初三数学圆的基本知识(一)知识精讲 人教版

合集下载

九年级数学上学期期中考点大串讲(人教版):圆

九年级数学上学期期中考点大串讲(人教版):圆
弦,但弦不一定是直径.
B
知识大全
B
3.弧:圆上任意两点间的部分叫做圆弧,
(
简称弧.以A、B为端点的弧记作 AB ,
读作“圆弧AB”或“弧AB”.
➢半圆
·O
C
A
圆的任意一条直径的两个端点把圆分成
两条弧,每一条弧都叫做半圆.
B
·O
➢劣弧与优弧
(
小于半圆的弧叫做劣弧.如图中的AC ;
(
大于半圆的弧叫做优弧.如图中的ABC.
人教版九年级上册
第24章 圆
【十二大考点串讲+素养提升】
思维导图
知识大全
考点一、与圆有关的概念
1.圆:平面内到定点的距离等于定长的所有点组成的图形.
2.弦:连接圆上任意两点的线段(如图中的AC)叫做弦.
经过圆心的弦(如图中的AB)叫做直径.
A
C
·
O
注意
1.弦和直径都是线段.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的
2
2
∴ OE=OF
又∵ AB=CD,
知识大全
考点五、圆周角及其定理、推论
1.概念:在圆中,除圆心角外,还有一类角(如图中的∠ACB),它的
顶点在圆上,并且两边都与圆相交,我们把这样的角叫做圆周角.
(两个条件必须同时具备,缺一不可)
知识大全
2.圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半.
AB=CD
(3)如果∠AOB=∠COD,那么_______,_______.
(4)如果AB=CD,OE⊥AB,OF⊥CD,垂足分别为E,F,
OE与OF相等吗?为什么?
解:OE=OF.理由如下: ∴ AE=CF

九年级圆的知识点讲义

九年级圆的知识点讲义

九年级圆的知识点讲义1. 什么是圆?圆是平面上所有到一个固定点距离都相等的点的集合。

这个固定点称为圆心,到圆心的距离称为半径。

2. 圆的基本要素圆的基本要素包括圆心、半径、直径、弧和弦。

- 圆心:圆的中心点,用字母O表示。

- 半径:从圆心到圆上任意一点的距离,用字母r表示。

- 直径:穿过圆心的线段,并且两个端点都在圆上,直径的长度是半径的两倍,用字母d表示。

- 弧:圆上两点间的一段弯曲部分。

- 弦:圆上任意两点间直线段。

3. 圆的性质(1)半径相等性质:圆上任意两点之间的半径都相等。

(2)直径长为两倍性质:圆的直径长等于其半径的两倍,即d=2r。

(3)弧长和弧度性质:圆的弧长与圆心角的度数成正比,弧长等于圆周率π乘以半径的长度,用公式l = πr表示。

(4)圆周率π:π是一个无理数,大约等于3.14,用来计算圆的周长和面积。

4. 圆的坐标系表示圆可以在平面直角坐标系中表示为一个方程。

以圆心坐标为(h,k),半径为r的圆表示为:(x - h)² + (y - k)² = r²5. 圆的相关公式和定理(1)周长计算公式:圆的周长等于直径乘以π,或等于2倍半径乘以π,用公式C = πd或C = 2πr表示。

(2)面积计算公式:圆的面积等于半径的平方乘以π,用公式A = πr²表示。

(3)相交弧的性质:当两个圆相交时,它们的相交弧的度数之和等于360度。

(4)切线和半径垂直定理:切线和半径之间的夹角是直角。

6. 圆的应用圆在生活和科学中有广泛的应用,例如建筑结构中的圆形拱门、运动学中的圆周运动、天文学中的星体运动轨迹等等。

以上就是九年级圆的知识点讲义。

希望这份讲义能够帮助你更好地理解和掌握圆的相关知识。

人教版九年级上册第24章:圆的知识点归纳总结大全

人教版九年级上册第24章:圆的知识点归纳总结大全

圆的知识点归纳总结大全一、圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:➢平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

