-1)的展开式中x 10的系数;(2)(|x|+1|x|-2)3的展开式中的常数项.解:(1)∵(x+2)10=x 10+20x 9+180x 8+…,∴(x+2)10(x 2-1)的展开式中x 10的系数是-1+180=179.(2)∵(|x|+1|x|-2)3=(|x|-1|x|)6,∴所求展开式中的常数项是-C 36=-20.类型二:二项展开式的有关应用——简单应用例2求(x -1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5的展开式中x 2的系数. 解:∵(x-1)-(x -1)2+(x -1)3-(x -1)4+(x -1)5=x -1{1-[-x -1]5}1-[-x -1]=x -1+x -16x ,∴所求展开式中x 2的系数就是(x -1)6的展开式中x 3的系数-C 36=-20.点评:这是一组将一个二项式扩展为假设干个二项式相乘或相加,或扩展为简单的三项展开式的问题,求解的关键在于转化为二项展开式的问题,转化时要注意分析题目中式子的结构特征.能够最大限度地考查学生对知识的把握程度.[巩固练习](1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中x 3项的系数是( )A .74B .121C .-74D .-121 解析:先求和:(1-x)5+(1-x)6+(1-x)7+(1-x)8=1-x 5[1-1-x4]1-1-x=1-x5[4x -6x 2+4x 3-x 4]x,分子的展开式中x 4的系数,即为原式的展开式中x 3项的系数,(-1)×1+4×(-C 15)-6C 25+4×(-C 35)=-1-20-60-40=-121,所以选D.答案:D类型三:二项展开式的有关应用:整除、不等式、近似值等问题 例3证明:(1)2≤(1+1n)n <3,其中n∈N *;(2)证明:对任意非负整数n,33n-26n -1可被676整除.思路分析:对于二项式中的不等式,通过展开式,分析其中的特殊项,可以证明一些简单的不等式问题;对于整除问题同样如此,关键是把二项式拆成676的形式;对于比较麻烦的数列问题,我们经常采用的方法就是数学归纳法,此题也不例外.证明:(1)(1+1n )n =1+C 1n ·1n +C 2n (1n )2+…≥2(当且仅当n =1时取等号).当n =1时,(1+1n)n=2<3显然成立;当n≥2时,(1+1n )n =C 0n +C 1n ·1n +C 2n ·1n 2+…+C nn ·1n n =2+n(n -1)2!1n 2+n(n -1)(n -2)3!1n 3+…+n(n -1)…2·1n !1n n =2+12!n n n -1n +13!n n n -1n n -2n +…+1n !n n n -1n …2n 1n <2+12!+13!+…1n !<2+11×2+12×3+…+1n(n -1)=2+(1-12)+(12-13)+…+(1n -1-1n )=3-1n <3.综上所述:2≤(1+1n)n <3,其中n∈N *.(2)当n =0,n =1时33n-26n -1=0,显然33n-26n -1可被676整除.当n≥2时,33n-26n -1=27n-26n -1=(1+26)n-26n -1=1+26n +C 2n ·262+…+C nn ·26n-26n -1=C 2n ·262+C 3n ·263+…+C nn 26n=676(C 2n +26C 3n +…+26n -2C nn).综上所述:对任意非负整数n,33n-26n -1可被676整除.点评:用二项式定理解决整除问题是二项式定理的一大特色,这是二项展开式的一种基本应用,通过对二项式的拆解,我们可以解决一些看似很难但易解决的问题.[巩固练习]m ,n 是正整数,f(x)=(1+x)m+(1+x)n的展开式中x 的系数为7, (1)试求f(x)中的x 2的系数的最小值;(2)对于使f(x)中的x 2的系数为最小的m ,n ,求出此时x 3的系数; (3)利用上述结果,求f(0.003)的近似值(精确到0.01). 解:根据题意得:C 1m +C 1n =7,即m +n =7.(*)(1)x 2的系数为C 2m+C 2n=m(m -1)2+n(n -1)2=m 2+n 2-m -n2.将(*)变形为n =7-m 代入上式得:x 2的系数为m 2-7m +21=(m -72)2+354.故当m =3或4时,x 2的系数的最小值为9.(2)当m =3,n =4或m =4,n =3时,x 3的系数为C 33+C 34=5. (3)f(0.003)≈2.02.