计算机图形学实习23
计算机图形学实习23

实习二基本图形生成原理(一,二)一、实习的目的和意义通过编程实现直线、圆、椭圆生成,以掌握基本图形的生成原理和算法;实现不同的线宽和线型;即线的属性。
并通过计时对同一种图元的不同生成算法进行比较,从而理解OpenGL图形函数库中不同的图元生成方法的效率。
同时熟悉OpenGL的基本库函数。
二、实习内容要求本次实习中,将在OpenG中实现如下基本的计算机绘图功能:1.为屏幕显示定义一个坐标系统;2.熟悉绘点函数,并上机实习课件上的几个画点函数的例子;3. 熟悉画线方法,并熟悉不同的画线状态,并上机实习课件上的几个画线函数的例子;4. 在模板中添加代码,实现DDA法和Bresenham法绘制直线图元;5.实现Bresenham法绘制圆图元;6.实现中点法椭圆图元的生成(选做);7.掌握顶点阵列和象素阵列绘制图元的方法,用顶点阵列绘制一个长方体,并设置表面颜色;8. 理解字符的存储和显示原理,掌握OpenGL的2种字符生成方法,并分别生成不同大小和风格的字符;9. 熟悉OpenGL的显示列表(选做);10. 实现根据给定的宽度要求生成不同宽度的线段。
三、实习参考1.参考教材3-2节中函数格式为屏幕显示定义一个坐标系统;2.参考教材3-3节中点的定义方式,并会用类或结构体定义点;3.参考教材3-4节中画线方法,体会GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP三个不同状态下生成线的样式;4.参考教材3-5节中DDA法和Bresenham法,分别用这2种方法画线并进行比较;5.参考教材3-9节,将八分法分别用于直角坐标、极坐标和Bresenham法绘制圆;6.参考教材3-10节绘制椭圆;7.参考教材3-17,3-19节,用顶点数组和颜色数组以及顶点索引绘制一个长方体,并体会这种绘制的优点;注:如果绘制的是三维图元,可以通过设置视点位置和透视投影观察立体效果:视点变换函数:void gluLookAt(GLdouble eyex,GLdouble eyey,GLdouble eyez, GLdouble centerx, GLdouble centery,GLdouble upx,GLdouble upy,GLdouble upz);OpenGL透视投影函数有两个,glFrustum()和gluPerspective():函数glFrustum()的原型为:void glFrustum( GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far )。
计算机图形学实习报告

实习报告实习名称:计算机图形学实习班级:学号:姓名:实习地点:实习指导教师:实习时间:年月日至月日一、实习目的与意义本次计算机图形学的实习分两部分,一部分是利用AutoCAD进行二维和三维模型的制作,另一部分是利用VC6.0进行编程实现对图形的简单操作。
通过对AutoCAD的实习,熟悉该软件的基本功能及操作特点,掌握二维及三维图形的基本制作过程。
通过对VC6.0的编程实习,理解图形的生成、图形的变换、图形的显示以及二维裁剪的基本思想,熟练掌握计算机图形学的基本原理和方法;熟练掌握计算机图形学算法的实现算法;学习和掌握图形系统的设计;学习用VC++编写计算机图形学程序;建立面向对象编程的基本概念。
二、实习主要内容1、AutoCAD软件操作(1)简单图形绘制(2)图形的基本编辑命令操作(3)标注文字及填充(4)三维图形绘制2.基于VC6.0下的计算机图形学程序编写(1)图形的生成:画直线、画圆、画曲线、画字符(2)图形的变换:平移、旋转、缩放、对称变换(3)图形的显示:扫描线填充、边缘填充、种子填充(4)图形的二维裁剪:CS裁剪、多边形裁剪、梁友栋裁剪、圆裁剪、中点分割法三、实习的主要过程第一部分 AutoCAD软件操作AutoCAD软件可以处理很多问题,在机械制图,土木建筑等方面有着广泛的应用,我们在机房打开AutoCAD软件对其进行系统配置,然后进行具体操作。
通过配置可以实现工具栏之类的快捷运用。
(1)简单图形绘制实习开始的第一天,在老师的讲解以及演示下,我们了解了AutoCAD软件的基本使用方法,与此同时,我们跟着老师的操作也逐渐熟悉了该软件的一些基本操作方法。
从设置基本绘图环境开始,按照指导书上的指示,采用边完成简单图形边学习各种命令的方式,逐渐熟练掌握了AutoCAD的使用,熟练掌握了其基本绘图功能,如掌握了绘图命令POINT、LINE、CIRCLE、ARC、DONUT、RECTANGLE、POLYLINE的功能及操作;掌握了实体绘图命令键盘输入的方法;掌握了缩放命令(ZOOM)的使用方法等。