➢平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O 的半径为r ,OP=d 。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)8、直线与圆的位置关系。

d 表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。

29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。

则AB=221221)()(y y x x -+- 10、圆的切线判定。

初三数学圆的基本知识知识精讲一 人教版

初三数学圆的基本知识知识精讲一 人教版

初三数学圆的基本知识知识精讲一一. 本周教学内容:圆的基本知识(一)(一)知识要点1. 圆与点、圆与直线、圆与圆的位置关系。

()1点在圆外⇔>d rd r点在圆上⇔=d r点在圆内⇔<d r()2直线与圆相离⇔>d r直线与圆相切⇔=d r直线与圆相交⇔<圆的切线垂直于过切点的半径,它的逆命题也成立。

d R r()3两圆外离⇔>+d R r d R r两圆相切或⇔=+=-()R r d R r R r两圆相交⇔-<<+>()两圆内含⇔<->d R r R r两圆相交时,连心线垂直平分公共弦,两圆的外(内)公切线长相等。

2. 与圆有关的角(1)圆心角:顶点在圆心、圆心角与它所对的弧的度数相等。

(2)圆周角:顶点在圆上,圆周角等于同弧上圆心角的一半。

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切,弦切角的度数等于它所夹的弧的度数的一半。

3. 圆与三角形、四边形、正多边形的关系(1)三角形有且只有一个外接圆和一个内切圆,它们的圆心分别叫三角形的外心和内心。

(2)圆的内接四边形对角互补,外角等于其内对角。

(3)正多边形有外接圆和内切圆。

(4)圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形。

4. 与圆有关的定理垂径定理、切线长定理、圆周角定理、弦切角定理、相交弦定理、切割线定理。

(二)思想方法总结 1. 转化思想能将复杂图形转化为简单图形,将正多边形的有关计算问题转化为解直角三角形的问题来解决。

2. 方程思想:在相交弦定理、切割线定理及弧长公式中,已知其它l n R=π180量,求一个量,运用方程的思想。

(三)有关辅助线的做法一些辅助线的添法概括如下:遇直径,作直径上的圆周角;遇切线,作过切点的半径或连结圆上某一点构成弦切角;证明圆周角相等,常用同弧上的圆心角过渡或作同弧上的圆周角;求弦长、弦心距、半径,常作垂直于弦的半径,连结圆心和弦的端点构造直角三角形;证明线段等积或成比例,一般构造相交弦、相交割线或相似三角形;遇到四个点在同一圆周上,要考虑到顺次连结四点构成圆内接四边形,用其性质解题;遇到圆外切三角形、多边形,应注意到切线长定理的应用。

人教版-数学-九年级上册-知识归纳:圆

人教版-数学-九年级上册-知识归纳:圆

知识归纳:圆本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.10.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理. 运用圆内接四边形的性质解有关计算和证明题.。

