DSP芯片的简介
dsp芯片的原理与应用

DSP芯片的原理与应用1. DSP芯片的概述DSP芯片(Digital Signal Processor,数字信号处理器)是一种专门用于数字信号处理的芯片。
它通过对数字信号的处理来实现各种信号处理算法,如音频信号处理、图像处理、视频编解码等。
DSP芯片具有高速计算和高效能耗比的特点,在许多领域都得到了广泛的应用。
2. DSP芯片的原理DSP芯片的核心部分是一组高性能的数学运算单元,主要包括算术逻辑单元(ALU)、寄存器文件和累加器等。
这些数学运算单元可以对数字信号进行加法、减法、乘法、除法等复杂的数学运算,并实现快速的乘积累加(MAC)操作。
此外,DSP芯片还配备了高速的存储器,用于存储待处理的数据和运算结果。
3. DSP芯片的应用领域3.1 音频信号处理DSP芯片在音频信号处理方面应用广泛。
它可以通过数字滤波器对音频信号进行滤波处理,实现均衡器、消噪器、混响器等音效效果。
另外,DSP芯片还可以对音频信号进行编解码,实现音频压缩和解压缩。
3.2 图像处理DSP芯片在图像处理方面也有很多应用。
它可以对图像进行数字滤波、边缘检测和图像增强等处理,用于医学图像的分析、工业检测和图像识别等领域。
3.3 视频编解码在视频处理领域,DSP芯片可以实现视频的压缩和解压缩。
它可以对视频信号进行编码,降低视频数据的传输带宽和存储空间,提高视频传输的效率。
同时,DSP芯片还可以对编码后的视频进行解码,恢复原始的视频信号。
3.4 通信系统DSP芯片广泛应用于各种通信系统中。
它可以实现数字调制解调、误码纠正、信道均衡和信号编码等功能,用于提高通信系统的性能和效率。
此外,DSP芯片还可以实现语音信号的压缩和解压缩,用于语音通信系统和语音识别系统等领域。
3.5 控制系统在控制系统中,DSP芯片可以实现数字控制、数字滤波和模拟信号的转换等功能。
它可以对控制信号进行数字化处理,提高控制系统的精度和稳定性。
此外,DSP芯片还可以与传感器和执行器进行接口,实现实时的控制和反馈。
DSP(Digital Signal Processor 数字信号处理器)简介

DSP(Digital Signal Processor 数字信号处理器)简介DSP是什么?DSP是数字信号处理器(Digital Signal Processor)的缩写,是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它与CCD一样是摄像机的核心元件,如果说CCD是摄像机的“心脏”,那么DSP就是摄像机的“大脑”。
DSP的应用很广泛,并不局限与摄像机,不过大多数人并不了解DSP,下面就来揭开DSP的神秘面纱,简单介绍下DSP。
数字信号处理DSP数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。
而日本的SONY,SHARP以及韩国的三星,LG等厂商在摄像机上的DSP领域有着较强的实力。
DSP微处理器DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器器,其主要应用是实时快速地实现各种数字信号处理算法。
DSP芯片及CCS环境

3.1.7 CPU状态和控制寄存器
‘C54x有三个状态和控制寄存器: 状态寄存器ST0 状态寄存器ST1 处理器工作方式状态寄存器PMST ST0和ST1包括了各种条件和方式的状态,PMST 包括了存储器配置状态和控制信息。
3.1.7 CPU状态和控制寄存器
处理器工作方式状态寄存器PMST: 设定并控制处理器的工作方式,反映处理器的工作状态
3、数字信号处理器的结构特点
④ 指令系统的多级流水线
可把指令周期减少到最小值,同时增加了数 字信号处理器的吞吐量,且流水线可以使用在任 何地方。 几条指令并行执行,每条指令处于其执行过 程中的不同状态。
⑤ 特殊的DSP指令
专用指令及其寻址方式,例如DMOV实现传 递数据,延迟的功能。
4、DSP系统设计与开发
DSP芯片概述及CCS环境初识
一、DSP概述
DSP:数字信号处理技术(Digital Signal Process)
DSP:数字信号处理器(Digital Signal Processor) 前者是理论技术 后者是实时实现 两者结合是解决实际问题的方案(DSPs)
数字信号处理的实现方法