《计算机图形学》实验报告

《计算机图形学》实验报告目录1实验2:直线的生成 (1)1.1实验要求和目的 (1)1.2实验课时 (1)1.3实验环境 (1)1.4实验内容 (1)1.5核心代码 (3)1.6实验结果 (7)1.6.1DDA算法 (10)1.6.2Mid-Bresenham算法 (11)1.7心得与体会 (12)2实验4:BSpline曲线绘制 (13)2.1实验要求和目的 (13)2.2实验课时 (13)2.3实验环境 (13)2.4实验内容 (13)2.5核心代码 (16)2.6实验结果 (18)2.6.1B-样条算法 (19)2.6.2Bezeir算法 (22)2.7心得与体会 (24)附录 (25)BSpline曲线控制点的测试数据 (25)数据1 (25)数据2 (27)数据3 (29)数据4 (30)数据5 (31)数据6 (33)数据7 (36)数据8 (38)1实验2:直线的生成1.1实验要求和目的理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力;编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。
1.2实验课时3学时1.3实验环境本试验提供自带实验平台·开发环境:Visual C++ 6.0·实验平台:Free_Curve(自制平台)1.4实验内容本实验提供名为 Experiment_Frame_One的平台,该平台提供基本绘制、设置、输入功能,学生在此基础上实现·平台界面:如图1.4.1所示·设置:通过view->setting菜单进入,如图1.4.2所示·输入:通过view->input…菜单进入,如图1.4.3所示·实现算法:▪DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1)▪Mid_Bresenham算法:voidCExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)图 1.4.1 总界面图 1.4.2 设置界面图 1.4.3 输入界面1.5核心代码本次实验的核心代码如下所示。
计算机图形学实验报告

计算机图形学实验报告计算机图形学课程综合实验题⽬:WebGL实现正⽅体的3D旋转作者分⼯:单独完成签名:时间:2018年1⽉16⽇⼀、实验⽬的掌握WebGL的三维图形绘制⽅法⼆、实验要求结合相关的图形学知识,使⽤WebGL编程实现在浏览器显⽰⼀个3D的正⽅体,并可通过⿏标操作控制此正⽅体的旋转;利⽤纹理知识为正⽅体的各个⾯贴上图⽚。
实验完成后要求根据⾃⼰的成果撰写⼀份实验报告。
三、实现原理实现⿏标控制⽴⽅体的旋转需要监听⿏标的移动时间,在⿏标按下左键时记录⿏标此时的坐作为初始坐标,然后在⿏标移动时⽤当前坐标减去初始坐标,获得⿏标的位移,根据这个位移计算旋转矩阵,从⽽旋转⽴⽅体。
具体实现细节如下:1、⾸先需要设置两个着⾊器:a.顶点着⾊器的作⽤是保存图形的顶点信息(如位置,颜⾊等),具体代码如下,本程序使⽤模型视图投影矩阵变换顶点坐标,并通过v_TexCoord向⽚元着⾊器提供纹理坐标⽤于映射纹理。
绘制⼀个顶点需要调⽤⼀次。
图1 顶点着⾊器程序b.⽚元着⾊器:⽚元相当于像素,此着⾊器通过gl_FragColor指定颜⾊,可以对相应的区域进⾏绘制。
图2 ⽚元着⾊器程序2、设置⼀个缓冲区对象,这是web GL的⼀个存储区。
⽤于保存想要绘制的所有顶点的数据,并且能⼀次性向顶点着⾊器输⼊多个顶点数据。
需要的操作如下,初始化时已经为要绘制的⽴⽅体指定了坐标。
function initVertexBuffers(gl) {// 创建⽴⽅体// v6----- v5// /| /|// v1------v0 |// | | | |// | |v7--- - |v4// |/ |/// v2------v3var vertices = new Float32Array([ // ⽴⽅体顶点坐标1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0,-1.0, 1.0, 1.0,-1.0, 1.0, // v0-v1-v2-v3 前1.0, 1.0, 1.0, 1.0,-1.0, 1.0, 1.0,-1.0,-1.0, 1.0, 1.0,-1.0, // v0-v3-v4-v5 右1.0, 1.0, 1.0, 1.0, 1.0,-1.0, -1.0, 