人教版九年级圆章节知识点

人教版九年级圆章节知识点

人教版九年级圆章节知识点圆是几何学中一个重要的概念,它的研究内容丰富多样,包括圆的定义、性质、定理等。

在九年级数学教材中,圆章节是一个重点和难点,本文将对人教版九年级圆章节的知识点进行详细讲解。

一、圆的基本概念1. 定义:平面上距离固定点(圆心)距离相等的所有点构成的图形称为圆。

2. 要素:圆心、半径、直径。

- 圆心:圆的中心点,用大写字母O表示。

- 半径:连接圆心和圆上任意一点的线段,用字母r表示。

- 直径:连接圆上任意两点并经过圆心的线段,直径是半径的两倍,用字母d表示。

二、圆的性质和定理1. 圆的性质:- 圆上任意两点之间的线段都是半径。

- 圆上任意一点到圆心的距离都相等,等于半径的长度。

- 圆的直径是圆上任意两点的最大距离,直径是半径的两倍。

- 圆的半径垂直于半径所在的弦。

2. 圆的定理:a. 弧的性质:- 圆的任意弧所对的圆心角相等。

- 圆上任意两点的弦所对的圆心角相等。

- 两条弦所夹的圆心角等于它们所夹的两个弧所对的圆心角之和。

b. 切线与弦的性质:- 从同一圆外一点引向圆的两条切线相等。

- 切线与半径垂直。

c. 同弧或同圆心角所对的弧相等。

三、圆的计算1. 周长:圆的周长等于圆的直径乘以π,其中π取近似值3.14或22/7。

周长 = 直径× π = 2 × 半径× π。

2. 面积:圆的面积等于圆的半径平方乘以π,其中π取近似值3.14或22/7。

面积 = 半径 ×半径× π = 半径的平方× π。

四、圆的应用1. 圆在几何图形中的运用,如圆的切线问题、圆与三角形、四边形的关系等。

2. 圆的运动学应用,如汽车轮胎的旋转、摩天轮的运动等。

3. 圆的工程应用,如建筑物的圆形设计、电子设备的圆形面板等。

总结:通过对人教版九年级圆章节的学习,我们了解了圆的基本概念、性质和定理,学会了圆的计算方法,并了解了圆在几何学、运动学和工程学中的应用。

人教九年级圆的内容知识点

人教九年级圆的内容知识点圆是几何学中的基本概念之一,也是一种简洁而美妙的几何形状。

在人教九年级的数学课程中,圆的内容是一个重点,涉及了许多重要的知识点。

本文将以人教九年级圆的内容为主题,介绍一些相关的知识点和概念。

一、圆的定义圆是由平面上所有与给定点的距离都相等的点组成的集合。

这个给定点称为圆心,所有与圆心的距离相等的点构成的路径称为圆周。

圆周是由一条线段无限延伸而成的曲线。

二、圆的元素圆由几个重要的元素组成,包括圆心、半径、直径和弧。

1. 圆心:圆的中心点称为圆心,通常用大写字母O表示。

2. 半径:从圆心到圆周上的任意一点的距离称为半径,通常用小写字母r表示。

半径的长度决定了圆的大小。

3. 直径:通过圆心并且两端点在圆周上的线段称为直径,直径的长度是半径长度的两倍。

4. 弧:圆周上的一段曲线称为弧,弧是圆的一个重要特征,也是圆的一大美丽之处。

三、圆的性质1. 圆与直径的关系:圆周上的任意一条弧都对应着一个与之等长的直径。

2. 圆的弧长:圆周上的一条弧对应的弧长是这条弧所对应的圆周的一部分,计算弧长可以使用圆的周长公式:l = 2πr,其中l表示弧长,r表示半径。

3. 圆的面积:圆的面积是由圆周所围成的平面区域的大小,计算圆的面积可以使用圆的面积公式:S = πr²,其中S表示面积。

4. 圆与正多边形的关系:当正多边形的边数越多时,它的内接圆越接近于圆形,并且它们的周长和面积也越接近于圆的周长和面积。

四、圆的绘制绘制圆可以使用一些常见的方法,如:1. 使用圆规和直尺:将圆规的一只脚放在圆心上,另一只脚固定在纸上,然后逐渐移动圆规的固定脚,从而画出不同半径的圆。

2. 使用绳子和铅笔:将绳子一端系在圆心上,另一端系上铅笔,然后以绳子为半径,用铅笔绕圆心画弧,最终得到一个圆。

3. 使用计算机软件:在现代科技发达的时代,使用数学软件或绘图软件可以轻松绘制圆形图形。

五、圆的应用圆不仅仅是几何学的基本概念,还在许多实际生活中有重要的应用。

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

其固定的端点O 叫做圆心,线段OA 叫做半径。

2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。

(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。

(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。

2、到定点的距离等于定长的点都在同一个圆上。

注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。

(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。

(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

以AC 为端点的弦,记作:弦AC 。

注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。

2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。

以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。

2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,如图中的⨀ABC 。

小于半圆的弧叫做劣弧,如图中的⨀AC。

注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。

(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。

3、同圆或等圆:能够重合的两个圆叫做等圆。

同圆或等圆的半径相等。

4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

等弧是全等的,不仅仅是弧的长度相等。

5、同心圆:圆心相同,半径不相等的圆叫做同心圆。

二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。

人教版九年级数学上册 第24章 圆基础的知识点,(圆讲义)