类型四:二项式系数的最大值、系数的最大值问题 例4求(x -1)9的展开式中系数最大的项.思路分析:二项式系数最大的项我们可以根据公式求解,但是系数最大的项怎么求呢?观察此题中二项式系数与系数之间的关系,我们发现它们只不过相差一个负号而已,所以可以通过二项式系数的大小反映系数的大小,只不过要注意正负号.解:T r +1=(-1)r C r 9x 9-r .∵C 49=C 59=126,而(-1)4=1,(-1)5=-1,∴T 5=126x 5是所求系数最大的项.点评:此类问题仍然是利用二项展开式的通项公式来求解,但在解题过程中要注意一些常用方法和数学思想的应用.[巩固练习] 求(x +124x)8展开式中系数最大的项.解:记第r 项系数为T r ,设第k 项系数最大,那么有⎩⎪⎨⎪⎧T k ≥T k -1,T k ≥T k +1,又T r =C r -182-r +1,那么有⎩⎪⎨⎪⎧C k -182-k +1≥C k -282-k +2,C k -182-k +1≥C k 82-k ,即⎩⎪⎨⎪⎧8!(k -1)!(9-k)!≥8!(k -2)!(10-k)!×2,8!(k -1)!(9-k)!×2≥8!k !(8-k)!,∴⎩⎪⎨⎪⎧1k -1≥2k -2,29-k ≥1k .解得3≤k≤4,∴系数最大的项为第3项T 3=7x 52和第4项T 4=7x 72.类型五:二项式系数之和、系数之和等问题例5假设(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,那么(a 0+a 2+a 4)2-(a 1+a 3)2的值等于__________;思路分析:注意到与系数的和差有关,所以可以用赋值法求得奇数项的系数之和与偶数项的系数之和,注意使用平方差公式.解:令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,得a 0-a 1+a 2-a 3+a 4=(3-2)4,由此可得(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=[(3+2)(3-2)]4=1.点评:在二项式系数的性质应用中,尤其是系数和的问题,我们经常使用赋值法,这是一种奇妙的方法,可以帮助我们在不用计算每一个系数的前提下,求出各个系数的和.[巩固练习](1-2x)7=a 0+a 1x +a 2x 2+…+a 7x 7, 求(1)a 0+a 1+…+a 7的值;(2)a 0+a 2+a 4+a 6及a 1+a 3+a 5+a 7的值; (3)各项二项式系数和.解:(1)令x =1,那么a 0+a 1+…+a 7=-1.(2)令x =-1,那么a 0-a 1+a 2-a 3+…+a 6-a 7=2 187. 那么a 1+a 3+a 5+a 7=-1 094;a 0+a 2+a 4+a 6=1 093. (3)各项二项式系数和C 07+C 17+…+C 77=27=128. [拓展实例]例1(1+3x)6(1+14x)10的展开式中的常数项为( )A.1 B.46 C.4 245 D.4 246思路分析:对于非一般的二项式问题,要注意转化成二项式问题解决.此题虽然有两个式子相乘,只要我们写出整个式子的通项,令指数为0,即可求得常数项.解:先求(1+3x)6的展开式中的通项.T r+1=C r6(x13)r=C r6xr3,r=0,1,2,3,4,5,6.再求(1+14x )10的展开式中的通项.T k+1=C k10(x-14)k=C k10x-k4,k=0,1,2,3,4,…,10.两通项相乘得:C r6x r3C k10x-k4=C r6C k10xr3-k4,令r3-k4=0,得4r=3k,这样一来,(r,k)只有三组:(0,0),(3,4),(6,8)满足要求.故常数项为:1+C36C410+C66C810=4 246.点评:对于乘积的式子或者三项的式子的展开问题,我们可以通过化归思想,将其转化成二项展开式问题.要注意此题中,常数项的位置有三处.[巩固练习](1+x+x2)(x+1x3)n的展开式中没有..常数项,n∈N*,且2≤n≤8,那么n=______.解析:依题意(x+1x3)n,对n∈N*,且2≤n≤8中,只有n=5时,其展开式既不出现常数项,也不会出现与x、x2乘积为常数的项.故填5.答案:5[变练演编](1)对于9100你能编出什么样的整除问题?如9100被________整除的余数是________.