1、软件编程 优点:灵活性强 缺点:速度慢,不能做到实时处理 2、采用专用的DSP芯片 优点:速度快,实时性强 缺点:灵活性差,动态范围和精度较差
国际上许多著名的集成电路生产厂商都相继推出了自己的 DSP器件,但在编程灵活性、软件调试、功耗、外部通信功能 等方面还不够理想。
DSP完善阶段 (2000)
不仅DSP的数字信号处理功能更加完善,而且在系统开发 的方便性、编程调试的灵活性、降低功耗等方面做了许多工作
2、DSP的应用领域
2、DSP的应用领域
四、TMS320C54X的片内外围电路
DSP芯片介绍(精)

DSP 芯片介绍1 什么是DSP 芯片DSP 芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。
DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP 指令,可以用来快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP芯片一般具有如下的一些主要特点:(1)在一个指令周期内可完成一次乘法和一次加法。
(2)程序和数据空间分开,可以同时访问指令和数据。
(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问。
(4)具有低开销或无开销循环及跳转的硬件支持。
(5)快速的中断处理和硬件I/O支持。
(6)具有在单周期内操作的多个硬件地址产生器。
(7)可以并行执行多个操作。
(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。
2 DSP芯片的发展世界上第一个单片DSP 芯片是1978年AMI 公司宣布的S2811,1979年美国Iintel 公司发布的商用可编程期间2920是DSP 芯片的一个主要里程碑。
这两种芯片内部都没有现代DSP 芯片所必须的单周期芯片。
1980年。
日本NEC 公司推出的μPD7720是第一个具有乘法器的商用DSP 芯片。
第一个采用CMOS 工艺生产浮点DSP 芯片的是日本的Hitachi 公司,它于1982年推出了浮点DSP 芯片。
1983年,日本的Fujitsu 公司推出的MB8764,其指令周期为120ns ,且具有双内部总线,从而处理的吞吐量发生了一个大的飞跃。
而第一个高性能的浮点DSP 芯片应是AT&T公司于1984年推出的DSP32。
在这么多的DSP 芯片种类中,最成功的是美国德克萨斯仪器公司(Texas Instruments,简称TI)的一系列产品。
TI公司灾982年成功推出启迪一代DSP 芯片TMS32010及其系列产品TMS32011、TMS32C10/C14/C15/C16/C17等,之后相继推出了第二代DSP 芯片TMS32020、TMS320C25/C26/C28,第三代DSP 芯片TMS32C30/C31/C32,第四代DSP 芯片TMS32C40/C44,第五代DSP 芯片TMS32C50/C51/C52/C53以及集多个DSP 于一体的高性能DSP 芯片TMS32C80/C82等。
dsp芯片的特点

dsp芯片的特点数字信号处理(DSP)芯片是一种专门用于实现数字信号处理算法的集成电路。
它的特点有以下几个方面:1. 高度集成:DSP芯片集成了大量的数字信号处理器核心、内存、输入输出接口等功能模块,使得整个系统具备了高度的集成度。
这样可以在一个芯片上实现多个功能,降低了系统的成本和复杂度。
2. 高性能和低功耗:DSP芯片采用了高性能的处理器核心和高速的内存,使得它在处理高速数字信号时具备了较高的计算能力和数据处理能力。
同时,DSP芯片还采用了低功耗设计,能够在大量的运算任务下保持较低的功耗,延长设备的使用寿命。
3. 多功能性:DSP芯片具备丰富的功能模块和接口,可以适应不同的应用场景。
它可以同时支持多种数字信号处理算法,例如滤波、变换、编码解码等。
同时,它还可以实现多种数据输入输出方式,可以连接各种传感器和执行器,实现与外部设备的数据交互。
4. 高可靠性:DSP芯片具备高可靠性的特点,它采用了可靠的工艺和设计,具备良好的抗干扰能力和抗电磁干扰能力。
同时,DSP芯片还具备自动故障检测和修复功能,可以在出现故障时自动进行处理,保证系统的正常运行。
5. 易于编程和开发:DSP芯片提供了丰富的软件开发工具和编程接口,可以方便地进行程序编写和算法开发。