学员姓名:_______ 年级:__________ 所授科目:___数学__________一、圆的定义:1. 描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径.2 圆的表示方法:通常用符号⊙表示圆,定义中以O为圆心,OA为半径的圆记作“O⊙”,读作“圆O”.3 同圆、同心圆、等圆:圆心相同且半径相等的圆叫同圆;圆心相同,半径不相等的两个圆叫做同心圆;能够重合的两个圆叫做等圆.注意:同圆或等圆的半径相等.1. 弦:连结圆上任意两点的线段叫做弦.2. 直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍.3. 弦心距:从圆心到弦的距离叫做弦心距.4. 弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作AB,读作弧AB.5. 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.6. 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆.7. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.板块二:圆的对称性与垂径定理一、圆的对称性1. 圆的轴对称性:圆是轴对称图形,对称轴是经过圆心的任意一条直线.2. 圆的中心对称性:圆是中心对称图形,对称中心是圆心.3. 圆的旋转对称性:圆是旋转对称图形,无论绕圆心旋转多少角度,都能与其自身重合.二、垂径定理1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论1:⑴平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;⑵弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑶平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3. 推论2:圆的两条平行弦所夹的弧相等.练习题;1.判断:(1)直径是弦,是圆中最长的弦。

初三数学圆知识精讲 人教版

初三数学圆知识精讲人教版一. 本周教学内容:圆(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。

2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

3. 圆的确定不在同一条直线上的三点确定一个圆。

4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2 圆的两条平行弦所夹的弧相等。

5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆的基本知识(一)知识精讲 人教版【同步教育信息】 一. 本周教学内容:圆的基本知识(一)(一)知识要点1. 圆与点、圆与直线、圆与圆的位置关系。

()1点在圆外⇔>d r 点在圆上⇔=d r 点在圆内⇔<d r ()2直线与圆相离⇔>d r 直线与圆相切⇔=d r 直线与圆相交⇔<d r圆的切线垂直于过切点的半径,它的逆命题也成立。

()3两圆外离⇔>+d R r两圆相切或⇔=+=-d R r d R r 两圆相交⇔-<<+>R r d R r R r ()两圆内含⇔<->d R r R r ()两圆相交时,连心线垂直平分公共弦,两圆的外(内)公切线长相等。

2. 与圆有关的角(1)圆心角:顶点在圆心、圆心角与它所对的弧的度数相等。

(2)圆周角:顶点在圆上,圆周角等于同弧上圆心角的一半。

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切,弦切角的度数等于它所夹的弧的度数的一半。

3. 圆与三角形、四边形、正多边形的关系(1)三角形有且只有一个外接圆和一个内切圆,它们的圆心分别叫三角形的外心和内心。

(2)圆的内接四边形对角互补,外角等于其内对角。

(3)正多边形有外接圆和内切圆。

(4)圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形。

4. 与圆有关的定理垂径定理、切线长定理、圆周角定理、弦切角定理、相交弦定理、切割线定理。

(二)思想方法总结 1. 转化思想能将复杂图形转化为简单图形,将正多边形的有关计算问题转化为解直角三角形的问题来解决。

2. 方程思想:在相交弦定理、切割线定理及弧长公式中,已知其它l n R=π180量,求一个量,运用方程的思想。

(三)有关辅助线的做法一些辅助线的添法概括如下:遇直径,作直径上的圆周角;遇切线,作过切点的半径或连结圆上某一点构成弦切角;证明圆周角相等,常用同弧上的圆心角过渡或作同弧上的圆周角;求弦长、弦心距、半径,常作垂直于弦的半径,连结圆心和弦的端点构造直角三角形;证明线段等积或成比例,一般构造相交弦、相交割线或相似三角形;遇到四个点在同一圆周上,要考虑到顺次连结四点构成圆内接四边形,用其性质解题;遇到圆外切三角形、多边形,应注意到切线长定理的应用。