(2)(2x2-1x)6的展开式中的常数项是第____________项,整数项是第______________项,x的最高次项是第______________项,二项式系数之和是______________,系数之和是______________.将你能得到的所有正确的答案一一列举出来.答案:(1)这是一个开放性的问题,学生可以有多种答案,比如说9100被8整除的余数是1,9100被80整除的余数是1等等.(2)T r +1=C r6(2x 2)6-r(-1x)r =(-1)r ·26-r ·C r 6x 12-3r .依题意12-3r =0,解得r =4,所以常数项是第5项;整数项是第1,2,3,4,5项;x 的最高次项是第1项;二项式系数之和为64;系数之和为1.设计意图:变练演编——这种开放性的设计,能够有效地提高学生学习的积极性,使得编题不仅仅是老师的专利,学生在编题解题的过程中,领悟知识,提高能力,增长兴趣,增强信心,不仅有助于训练同学们的常规思维,还能培养同学们的逆向思维,最终提高学生的数学成绩.[达标检测] 1.(x -13x)12展开式中的常数项为( )A .-1 320B .1 320C .-220D .220 2.(1-x)6(1+x)4的展开式中x 的系数是( ) A .-4 B .-3 C .3 D .4 3.假设(1-2x)2 005=a 0+a 1x +a 2x 2+…+a 2 005x2 005(x∈R ),那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2 005)=________(用数字作答).答案:1.C 2.B 3.2 003反考老师:即由学生出题,教师现场解答(约8分钟).(活动设计:请学生到黑板板书题目,要求别太烦琐,且与本节习题课内容相符.一般不多于3道题,教师尽可能全部解答,具体解答数目视题目难度和时间而定.教师要边做边讲,以向学生现场展示解题思路的发现过程和解题能力.做完后,请学生给“阅卷〞)课堂小结活动设计:先给学生1~2分钟的时间默写本节的主要基础知识、方法,例题、题目类型、解题规律等;然后用精练的、精确的语言概括本节的知识脉络,思想方法,解题规律等.活动成果:(板书)1.知识收获:二项式定理、二项展开式、二项式系数的性质.2.方法收获:利用二项式定理解决有关问题,利用二项式系数的性质解决有关问题. 3.思维收获:合作意识,创新精神,增加了学习数学的积极性,提升学习数学的兴趣. 设计意图:通过学生自己总结所学、所识、所想,不但能充分表达新课程的理念,还能充分发挥学生在课堂上的“主人翁〞精神,真正表达了学生的主体地位.不仅可以使学生更好地掌握本节所学,而且还能提高学生学习的主动性,提高学生学习数学的兴趣,久而久之,学生的数学水平与数学素养必定会得到长足的提高!补充练习[基础练习]1.计算1-3C 1n +9C 2n -27C 3n +…+(-1)n 3n C nn . 2.(x +1x -2)3的展开式中,常数项是________.3.(3x -13x2)n ,n∈N *的展开式中各项系数和为128,那么展开式中1x3的系数是( )A .7B .-7C .21D .-21 4.求(x -13x)10的展开式中有理项共有________项.1.解:原式=C 0n +C 1n (-3)1+C 2n (-3)2+C 3n (-3)3+…+C 3n (-3)n=(1-3)n=(-2)n. 2.解析:(x +1x -2)3=[(x -1)2x ]3=(x -1)6x 3. 上述式子展开后常数项只有一项C 36x3-13x3,即-20.3.解析:由条件可得:(3-1)n=128,n =7. ∵T r +1=(-1)r C r7(3x)7-r(13x2)r =(-1)r C r 737-rx7-53r.令7-5r3=-3,那么有:r =6.所以二项展开式中1x 3的系数是:T 7=(-1)6C 6737-6=21,应选C.4.解析:∵T r +1=C r10(x)10-r(-13x)r =C r 10(-1)rx5-56r.∴当r =0,6时,所对应的项是有理项.故展开式中有理项有2项. [拓展练习]5.(1+kx 2)6(k 是正整数)的展开式中,x 8的系数小于120,那么k =____________. 6.设n∈N ,那么C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=____________.5.