开发人员可以使用高级语言或者汇编语言进行程序编写,同时还可以使用各种开发工具进行调试和测试。
6. 低成本:由于DSP芯片的大规模集成和标准化设计,使得其制造成本相对较低。
这使得DSP芯片可以在各种应用场景中得到广泛的应用,包括消费电子产品、通信设备、工业自动化等领域。
7. 灵活性:DSP芯片具备较高的灵活性,可以根据不同的应用需求进行定制设计。
开发人员可以根据具体的算法和性能需求进行选择和配置,实现最佳的性能和成本之间的平衡。
总之,DSP芯片作为一种专门用于实现数字信号处理算法的集成电路,具备高度集成、高性能和低功耗、多功能性、高可靠性、易于编程和开发、低成本和灵活性等特点,使得它在各种应用场景中得到广泛的应用。
dsp芯片有哪些

dsp芯片有哪些DSP芯片是数字信号处理器芯片的英文缩写,它是一种专用于数字信号处理的集成电路芯片。
由于其高效性和强大的信号处理能力,DSP芯片在音频、视频、通信、雷达等领域得到了广泛的应用。
以下是一些常见的DSP芯片:1. 德州仪器(Texas Instruments)的TMS320系列:TMS320是一系列广泛应用于通信、音频、视频、雷达、医疗电子设备等领域的DSP芯片。
其中,TMS320C6000系列主要用于高性能信号处理,TMS320C5000系列主要用于音频信号处理。
2. 瑞萨电子(Renesas Electronics)的SHARC系列:SHARC 是瑞萨电子公司推出的一系列高性能DSP芯片,用于音频、通信、嵌入式控制等领域。
SHARC芯片具有多核处理能力和强大的算术运算能力。
3. 模拟设备公司(Analog Devices)的Blackfin系列:Blackfin 是模拟设备公司推出的一系列融合型DSP芯片,集成了DSP 和微处理器的功能。
Blackfin芯片在音频处理、视频图像处理和通信系统中具有广泛的应用。
4. 哈工大芯片(Harbin Microelectronics)的HME系列:HME 系列是哈工大芯片推出的一系列低功耗、高集成度的DSP芯片。
HME芯片主要用于音频处理、语音识别等应用。
5. 三星(Samsung)的Exynos DSP系列:Exynos DSP系列是三星公司推出的一系列高性能DSP芯片,广泛应用于智能手机和移动设备中的图像处理、音频处理等场景。
6. 英特尔(Intel)的Xeon Phi系列:Xeon Phi系列是英特尔公司推出的一系列协处理器,具有超级计算能力。
Xeon Phi芯片通常配合主流的英特尔Xeon处理器使用,用于科学计算、高性能计算等领域。
7. 中兴通讯(ZTE)的龙骁(LongXiao)系列:龙骁系列是中兴通讯公司自主研发的一系列高性能DSP芯片,主要用于5G 通信系统中的信号处理和数据传输。
DSP芯片型号,DSP芯片选型

DSP芯片型号,DSP芯片选型现在市面上的DSP产品很多,定点DSP有200多种,浮点DSP有100多种。
主要生产:TI 公司、AD公司、Lucent、Motorola和LSI Logic公司。
主导产品:TI 公司的TMS320C54xx(16bit 定点)、TMS320C55xx(16bit 定点)、TMS320C62xx(32bit 定点)、TMS320C67xx(16bit 浮点)、Motorola公司的DSP68000系列。
我们在DSP选型时需要注意什么?1、DSP芯片概述16bit定点DSP:最早以TMS320C10/C2X为代表,现在以TM320C2XX/C54XX为代表。
32 bit浮点DSP:代表产品ADSP21020、TMS320C3X通用DSP芯片的代表性产品包括TI公司的TMS320系列、AD公司ADSP21xx系列、MOTOROLA公司的DSP56xx系列和DSP96xx系列、AT&T公司的DSP16/16A 和DSP32/32C等单片器件。
TI的三大主力DSP产品系列为C2000系列主要用于数字控制系统;C5000(C54x、C55x)系列主要用于低功耗、便携的无线通信终端产品;C6000系列主要用于高性能复杂的通信系统。
C5000系列中的TMS320C54x系列DSP芯片被广泛应用于通信和个人消费电子领域。
在DSP系统的设计流程中,选择合适的器件非常重要,在确定了系统功能需求之后,通过先期的算法确定及性能模拟,我们要选择性价比最高的器件才能够为下一步开发提供便利。