【典型例题】1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。

132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。

解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示,过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E ,∵,,∴,AB AC AD AE ====323222 ∵,∴∠,OA OAD AD OA ===132cos c o s ∠O A E AE OA ==22∴∠OAD=30°,∠OAE=45°,故∠BAC=75°,当AB 、AC 在圆心O 同侧时,如下图所示,同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15°点拨:本题易出现只画出一种情况,而出现漏解的错误。

例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D ,如果点既是的中点,又是边的中点,D AB AC ⋂(1)求证:△ABC 是直角三角形;()22求的值AD BC分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ⋂则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC22122===解:(1)证明,作直径DE 交AB 于F ,交圆于E∵为的中点,∴⊥,D AB AB DE AF FB ⋂=又∵AD=DC ∴∥,DF BC DF BC =12∴AB ⊥BC ,∴△ABC 是直角三角形。

(2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90°而AB ⊥DE ,∴△ADF ∽△EDA∴,即·AD DE DFADAD DE DF ==2 ∵,DE R DF BC ==212∴·,故AD BC R AD BCR 22==例3. 如图,在⊙O 中,AB=2CD ,那么( )A AB CDB AB CD ..⋂>⋂⋂<⋂22C AB CD D AB CD ..⋂=⋂⋂⋂22与的大小关系不确定分析:要比较与的大小,可以用下面两种思路进行:AB CD ⋂⋂2()112把的一半作出来,然后比较与的大小。

AB AB CD ⋂⋂⋂()222把作出来,变成一段弧,然后比较与的大小。

CD CD AB ⋂⋂⋂解:解法(一),如图,过圆心O 作半径OF ⊥AB ,垂足为E ,则AF FB AB ⋂=⋂=⋂12AE EB AB ==12∵,∴AB CD AE CD AB ===212∵AF FB AF FB ⋂=⋂=,∴在△AFB 中,有AF+FB>AB∴,∴,∴,∴2222AF AB AF ABAF CD AF CD >>>⋂>⋂∴AB CD ⋂>⋂2∴选A 。

解法(二),如图,作弦DE=CD ,连结CE则DE CD CE ⋂=⋂=⋂12在△CDE 中,有CD+DE>CE ∴2CD>CE∵AB=2CD ,∴AB>CE∴,∴AB CE AB CD ⋂>⋂⋂>⋂2∴选A 。

例4. 如图,四边形内接于半径为的⊙,已知,ABCD 2O AB BC AD ===141 求CD 的长。

分析:连结BD ,由AB=BC ,可得DB 平分∠ADC ,延长AB 、DC 交于E ,易得△EBC ∽△EDA ,又可判定AD 是⊙O 的直径,得∠ABD=90°,可证得△ABD ≌△EBD ,得DE=AD ,利用△EBC ∽△EDA ,可先求出CE 的长。

解:延长AB 、DC 交于E 点,连结BD ∵AB BC AD ===141 ∴,,∴∠∠AB BC AD ADB EDB ⋂=⋂==4∵⊙O 的半径为2,∴AD 是⊙O 的直径 ∴∠ABD=∠EBD=90°,又∵BD=BD∴△ABD ≌△EBD ,∴AB=BE=1,AD=DE=4 ∵四边形ABCD 内接于⊙O ,∴∠EBC=∠EDA ,∠ECB=∠EAD∴△∽△,∴EBC EDA BC AD CEAE=∴·CE BC AE AD BC AB BE AD ==+=+=()11412∴CD DE CE =-=-=41272例5. 如图,、分别是⊙的直径和弦,为劣弧上一点,⊥AB AC O D AC DE AB ⋂于H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点。