1.0,-1.0, -1.0, 1.0, 1.0, // v0-v5-v6-v1 上-1.0, 1.0, 1.0, -1.0, 1.0,-1.0, -1.0,-1.0,-1.0, -1.0,-1.0, 1.0, // v1-v6-v7-v2左-1.0,-1.0,-1.0, 1.0,-1.0,-1.0, 1.0,-1.0, 1.0, -1.0,-1.0, 1.0, // v7-v4-v3-v2 下1.0,-1.0,-1.0, -1.0,-1.0,-1.0, -1.0, 1.0,-1.0, 1.0, 1.0,-1.0 // v4-v7-v6-v5 后]);var texCoords = new Float32Array([ // 纹理坐标1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, // v0-v1-v2-v3 前0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, // v0-v3-v4-v5右1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, // v0-v5-v6-v1上1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, // v1-v6-v7-v2 左0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, // v7-v4-v3-v2下0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 // v4-v7-v6-v5 后]);var indices = new Uint8Array([0, 1, 2, 0, 2, 3, // 前4, 5, 6, 4, 6, 7, // 右8, 9,10, 8,10,11, // 上12,13,14, 12,14,15, //左16,17,18, 16,18,19, // 下20,21,22, 20,22,23 //后]);// 创建⼀个缓冲区对象var indexBuffer = gl.createBuffer();if (!indexBuffer) {return -1;}// 将顶点信息写⼊缓冲区对象if (!initArrayBuffer(gl, vertices, 3, gl.FLOAT, 'a_Position')) return -1; // 顶点坐标if (!initArrayBuffer(gl, texCoords, 2, gl.FLOAT, 'a_TexCoord')) return -1;// 纹理坐标// 解绑缓冲区对象gl.bindBuffer(gl.ARRAY_BUFFER, null);// 将顶点坐标和纹理坐标写到缓冲区对象中gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);return indices.length;}3、设置⿏标响应事件,监视⿏标的左键的按下拖拽动作。
计算机图形学实验报告

《计算机图形学》实验报告学号:0908610211姓名:宋雪英班级:计算机0961项目:1.利用其它两种画直线方法实现放大10陪显示方法,交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。
2.利用方形、线性两种画刷来绘制圆和椭圆。
3.实现交互式二维图形的放缩,旋转和对称变换2012年12月25日基本图形的生成技术一、实验目的在一个图形系统中,基本图形(也称为图元、图素等)的生成技术是最基本的,任何复杂的图形都是由基本图形组成的,基本图形生成的质量直接影响该图形系统绘图的质量。
所以,需要设计出精确的基本图形生成算法,以确保图形系统绘图的精确性。
本次实验的目的就是利用Bresenham 算法和中心画线法两种画直线方法实现放大10陪显示方法,交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。
利用方形、线性两种画刷来绘制圆和椭圆。
实现交互式二维图形的放缩,旋转和对称变换。
二、实验任务1.利用其它两种画直线方法实现放大10陪显示方法,交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。
2.利用方形、线性两种画刷来绘制圆和椭圆。
3.实现交互式二维图形的放缩,旋转和对称变换。