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r6(kx 2)r=C r 6k r x 2r,我们知道x 8的系数为C 46k 4=15k 4,即15k 4<120,也即k 4<8,而k 是正整数,故k 只能取1.6.解:C 1n +C 2n 6+C 3n 62+…+C n n 6n -1=16C 0n +C 1n +C 2n 6+…+C n n 6n -1-16C 0n =16(C 0n +C 1n 6+C 2n 62+…+C n n 6n -1)=16[(1+6)n-1]=16(7n -1).设计说明二项式定理的内容,是各地高考中经常要考查的内容之一,其形式主要是选择题和填空题,题型往往相对稳定,思路方法常常是利用二项展开式的通项公式、二项式系数的有关性质等.常见的二项式问题有:求二项展开式中某一项或某一项的系数,求所有项系数的和或奇(偶)数项系数和,求展开式的项数,求常数项,求近似值,证明不等式等.实际教学的过程中,要努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生发挥其创造意识,以使他们能在创造的氛围中学习.二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘方的展开式.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.掌握好二项式定理既可对初中学习的多项式的变形起到很好的复习、深化作用,又可以为进一步学习概率统计做好必要的知识储备.所以有必要掌握好二项式定理的相关内容.备课资料 二项式定理 同步练习选择题1.C 7n +1-C 7n =C 8n ,那么n 等于( )word11 / 11 A .14 B .12 C .13 D .152.C 0n +3C 1n +9C 2n …+3n C nn 的值等于( )A .4nB .3·4n C.4n 3-1 D.4n-133.C 111+C 311+…+C 911的值为( )A .2 048B .1 024C .1 023D .5124.(x +1)(2x +1)(3x +1)……(nx+1)展开式中x 的一次项系数为( )A .C n -1nB .C 2nC .C 2n +1D .不能用组合数表示5.设(1+x +x 2)n =a 0+a 1x +a 2x 2+…a 2n x 2n,那么a 0+a 1+a 2+…+a 2n 等于 …() A .22n B .3n C.3n -12 D.3n+126.假设n 是正奇数,那么7n +C 1n 7n -1+C 2n 7n -2+…C n -1n 7被9除的余数为( )A .2B .5C .7D .87.(1+x)2+(1+x)3+…+(1+x)10展开式中x 4的系数为( )A .C 511 B .C 411 C .C 510D .C 410填空题8.(a +b)n 展开式中第r 项为__________.9.11100-1的末位连续零的个数为__________.参考答案1.A 2.A 3.C 4.C 5.B 6.C 7.A5.提示:令x =1即可.8.T r =C r -1n a n +1-rb r -19.3。
【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
人教A版高中数学选择性必修第二册 分层作业册精品课件 第四章 培优课 求数列的通项

1.[探究点一·2024广东高二校联考期末]已知数列{an}满足an+1-an=4n(n∈
),a1=8,则 的最小值为(
*
N
A.2
B.3 3
C.6
D.8
C )
1 2 3 4 5 6 7 8 9 10 11 12 13 14
解析 由数列{an}满足 an+1-an=4n(n∈N*),a1=8,可得 an=a1+(a2-a1)+(a3-a2)
2
≠
2 +1
,故
1 +1
Sn=2n-n,所以当 n≥2 时,Sn-Sn-1+1=2n-n-2n-1+n-1+1=2n-1,故 D 正确.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
C 错误;由
4.[探究点四·2024广东汕头]已知各项都是正数的数列{an}的前n项和为
1
2
Sn,Sn= + 2an,n∈N*,则数列{an}的通项公式 an=
1 2 3 4 5 6 7 8 9 10 11 12 13 14
11.已知在数列{an}中,an+1=2an+3·2n+1,且a1=2,则数列{an}的通项公式
n
为 an=(3n-2)·2 .