DSP系统的设计流程图2,DSP芯片的选择方法一般而言,定点DSP芯片的价格较便宜,功耗较低,但运算精度稍低。
而浮点DSP芯片的优点是运算精度高,且C语言编程调试方便,但价格稍贵,功耗也较大。
例如TI 的TMS320C2XX/C54X系列属于定点DSP芯片,低功耗和低成本是其主要的特点。
而TMS320C3X/C4X/C67X属于浮点DSP芯片,运算精度高,用C语言编程方便,开发周期短,但同时其价格和功耗也相对较高。
dsp芯片的原理与开发应用

DSP芯片的原理与开发应用1. 什么是DSP芯片?DSP芯片(Digital Signal Processor)是一种专用的数字信号处理器芯片,用于加速数字信号的处理和计算。
它通常由高速运算单元、数据存储器和输入输出接口等组成,具备高速、高效的信号处理能力。
DSP芯片广泛应用于音频、视频、通信、雷达、医疗等领域,是实现实时信号处理的重要工具。
2. DSP芯片的工作原理DSP芯片的工作原理可以简单概括为以下几个步骤:2.1 信号采样DSP芯片首先对输入信号进行采样,将连续的模拟信号转换为离散的数字信号。
常用的采样方式有周期采样和非周期采样,通过选择合适的采样频率和采样精度,可以有效地保留原始信号的特征。
2.2 数字信号处理采样后的信号经过ADC(Analog-to-Digital Converter)转换为数字信号后,DSP芯片开始进行数字信号处理。
这个过程包括滤波、变换、编码、解码、增益控制等一系列算法和操作。
DSP芯片通常集成了多种数学运算单元,如乘法器、加法器、移位器等,可以高速、高效地执行各种信号处理算法。
2.3 数据存储DSP芯片在处理过程中需要对输入、输出数据进行存储,通常包括程序存储、数据存储和寄存器等。
程序存储用于存放DSP芯片的软件程序,数据存储用于存放输入、输出数据以及中间计算结果,而寄存器则用于存放计算过程中的临时数据和控制信息。
2.4 输出重构在数字信号处理算法执行完毕后,DSP芯片将输出数据转换为模拟信号,经过DAC(Digital-to-Analog Converter)转换为连续的模拟信号。
输出重构的过程可以根据需求进行滤波、放大等处理,以获取高质量的模拟输出信号。
3. DSP芯片的开发应用DSP芯片具备高速、高效的信号处理能力,广泛应用于以下领域:3.1 通信领域DSP芯片在通信系统中广泛应用,如无线通信、移动通信和光纤通信等。
它可以处理无线信号的调频解调、调制解调、信号压缩和解码,实现高质量的音频和视频通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[摘要] 让你说出知道的芯片的名称,你可能会一时想不起,也不能一一罗列DSP 芯片都有哪些。
或许是对DSP芯片深刻的了解才了然于心,由于种种原因的忘却;或许是因为大家在说DSP芯片好,既然大家都说好,那才是真的好,至于怎样好,可能是似懂非懂。
那好吧,不管是懂还是不懂,现在让我们从新的视角来读懂这个芯片的世界,让你发现不曾明白的细节让你说出知道的芯片的名称,你可能会一时想不起,也不能一一罗列DSP芯片都有哪些。
或许是对DSP芯片深刻的了解才了然于心,由于种种原因的忘却;或许是因为大家在说DSP芯片好,既然大家都说好,那才是真的好,至于怎样好,可能是似懂非懂。
那好吧,不管是懂还是不懂,现在让我们从新的视角来读懂这个芯片的世界,让你发现不曾明白的细节。
DSP芯片,也称数字信号处理器,采用特殊的软硬件结构,是一种专注于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理,是数字信号处理理论实用化过程的重要技术工具。
在语音处理、图像处理等技术领域得到了广泛的应用。
那根据对DSP芯片的理解来对比与其他芯片的最要的区别是什么?杭州海康威视数字技术股份有限公司的高级嵌入式开发经理黄田认为,DSP芯片与其它芯片的最大区别在于它拥有针对各种算法设计的大量专用指令,比如各种向量运算。
另外DSP芯片在设计时更多地考虑到数据总线的带宽以及吞吐量,避免数据访问成为影响算法性能的瓶颈。
芯片的基本结构为了快速地实现数字信号处理运算,DSP芯片一般都采用特殊的软硬件结构。
下面简单介绍DSP芯片的基本结构。
(1)哈佛结构主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。
与两个存储器相对应的是系统中设置了程序总线和数据总线,从而使数据的吞吐率提高了一倍。