三、画直线的实验内容任务一:利用其它两种画直线方法实现放大10陪显示方法交互式画直线,预先定义直线段的起止端点,每点击一次鼠标左键,画出直线上的一点,直到终点为止。
1、设计思路第一步:建立DDAMouseLine工程文件;第二步:向视图类中添加自定义的成员变量用鼠标右键单击视图类,选择“Add Member Variable…”,添加下面三个成员变量。
proctected :CPoint m_p1; //起点CPoint m_p2; //起点CPoint m_p; //点击鼠标时点的取值第三步:向视图类中添加自定义的成员函数原型:public:V oid DDAMouseLine(CDC *pDC, int x0, int y0, int x1, int y1, COLORREF color);Line()函数以当前位置所在的点为直线的起点,另指定一个点为直线的终点,画出一段直线。
《计算机图形学》实验报告

实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。
三维变换类似于二维,在画图时,把三维坐标转换为二维即可。
三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。
计算机图形学实习报告
计算机图形学实习报告计算机图形学课程设计实验报告姓名:学号:专业:地理信息系统⼀、课程设计⽬的在掌握图形学的基本原理、算法和实现技术基础上,通过编程实践学会基本的图形软件开发技术。
⼆、课程设计内容仿照Windows的附件程序“画图”, ⽤C++语⾔编制⼀个具有交互式绘制和编辑多种图元功能的程序“Mini-Painter”,实现以下功能对应的设计内容:(1) 能够以交互⽅式在图形绘制区绘制点、直线(折线)、圆(椭圆)、圆弧、多边形、Beizer曲线、封闭区域填充、⽂字等基本图元;(2) 设置线条的颜⾊、线型和线条宽度,对绘制的图元进⾏线条和填充属性的修改;(3) ⽀持图元的点选和基于橡⽪筋技术的圈选;(4) 对选中的图元进⾏平移、缩放、旋转和对称等变换;三、实验步骤1.新建MFC应⽤程序1.1新建⼯程。
运⾏VC++6.0,新建⼀个MFC AppWizard[exe]⼯程,并命名为“0710070118”,选择保存路径,确定。
1.2选择应⽤程序的类型,选择“单⽂档”,则可以通过菜单打开对话框2.建⽴单⽂档应⽤程序,在其中调⽤对话框2.1 查看⼯程资源在单击完成之后,即建⽴了⼀个⼯程,在⼯程的左侧资源视图可以看到MFC向导为该程序提供的⼀些资源。
分别如下所⽰:2.2插⼊对话框资源想在⽂档应⽤程序中,通过单击菜单来打开⼀个对话框,⾸先要建⽴该对话框的资源。
右击“resources ”中的“dialog ”项,在弹出的菜单中选择“插⼊”,打开插⼊菜单对话框,如图所⽰:对话框资源插⼊后,可修改⼀些属性,⽐如标题、字体等等。
在对话框空⽩处右击,选择属性就可打开资源的属性对话框,按照要求设置对话框的属性。
2.3布置对话框界⾯对话框资源插⼊后,即可在该对话框上布置各种需要的控件,并可通过编排菜单的各种命令或“对话”⼯具条调整各控件的⼤⼩,位置,对齐⽅式等,还可以单击对话⼯具条上第⼀个按钮“测试”按钮,看到对话框运⾏时的界⾯。
计算机图形学实习报告
一、实习目的与意义本次实习为集中实习,基于AutoCAD2004平台与VC环境系统,制作二维和三维立体产品。
通过对AutoCAD2004与VC系统的应用实习,熟悉其的基本功能及操作特点,掌握基本的制作过程。
通过本次实习,学生应能熟练使用AutoCAD软件、建立初步面向对象编程的基本概念、以及学会使用VC编程语言。
二、实习主要内容1、AutoCAD软件操作<1)简单图形绘制<2)图形的基本编辑<3)文字及填充<4)三维图形绘制2、基于VC6.0下的计算机图形学程序编写<1)画直线、画多边形、画圆、画字符<2)对多边形进行填充<3)图形裁剪<4)图形的几何变换<5)三维图形的消隐及着色三、实习的主要过程实习为期两周,第一周实习部分为CAD 软件实习,第二部分为计算机图形学基础的编程实习。
第一周实习CAD画图,在实习第一天一晚上老师给我们讲了这两周实训的任务安排,讲述了本周实训的主要内容,实训目的以及意义所在,然后交代了一些细节方面的问题,强调应当注意的一些地方,以及考试成绩打分等。
并建议到图书馆找谢相关的书籍学习。
开始我们跟着实习指导书开始一步一步的做。
b5E2RGbCAP前两天主要学习CAD的二维画图,主要是掌握了二维的POINT、LINE、CIRCLE、ARC、DONUT、RECTANGLE、POLYLINE、ELLIPSE﹑POLYGON﹑SPLINE﹑MLINE﹑TRACE﹑SOLID﹑XLINE﹑RAY的功能及操作。