解析 ∵an+1=2an+3·2
n+1
+1
,∴
+1
2
=
+1
+3,即 +1
2
2
1
的等差数列.又 2 =1,∴2 =1+3(n-1),
2021年高中数学3.1.3空间向量的数量积运算学案含解析人教A版选修2_1

3.1.3 空间向量的数量积运算[目标] 1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律.2.掌握两个向量的数量积的主要用途,会用它解决立体几何中一些简单的问题.[重点] 空间向量的数量积运算.[难点] 利用空间向量解决夹角、距离等问题.知识点一 空间向量的夹角[填一填]1.定义:(1)条件:a ,b 是空间的两个非零向量.(2)作法:在空间任取一点O ,作OA →=a ,OB →=b . (3)结论:∠AOB 叫做向量a ,b 的夹角,记作a ,b .2.范围:a ,b∈[0,π],其中,(1)当a ,b =0时,a 与b 的方向相同. (2)当a ,b =π时,a 与b 的方向相反. (3)当a ,b=π2时,a 与b 互相垂直,记作a ⊥b . [答一答]1.若a ,b 是空间的两个非零向量,则-a ,b =a ,-b =a ,b ,对吗?提示:不对.∵-a 与a ,-b 与b 分别是互为相反向量,∴-a ,b=a ,-b =π-a ,b .知识点二 空间向量的数量积[填一填]1.空间向量的数量积 (1)定义:已知两个非零向量a ,b ,则|a ||b |cos a ,b 叫做a ,b 的数量积,记作a ·b .即a ·b=|a ||b |cosa ,b .(2)运算律:①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 2.空间向量数量积的性质[答一答]2.类比平面向量,你能说出a ·b 的几何意义吗?提示:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |·cos θ的乘积. 3.对于向量a ,b ,c ,由a ·b =a ·c ,能得到b =c 吗?提示:不能,若a ,b ,c 是非零向量,则a ·b =a ·c 得到a ·(b -c )=0,即可能有a ⊥(b -c )成立.4.对于向量a ,b ,若a ·b =k ,能不能写成a =k b? 提示:不能,向量没有除法,k b无意义. 5.为什么(a ·b )c =a (b ·c )不一定成立? 提示:由定义得(a ·b )c =(|a ||b |cosa ,b )c ,即(a ·b )c =λ1c ;a (b ·c )=a (|b ||c |cos b ,c ),即a (b ·c )=λ2a ,因此,(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,所以(a ·b )c =a (b ·c )不一定成立.1.求两向量的数量积时,关键是搞清楚两个向量间的夹角,在求两个向量间的夹角时,可用平移向量的方法,把一个向量平移到另一个向量的起点.2.利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a ·a 求解即可.3.利用空间向量的数量积解决几何中的夹角垂直关系,其思路是将直线的方向向量用已知向量表示,然后进行数量积的运算.类型一 空间向量的数量积运算【例1】 如下图所示,已知正三棱锥A BCD 的侧棱长和底面边长都是a ,点E 、F 、G 分别是AB 、AD 、DC 的中点.求下列向量的数量积.(1)AB →·AC →;(2)AD →·BD →; (3)GF →·AC →;(4)EF →·BC →.【解】 (1)由题知|AB →|=|AC →|=a ,且〈AB →,AC →〉=60°, ∴AB →·AC →=a ·a ·cos60°=12a 2.(2)|AD →|=a ,|BD →|=a ,且〈AD →,BD →〉=60°. ∴AD →·BD →=a ·a ·cos60°=12a 2.(3)|GF →|=12a ,|AC →|=a ,又GF →∥AC →,∴〈GF →,AC →〉=180°.∴GF →·AC →=12a ·a ·cos180°=-12a 2.(4)|EF →|=12a ,|BC →|=a ,又EF →∥BD →,∴〈EF →,BC →〉=〈BD →,BC →〉=60°. ∴EF →·BC →=12a ·a ·cos60°=14a 2.在几何体中求空间向量的数量积,首先要充分利用向量所在的图形,将各向量分解成已知模和夹角的向量的组合形式;其次利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积;最后利用数量积的定义求解即可.注意挖掘几何体中的垂直关系或者特殊角.已知正四面体OABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →). 