由于程序和数据在两个分开的空间,因此取指和执行能完全重叠。
(2)流水线操作流水线与哈佛结构相关,DSP芯片广泛采用流水线以减少指令执行时间,从而增强了处理器的处理能力。
处理器可以并行处理二到四条指令,每条指令处于流水线的不同阶段。
下面所列是一个三级流水线操作的例子:CLLOUT1取指N N-1 N-2;译码N-1 N N-2;执行N-2 N-1 N,(3)专用的硬件乘法器专用的硬件乘法器,乘法速度越快,DSP处理器的性能越高。
由于具有专用的应用乘法器,乘法可在一个指令周期内完成。
(4)特殊的DSP指令DSP是采用特殊的指令。
(5)快速的指令周期特殊的DSP指令,DSP芯片是采用特殊的指令。
快速的指令周期、哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令,再加上集成电路的优化设计可使DSP芯片的指令周期在200ns以下。
DSP系统的特点数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上具有许多新的特征,其特点如下:算术单元具有硬件乘法器和多功能运算单元,硬件乘法器可以在单个指令周期内完成乘法操作,这是DSP区别于通用的微处理器的一个重要标志。
多功能运算单元可以完成加减、逻辑、移位、数据传送等操作。
新一代DSP内部甚至还包含多个并行的运算单元,以提高其处理能力。
针对滤波、相关、矩阵运算等需要大量乘和累加运算的特点,DSP的算术单元的乘法器和加法器,可以在一个时钟周期内完成相乘、累加两个运算。
近年出现的一些DSP如ADSP2106X、DSP96000系列DSP可以同时进行乘、加、减运算,大大加快了FFT的蝶形运算速度。
总线结构传统的通用处理器采用统一的程序和数据空间、共享的程序和数据总线结构,即所谓的冯.诺依曼结构。
DSP普遍采用了数据总线和程序总线分离的哈佛结构或者改进的哈佛结构,极大地提高了指令执行速度。
片内的多套总线可以同时进行取指令和多个数据存取操作,许多DSP片内嵌有DMA控制器,配合片内多总线结构,使数据块传送速度大大提高。
专用寻址单元DSP面向数据密集型应用,伴随着频繁的数据访问,数据地址的计算也需要大量时间。
DSP内部配置了专用的寻址单元,用于地址的修改和更新,它们可以在寻址访问前或访问后自动修改内容,以指向下一个要访问的地址。
地址的修改和更新与算术单元并行工作,不需要额外的时间。
DSP的地址产生器支持直接寻址、间接寻址操作,大部分DSP还支持位反转寻址(用于FFT算法)和循环寻址(用于数字滤波算法)。
片内存储器针对数字信号处理的数据密集运算的需要,DSP对程序和数据访问的时间要求很高,为了减小指令和数据的传送时间,许多DSP内部集成了高速程序存储器和数据存储器,以提高程序和数据访问存储器的速度。
流水处理技术DSP大多采用流水技术,即将一条指令的执行过程分解成取指、译码、取数、执行等若干个阶段,每个阶段称为一级流水。
每条指令都由片内多个功能单元分别完成取指、译码、取数、执行等操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。
DSP与其它处理器的差别数字信号处理器(DSP)、通用微处理器(MPU)、微控制器(MCU)三者的区别在于:DSP面向高性能、重复性、数值运算密集型的实时处理;MPU 大量应用于计算机;MCU则适用于以控制为主的处理过程。
DSP芯片的优点DSP的运算速度比其它处理器要高得多,以FFT为例,高性能DSP不仅处理速度是MPU的4~10倍,而且可以连续不断地完成数据的实时输入/输出。
DSP结构相对单一,普遍采用汇编语言编程,其任务完成时间的可预测性相对于结构和指令复杂(超标量指令)、严重依赖于编译系统的MPU强得多。
以一个FIR滤波器实现为例,每输入一个数据,对应每阶滤波器系数需要一次乘、一次加、一次取指、二次取数,还需要专门的数据移动操作,DSP可以单周期完成乘加并行操作以及3~4次数据存取操作,而普通MPU完成同样的操作至少需要4个指令周期。
因此,在相同的指令周期和片内指令缓存条件下,DSP 的运算速度可以超过MPU运算速度的4倍以上。
DSP芯片的浮点与定点之分在选择DSP器件的时候,是采用浮点还是采用定点,如果用定点是16位还是32位?其实这个问题和你的算法所要求的信号的动态范围有关。