学会设置幅面、使用实体绘图工具条、擦除命令(ERASE>、重画命令(REDRAW>及 SOLID命令操作及编辑命令操作MOVE、COPY、MIRROR、ARRAY、BREAK、TRIM、EXTEND、ROTATE、OFFSET、FILLET、CHAMFER。
倒角、补线、SCALE﹑STRETCH﹑DIVIDE﹑MEASURE﹑EXPLODE﹑LENGTHEN﹑MEDIT﹑PEDIT﹑SPLINEDDIT﹑U﹑UNDO。
计算机图形学实验(全)
实验1 直线的绘制实验目的1、通过实验,进一步理解和掌握DDA和Bresenham算法;2、掌握以上算法生成直线段的基本过程;3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。
实验环境计算机、Turbo C或其他C语言程序设计环境实验学时2学时,必做实验。
实验内容用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。
实验步骤1、算法、原理清晰,有详细的设计步骤;2、依据算法、步骤或程序流程图,用C语言编写源程序;3、编辑源程序并进行调试;4、进行运行测试,并结合情况进行调整;5、对运行结果进行保存与分析;6、把源程序以文件的形式提交;7、按格式书写实验报告。
实验代码:DDA:# include <graphics.h># include <math.h>void DDALine(int x0,int y0,int x1,int y1,int color){int dx,dy,epsl,k;float x,y,xIncre,yIncre;dx=x1-x0;dy=y1-y0;x=x0;y=y0;if(abs(dx)>abs(dy))epsl=abs(dx);elseepsl=abs(dy);xIncre=(float)dx/(float)epsl;yIncre=(float)dy/(float)epsl;for(k=0;k<=epsl;k++){putpixel((int)(x+0.5),(int)(y+0.5),4);x+=xIncre;y+=yIncre;}}main(){int gdriver ,gmode ;gdriver = DETECT;initgraph(&gdriver , &gmode ,"C:\\TC20\\BGI");DDALine(0,0,35,26,4);getch ( );closegraph ( );}Bresenham:#include<graphics.h>#include<math.h>void BresenhamLine(int x0,int y0,int x1,int y1,int color) {int x,y,dx,dy,e;dx=x1-x0;dy=y1-y0;e=-dx;x=x0;y=y0;while(x<=x1){putpixel(x,y,color);x++;e=e+2*dy;if(e>0){y++;e=e-2*dx;}}}main(){int gdriver ,gmode ;gdriver = DETECT;initgraph(&gdriver , &gmode ,"c:\\TC20\\BGI");BresenhamLine(0, 0 , 120, 200,5 );getch ( );closegraph ( );}实验2 圆和椭圆的绘制实验目的1、通过实验,进一步理解和掌握中点算法;2、掌握以上算法生成椭圆或圆的基本过程;3、通过编程,会在TC环境下完成用中点算法实现椭圆或圆的绘制。
《计算机图形学》实验报告
《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。
通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。
二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。
开发环境为 PyCharm。
三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。
它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。
Bresenham 算法则是一种基于误差的直线生成算法。
它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。