解:如图所示,(1)OA →·OB →=|OA →||OB →|cos ∠AOB =1×1×cos60°=12;(2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos60°-2×1×1×cos60°+1×1×cos60°+12-2×1×1×cos60°=1.类型二 利用数量积求夹角【例2】 如图,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.【分析】 求异面直线BA 1与AC 所成的角,可转化为求向量BA 1→与AC →所成的角,因此可先求BA 1→·AC →,再求|BA 1→|,|AC →|,最后套用夹角公式求得,但要注意两直线夹角与两向量夹角的区别.【解】 因为BA 1→=BA →+AA 1→=BA →+BB 1→,AC →=BC →-BA →,且BA →·BC →=BB 1→·BA →=BB 1→·BC →=0, 所以BA 1→·AC →=(BA →+BB 1→)·(BC →-BA →)=BA →·BC →-BA→2+BB 1→·BC →-BB 1→·BA →=-1. 又|AC →|=2,|BA 1→|=1+2= 3.所以cos 〈BA 1→,AC →〉=BA 1→·AC→|BA 1→||AC →|=-16=-66.则异面直线BA 1与AC 所成角的余弦值为66.如图所示,在正方体ABCD A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.解:不妨设正方体的棱长为1, 设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|b |=|c |=1,a ·b =b ·c =c ·a =0,A 1B →=a -c ,AC →=a +b .∴A 1B →·AC →=(a -c )·(a +b ) =|a |2+a ·b -a ·c -b ·c =1.而|A 1B →|=|AC →|=2,∴cos 〈A 1B →,AC →〉=12×2=12,∴〈A 1B →,AC →〉=60°.∴异面直线A 1B 与AC 所成的角为60°. 类型三 利用数量积求距离【例3】 在正四面体ABCD 中,棱长为a .M ,N 分别是棱AB ,CD 上的点,且|MB |=2|AM |,|CN |=12|ND |,求|MN |.【分析】 转化为求向量MN →的模,然后将向量MN →分解,再根据数量积运算性质进行求解. 【解】 因为MN →=MB →+BC →+CN →=23AB →+(AC →-AB →)+13(AD →-AC →)=-13AB →+13AD →+23AC →,所以MN →·MN →=⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →·⎝ ⎛⎭⎪⎫-13AB →+13AD →+23AC →=19AB →2-29AD →·AB →-49AB →·AC →+49AC →·AD →+19AD →2+49AC →2=19a 2-19a 2-29a 2+29a 2+19a 2+49a 2=59a 2. 所以|MN |=53a .求两点间的距离或某条线段的长度的方法:先将此线段用向量表示,然后用其他已知夹角和模的向量表示此向量,最后利用|a |2=a ·a ,通过向量运算去求|a |,即得所求距离.如下图,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,将它沿对角线AC 折起,使直线AB 与CD 成60°角,求B ,D 间的距离.解:∵∠ACD =90°, ∴AC →·CD →=0,同理BA →·AC →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或120°. ∵BD →=BA →+AC →+CD →, ∴BD →2=BA →2+AC →2+CD→2+2BA →·AC →+2BA →·CD →+2AC →·CD →=BA→2+AC→2+CD→2+2BA →·CD →=3+2·1·1·cos〈BA →,CD →〉=⎩⎪⎨⎪⎧4 〈BA →,CD →〉=60°, 2〈BA →,CD →〉=120°.∴|BD →|=2或2,即B ,D 间的距离为2或 2. 类型四 利用数量积证明垂直问题【例4】 如下图,正方体ABCD A 1B 1C 1D 1中,P 为DD 1的中点,O 是底面ABCD 的中心.求证:B 1O ⊥平面PAC .【分析】 本题考查利用a ⊥b ⇔a ·b =0求证线面垂直,关键是在平面PAC 中找出两相交向量与向量B 1O →垂直.【证明】 不妨设正方体的棱长为1,AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,a ·b=b ·c =a ·c =0.由题图得:PA →=PD →+DA →=-12AA 1→-AD →=-b -12c ,PC →=PD →+DC →=-12AA 1→+AB →=a -12c ,B 1O →=B 1B →+BO →=-c +12(-a +b )=-12a +12b -c .