浮点运算DSP比定点运算DSP的动态范围(动态范围:如音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值,又如一个多媒体硬盘播放器输出图像的最亮和最暗部分之间的相对比值)要大很多。
定点DSP 的字长每增加1bit,动态范围扩大6dB,16bit字长的动态范围为96dB。
程序员必须时刻关注溢出的发生。
例如:在做图像处理时,图像做旋转、移动等,就很容易产生溢出。
这时,要么不断地移位定标,要么作截尾。
前者要耗费大量的程序空间和执行时间,后者则很快带来图像质量的劣化。
总之,是使整个系统的性能下降。
在处理低信噪比信号的场合,例如进行语音识别、雷达和声纳信号处理时,也会发生类似的问题。
而32bit浮点运算DSP的动态范围可以作到1536dB,这不仅大大扩大了动态范围,提高了运算精度,还大大节省了运算时间和存储空间,因为大大减少了定标,移位和溢出检查。
由于浮点DSP的浮点运算用硬件来实现,可以在单周期内完成,因而其处理速度大大高于定点DSP,这一优点在实现高精度复杂算法时尤为突出。
定点的计算不过是把一个数据当作整数来处理,通常AD采样来的都是整数,这个数相对于真实的模拟信号有一个刻度因子,大家都知道用一个16位的AD 去采样一个0到5V的信号,那么AD输出的整数除以2^16再乘以5V就是对应的电压。
在定点DSP中是直接对这个16位的采样进行处理,并不将它转换成以小数表示的电压,因为定点DSP无法以足够的精度表示一个小数,它只能对整数进行计算。
而浮点DSP的优势在于它可以把这个采样得到的整数转换成小数表示的电压,并不损失精度(这个小数用科学记数法来表示),原因在于科学记数法可以表示很大的动态范围的一个信号,以IEEE754浮点数为例,单精度浮点格式:[31] 1位符号[30-23]8位指数[22-00]23位小数。
这样的能表示的最小的数是+-2^-149,最大的数是+-(2-2^23)*2^127,动态范围为20*log(最大的数/最小的数)=1667.6dB这样大的动态范围使得在编程的时候几乎不必考虑乘法和累加的溢出,而如果使用定点处理器编程,对计算结果进行舍入和移位则是家常便饭,这在一定程度上会损失精度。
原因在于定点处理的信号的动态范围有限,比如16位定点DSP,可以表示整数范围为1-65536,其动态范围为20*log(65536/1)=96dB.对于32定点DSP,动态范围为20*log(2^32/1)=192dB,远小于32位ieee浮点数的1667.6dB,但是实际上192dB对绝大多数应用所处理的信号已经足够了。
由于AD转换器的位数限制,一般输入信号的动态范围都比较小,但在DSP的信号处理中,由于点积运算会使中间节点信号的动态范围增加,所以主要考虑信号处理流程中中间结果的动态范围,以及算法对中间结果的精度要求,来选择相应的DSP。
另外就是浮点的DSP更易于编程,定点DSP 编程中程序员要不断调整中间结果的PQ值,实际就是不断对中间结果进行移位调整和舍入。
实数运算可直接透过代码加入硬件运算中,而定点元件必须透过软件才能间接执行实数运算,这就增加了运算法指令并延长了开发时间。
整体上说,定点DSP在成本上具有优势而浮点DSP在易用上较优。
DSP芯片的发展现状与应用自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。
一方面得益于集成电路的发展,另一方面也得益于巨大的市场。
在短短的十多年时间,DSP芯片已经在信号处理、通信等许多领域得到了广泛的应用。
对于DSP芯片的发展现状和DSP如何与其他产品搭配应用解决方案海康威视的黄田作出了如下这样的看法:DSP芯片已经在向专业化、多元化方向发展,各厂家的市场划分越来越细,差异性也越来越大。
另外,单纯的DSP芯片已经不多见,更多的是DSP芯片与其它处理核心集成在一起,形成一个集成度高、针对性强的SOC,不仅极大地降低了板级空间,也带来了功耗、成本以及开发周期的全面优势,从而推动了行业的发展和产品性能的提高。
DSP的优势在于灵活的算法集成,可以给产品提供强大的性能以及灵活的定制,同一产品针对各类客户不同的需求实现不同的解决方案。
为了提高产品的竞争力,厂商都会在算法上做足文章,算法变得越来越复杂,但是算法的稳定性、产品的功耗、开发周期等都会成为难以驾驭的风险。
DSP算法不是一大堆理论公式的堆砌,而是与所使用DSP芯片的具体特点紧密结合的精致软件。