在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。
2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。
通过不断迭代计算中点的位置,逐步生成整个圆。
在实现过程中,需要注意边界条件的处理和误差的计算。
3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。
旋转变换是围绕一个中心点将图形旋转一定的角度。
缩放变换则是改变图形的大小。
通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。
4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。
扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。
在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。
四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。
根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实习二基本图形生成原理(一,二)一、实习的目的和意义
通过编程实现直线、圆、椭圆生成,以掌握基本图形的生成原理和算法;实现不同的线宽和线型;即线的属性。
并通过计时对同一种图元的不同生成算法进行比较,从而理解OpenGL图形函数库中不同的图元生成方法的效率。
同时熟悉OpenGL的基本库函数。
二、实习内容
要求本次实习中,将在OpenG中实现如下基本的计算机绘图功能:
1.为屏幕显示定义一个坐标系统;
2.熟悉绘点函数,并上机实习书上的几个画点函数的例子;
3. 熟悉画线方法,并熟悉不同的画线状态;
4. 在模板中添加代码,实现DDA法和Bresenham法绘制直线图元;
5.实现Bresenham法绘制圆图元;
6.实现中点法椭圆图元的生成(选做);
7.掌握顶点阵列和象素阵列绘制图元的方法;
8. 掌握OpenGL的2种字符生成方法,理解字符的存储和显示原理;
9. 熟悉OpenGL的显示列表(选做);
10. 实现用像素模板生成不同线型的算法;并根据给定的宽度要求生成不同宽度的线段。
三、实习参考
1.参考教材3-2节中函数格式为屏幕显示定义一个坐标系统;
2.参考教材3-3节中点的定义方式,并会用类或结构体定义点;
3.参考教材3-4节中画线方法,体会GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP三个不同状态下生成线的样式;
4.参考教材3-5节中DDA法和Bresenham法,分别用这2种方法画线并进行比较;
5.参考教材3-9节,将八分法分别用于直角坐标、极坐标和Bresenham法绘制圆;
6.参考教材3-10节绘制椭圆;
7.参考教材3-17,3-19节,用顶点阵列和像素阵列以及顶点索引绘制图元,并体会这种绘制的优点;
8.参考教材3-21 绘制字符,分别用点阵法和笔画向量法绘制字符并比较
9.参考教材3-23 实习显示列表等其他一些功能;
10.参考教材4-5关于线型和线宽的生成方法;
11.在visual c++中的建立控制台项目的步骤:建立工程步骤
12.在所创建的c++源文件中,我们使用OpenGL画点函数来实现setPixel命令。
即用下面代码段:
glBegin (GL_POINTS);
glVertex2i (round (x), round (y)); // Specify line-segment geometry.
glEnd ( );
代替底层画点函数:setPixel (round (x), round (y));
并在第二章例程的lineSegment函数中调用第三章的基本图素生成函数:eg:lineDDA (int x0, int y0, int xEnd, int yEnd)。
四、功能改进
1.在绘制图元时,通过改变绘制条件,以实现线条颜色的改变,使用户能够绘制出不同颜色图元(为其设计合适的数据结构)。
2.在绘制直线时,通过改变绘制条件,以实现平行线的绘制。
3.在绘制曲线时,通过用一系列直线段逼近一条曲线(参考练习3.1折线的产生方法),以实现曲线的绘制,并改变直线段的大小,观察曲线形状的变化。
4.在绘制直线时,用延时方法对绘制过程进行动态显示,并计算不同的算法绘制
所需的时间。