∵PA →·B 1O →=⎝ ⎛⎭⎪⎫-b -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=12a ·b -12b 2+b ·c +14a ·c -14b ·c +12c 2, PC →·B 1O →=⎝⎛⎭⎪⎫a -12c ·⎝ ⎛⎭⎪⎫-12a +12b -c=-12a 2+12a ·b -a ·c +14a ·c -14b ·c +12c 2,又∵|a |=|b |=|c |=1,a ·b =a ·c =b ·c =0,∴PA →·B 1O →=0,PC →·B 1O →=0.∴PA →⊥B 1O →,PC →⊥B 1O →. ∴PA ⊥B 1O ,PC ⊥B 1O .又∵PA ∩PC =P ,∴B 1O ⊥平面PAC .用向量法证明线面垂直,离不开线面垂直的判定定理,需将线面垂直转化为线线垂直,然后利用向量法证明线线垂直即可.已知空间四边形ABCD 中,AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC . 证明:如图.方法一:∵AB ⊥CD ,AC ⊥BD , ∴AB →·CD →=0,AC →·BD →=0.AD →·BC →=(AB →+BD →)·(AC →-AB →)=AB →·AC →+BD →·AC →-AB→2-AB →·BD →=AB →·AC →-AB→2-AB →·BD →=AB →·(AC →-AB →-BD →)=AB →·DC →=0. ∴AD →⊥BC →,从而AD ⊥BC .方法二:设AB →=a ,AC →=b ,AD →=c , ∵AB ⊥CD ,∴AB →·CD →=0,即AB →·(AD →-AC →)=0,a ·(c -b )=0,即a ·c =b ·a . ∵AC ⊥BD ,∴AC →·BD →=0,即AC →·(AD →-AB →)=0,b ·(c -a )=0, 即b ·c =b ·a .∴a ·c =b ·c ,c ·(b -a )=0, 即AD →·(AC →-AB →)=0,AD →·BC →=0. ∴AD →⊥BC →,从而AD ⊥BC.1.如图所示,正方体ABCD A 1B 1C 1D 1的棱长为a ,对角线AC 1和BD 1相交于点O ,则有( C)A.AB →·A 1C 1→=2a 2B.AB →·AC 1→=2a 2C.AB →·AO →=12a 2D.BC →·DA 1→=a 2解析:∵AB →·AO →=AB →·12AC 1→=12AB →·(AB →+AD →+AA 1→)=12(AB →2+AB →·AD →+AB →·AA 1→)=12AB →2=12|AB →|2=12a 2. 2.已知a ,b ,c 是两两垂直的单位向量,则|a -2b +3c |=( B ) A .14 B.14 C .4 D .2解析:|a -2b +3c |2=|a |2+4|b |2+9|c |2-4a ·b +6a ·c -12b ·c =14,∴|a -2b +3c |=14.3.已知i 、j 、k 是两两垂直的单位向量,a =2i -j +k ,b =i +j -3k ,则a·b 等于-2.解析:a·b =(2i -j +k )·(i +j -3k )=2i 2-j 2-3k 2=-2. 4.已知向量a 、b 、c 两两之间的夹角都为60°,其模都为1,则 |a -b +2c |等于 5.解析:(a -b +2c )2=a 2+b 2+4c 2-2a·b +4a·c -4b ·c =1+1+4-2cos60°=5,∴|a -b +2c |= 5.5.如图所示,已知△ADB 和△ADC 都是以D 为直角顶点的直角三角形,且AD =BD =CD ,∠BAC =60°.求证:BD ⊥平面ADC .证明:不妨设AD =BD =CD =1,则AB =AC = 2. BD →·AC →=(AD →-AB →)·AC →=AD →·AC →-AB →·AC →,由于AD →·AC →=AD →·(AD →+DC →)=AD →·AD →=1,AB →·AC →=|AB →|·|AC →|cos60°=2×2×12=1.∴BD →·AC →=0,即BD ⊥AC ,又已知BD ⊥AD , ∴BD ⊥平面ADC .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高中数学课下能力提升二新人教A 版选修
题组1 求曲线的切线方程
1.曲线y =x 3
+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15
2.求曲线y =1x 在点⎝ ⎛⎭
⎪⎫
12,2的切线方程.
题组2 求切点坐标
3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1
4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 5.已知抛物线y =2x 2+1,请求出分别满足下列条件的切点坐标. (1)切线的倾斜角为45°; (2)切线平行于直线4x -y -2=0; (3)切线垂直于直线x +8y -3=0.