(1)当△PCF 满足什么条件时,PC 与⊙O 相切,为什么?()22当点在劣弧的什么位置时,才能使·,为什么?D AC AD DE DF ⋂=分析:由题意容易想到作辅助线OC , (1)要使PC 与⊙O 相切,只要使∠PCO=90°,问题转化为使∠OCA+∠PCF=∠FAH+∠AFH 就可以了。

()22要使·,即使,也就是使△∽△AD DE DF AD DE DFADDAF DEA == 解:(1)当PC=PF ,(或∠PCF=∠PFC )时,PC 与⊙O 相切, 下面对满足条件PC=PF 进行证明, 连结OC ,则∠OCA=∠FAH ,∵PC=PF ,∴∠PCF=∠PFC=∠AFH ,∵DE ⊥AB 于H ,∴∠OCA+∠PCF=∠FAH+∠AFH=90° 即OC ⊥PC ,∴PC 与⊙O 相切。

()22当点是劣弧的中点时,·,理由如下:D AC AD DE DF ⋂=连结,∵,∴∠∠AE AD CD DAF DEA ⋂=⋂= 又∵∠∠,ADF EDA =∴△∽△,∴DAF DEA AD DE DFAD=即AD 2=DE ·DF点拨:本题是一道条件探索问题,第(1)问是要探求△PCF 满足什么条件时,PC 与⊙O 相切,可以反过来,把PC 与⊙O 相切作为条件,探索△PCF 的形状,显然有多个答案;第(2)问也可将AD 2=DE ·DF 作为条件,寻找两个三角形相似,探索出点D 的位置。

例6. 如图,四边形是矩形,以为直径作半圆,过点ABCD ()AB BC BC O >12D 作半圆的切线交AB 于E ,切点为F ,若AE :BE=2:1,求tan ∠ADE 的值。

分析:要求tan ∠ADE ,在Rt △AED 中,若能求出AE 、AD ,根据正切的定义就可以得到。

ED=EF+FD ,而EF=EB ,FD=CD ,结合矩形的性质,可以得到ED 和AE 的关系,进一步可求出AE :AD 。

解:∵四边形ABCD 为矩形,∴BC ⊥AB ,BC ⊥DC ∴AB 、DC 切⊙O 于点B 和点C ,∵DE 切⊙O 于F ,∴DF=DC ,EF=EB ,即DE=DC+EB , 又∵AE :EB=2:1,设BE=x ,则AE=2x ,DC=AB=3x , DE=DC+EB=4x ,在Rt △AED 中,AE=2x ,DE=4x , ∴AD x =23 则∠t a n A D E AE AD x x ===22333点拨:本题中,通过观察图形,两条切线有公共点,根据切线长定理,得到相等线段。

例7. 已知⊙O 1与⊙O 2相交于A 、B 两点,且点O 2在⊙O 1上,(1)如下图,AD 是⊙O 2的直径,连结DB 并延长交⊙O 1于C ,求证CO 2⊥AD ;(2)如下图,如果AD 是⊙O 2的一条弦,连结DB 并延长交⊙O 1于C ,那么CO 2所在直线是否与AD 垂直?证明你的结论。

分析:(1)要证CO 2⊥AD ,只需证∠CO 2D=90°,即需证∠D+∠C=90°,考虑到AD 是⊙O 2的直径,连结公共弦AB ,则∠A=∠C ,∠DBA=90°,问题就可以得证。

(2)问题②是一道探索性的问题,好像难以下手,不妨连结AC ,直观上看,AC 等于CD ,到底AC 与CD 是否相等呢?考虑到O 2在⊙O 1上,连结AO 2、DO 2、BO 2,可得∠1=∠2,且有△AO 2C ≌△DO 2C ,故CA=CD ,可得结论CO 2⊥AD 。

相关文档
最新文档