题组3 导数几何意义的应用 6.下面说法正确的是( )
A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线
B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在
C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在
D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在
7.曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么( )
A.f′(x0)>0 B.f′(x0)<0
C.f′(x0)=0 D.f′(x0)不存在
8.如图所示,单位圆中弧AB的长为x,f(x)表示弧AB与弦AB所围成的弓形面积的2倍,则函数y=f(x)的图象是( )
9.已知函数y=f(x)的图象如图所示,则函数y=f′(x)的图象可能是________(填序号).
[能力提升综合练]
1.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )
A.不存在 B.与x轴平行或重合
C.与x轴垂直 D.与x轴相交但不垂直
2.曲线y=1
x-1
在点P(2,1)处的切线的倾斜角为( )
A.π
6
B.
π
4
C.
π
3
D.
3π
4
3.曲线y=x3-2x+1在点(1,0)处的切线方程为( )
A.y=x-1 B.y=-x+1
C.y=2x-2 D.y=-2x+2
4.设P0为曲线f(x)=x3+x-2上的点,且曲线在P0处的切线平行于直线y=4x-1,则P0点的坐标为( )
A.(1,0) B.(2,8)
C.(1,0)或(-1,-4) D.(2,8)或(-1,-4)
5.已知二次函数y=f(x)的图象如图所示,则y=f(x)在A、B两点处的导数f′(a)与f′(b)的大小关系为:f′(a)________f′(b)(填“<”或“>”).
6.如图,函数y=f(x)的图象在点P处的切线方程是y=-2x+9,P点的横坐标是4,则f(4)+f′(4)=________.
7.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:
(1)甲、乙二人哪一个跑得快?
(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?
8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.
答案
题组1 求曲线的切线方程 1.
∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9. 2.
所以曲线在点⎝ ⎛⎭
⎪⎫12,2的切线斜率为 k =y ′|x =12
=-4.
故所求切线方程为y -2=-4⎝ ⎛⎭
⎪⎫x -12,即4x +y -4=0. 题组2 求切点坐标
3.解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1.
∴过点(0,b )的切线的斜率为y ′|x =0=a =1. 4.解析:设P (x 0,2x 2
0+4x 0),
又∵f ′(x 0)=16,
∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)
5.解:设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2
, ∴
Δy
Δx
=4x 0+2Δx ,
(1)∵抛物线的切线的倾斜角为45°, ∴斜率为tan 45°=1, 即f ′(x 0)=4x 0=1,得x 0=1
4
,
∴切点坐标为⎝ ⎛⎭
⎪⎫14,98. (2)∵抛物线的切线平行于直线4x -y -2=0, ∴k =4,即f ′(x 0)=4x 0=4,得x 0=1, ∴切点坐标为(1,3).
(3)∵抛物线的切线与直线x +8y -3=0垂直,
∴k ·⎝ ⎛⎭
⎪⎫-18=-1,即k =8.故f ′(x 0)=4x 0=8,得x 0=2. ∴切点坐标为(2,9). 题组3 导数几何意义的应用
6. 解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A ,B ,D 错误.
7. 解析:选B 根据导数的几何意义,f (x )在x 0处的导数即f (x )在x 0处切线的斜率,故f ′(x 0)=-1
2
<0.
8.解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧
AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常
小,即弓形面积的变化较慢;
当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;
从直径的位置开始,随着B 点的继续旋转,弓形面积的变化又由变化较快变为越来越慢. 由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.
9.解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,
f ′(x )=0,当x >0时,f ′(x )<0,故②符合.
答案:②
[能力提升综合练]
1.答案:B
2.解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx
1+Δx ,
斜率为-1,倾斜角为3π
4
.
3.解析:选A 由Δy =(1+Δx )3
-2(1+Δx )+1-(1-2+1)=(Δx )3
+3(Δx )2
+Δx
所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.
4.
由于曲线f (x )=x 3
+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 2
0+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).
5. 解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ). 答案:>
6 解析:由题意,f ′(4)=-2.
f (4)=-2×4+9=1.
因此,f (4)+f ′(4)=-2+1=-1. 答案:-1
7. 解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快; (2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快. 8.解:如图,结合导数的几何意义,我们可以看出:
在t =1.5 s 附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s 之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s 后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.。