2014届高三文科数学复习专题二 函数课时作业6

合集下载

2014高考数学总复习(人教新课标理科)课时作业9 第2章 函数6含解析

2014高考数学总复习(人教新课标理科)课时作业9 第2章 函数6含解析

课时作业(九)1.下列等式错误!=2a;错误!=错误!;-3错误!=错误!中一定成立的有()A.0个B.1个C.2个D.3个答案A解析错误!=错误!a≠2a;错误!=-错误!<0,错误!=错误!=错误!>0,∴错误!≠错误!;-342<0,错误!>0,∴-3错误!≠错误!。

2.下列函数中值域为正实数的是(A.y=-5x B.y=(13)1-xC.y=错误!D.y=错误!答案B解析∵1-x∈R,y=(错误!)x的值域是正实数,∴y=(错误!)1-x的值域是正实数.3.已知函数f(x)=a x(a>0且a≠1)在区间[-2,2]上的最大值不大于2,则函数g(a)=log2a的值域是A .(-∞,-12)∪(0,错误!]B .[-错误!,0)∪(0,错误!]C .[-12,错误!]D .[-错误!,0)∪[错误!,+∞) 答案 B解析 ①当a >1时,a 2≤2⇒1<a ≤错误!;②当0〈a <1时,a -2≤2⇒错误!≤a <1,则g (a )=log 2a 的值域为g (a )∈[-错误!,0)∪(0,错误!],故选B.4.函数y =0。

3|x |(x ∈R )的值域是A .R +B .{y |y ≤1}C .{y |y ≥1}D .{y |0<y ≤1}答案 D解析 y =0.3|x |∈(0,1],故选D 。

5.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于A .5B .7C .9D .11答案 B解析 ∵f (x )=2x +2-x ,f (a )=3,∴2a +2-a =3。

∴f (2a )=22a +2-2a =(2a +2-a )2-2=9-2=7。

6.已知函数y =4x -3×2x +3,当其值域为[1,7]时,x 的取值范围是 ( )A .[2,4]B .(-∞,0]C .(0,1]∪[2,4]D .(-∞,0]∪[1,2]答案 D解析 y =(2x )2-3×2x +3=(2x -错误!)2+错误!∈[1,7], ∴(2x -错误!)2∈[错误!,错误!].∴2x -错误!∈[-错误!,-错误!]∪[错误!,错误!].∴2x ∈[-1,1]∪[2,4],∴x ∈(-∞,0]∪[1,2].7.设函数y =x 3与y =(12)x -2的图像的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 如图所示.由1<x<2,可知1〈x3<8;-1<x-2〈0,1〈(错误!)x-2〈2。

2014届高考数学(文科,大纲版)一轮复习课时闯关第二章函数2.2函数的定义域、值域(含答案解析)

2014届高考数学(文科,大纲版)一轮复习课时闯关第二章函数2.2函数的定义域、值域(含答案解析)

一、选择题 1.函数f (x )=lg(x -1)的定义域是( )A .(2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞)解析:选B.由对数的定义知x -1>0,故x >1.2.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)解析:选A.∵3x +1>1,∴log 2(3x +1)>0.3.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ), x ≤0,f (x -1)-f (x -2),x >0.则f (2 013)的值为() A .-1 B .0C .1D .2解析:选B.∵当x >0时,f (x )=f (x -1)-f (x -2),∴f (x +1)=f (x )-f (x -1).两式相加得f (x +1)=-f (x -2),∴f (x +3)=-f (x ).∴f (x +6)=f [(x +3)+3]=-f (x +3)=f (x ),∴f (x )为周期为6的周期函数,∴f (2 013)=f (6×335+3)=f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-log 2(1-0)=0.4.(2012·高考课标全国卷)已知函数f (x )=1ln (x +1)-x ,则y =f (x )的图象大致为( )解析:选B.函数的定义域是(-1,0)∪(0,+∞),值域是(-∞,0),所以其图象为B.5.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x , x ≥g (x ),则f (x )的值域是( ) A .[-94,0]∪(1,+∞) B .[0,+∞)C .[-94,+∞)D .[-94,0]∪(2,+∞)解析:选D.由x <g (x )得x <x 2-2,∴x <-1或x >2;由x ≥g (x )得x ≥x 2-2,∴-1≤x ≤2.∴f (x )=⎩⎪⎨⎪⎧ x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎨⎧ (x +12)2+74,x <-1或x >2,(x -12)2-94,-1≤x ≤2.当x <-1时,y >2;当x >2时,y >8.∴当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞).当-1≤x ≤2时,-94≤y ≤0. ∴当x ∈[-1,2]时,函数的值域为[-94,0]. 综上可知,f (x )的值域为[-94,0]∪(2,+∞). 二、填空题6.函数f (x )=1sin x +x -3+lg(4-x )的定义域为________. 解析:由sin x ≠0知x ≠k π,k ∈Z ,又⎩⎪⎨⎪⎧ x -3≥0,4-x >0, ∴3≤x <4,∴x ∈[3,π)∪(π,4).答案:[3,π)∪(π,4)7.(2011·高考北京卷改编)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A , (A ,C 为常数),已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是________.解析:∵C A =15,故组装第4件新产品所用时间为C 4=15,∴C 2=30,解得C =60,A =16.答案:60,168.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是________. 解析:y =(x -32)2-254.结合图象, 当x =32时,y =-254; 当x =0或x =3时,y =-4.由x ∈[0,m ]时,y ∈[-254,-4],知m ∈[32,3]. 答案:[32,3] 三、解答题9.已知函数f (x )=x +1-a a -x(x ∈R 且x ≠a ).当f (x )的定义域为[a +13,a +12]时,求f (x )的值域.解:f (x )=-(a -x )+1a -x =-1+1a -x. 当a +13≤x ≤a +12时,-a -12≤-x ≤-a -13,-12≤a -x ≤-13,-3≤1a -x≤-2, 于是-4≤-1+1a -x≤-3, 即f (x )的值域为[-4,-3].10.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的值域. 解:∵f (x )=2+log 3x ,x ∈[1,9],∴y =[f (x )]2+f (x 2)的定义域满足⎩⎪⎨⎪⎧ 1≤x ≤9,1≤x 2≤9, 解得1≤x ≤3,即定义域为[1,3].∴0≤log 3x ≤1.又y =[f (x )]2+f (x 2)=(log 3x +2)2+log 3x 2+2=log 23x +6log 3x +6=(log 3x +3)2-3,∵0≤log 3x ≤1.∴当log 3x =0,即x =1时,y min =9-3=6,当log 3x =1,即x =3时,y max =42-3=13.∴y 的值域为[6,13].11.(探究选做)已知函数y =mx 2-6mx +m +8的定义域为R .(1)求实数m 的取值范围;(2)当m 变化时,若y 的最小值为f (m ),求函数f (m )的值域. 解:(1)当m =0时,y =22,定义域为R .当m ≠0时,y =mx 2-6mx +m +8定义域为R ,应满足⎩⎪⎨⎪⎧m >0Δ≤0 解得0<m ≤1,∴0≤m ≤1,即m 的取值范围是[0,1].(2)当m =0时,y min =22=f (m ).当0<m ≤1时,y min =f (m )=m ·32-6×3m +m +8=8(1-m ),即f (m )=8(1-m )(0≤m ≤1),∴f (m )∈[0,22].。

高考数学总复习 2.2函数的单调性与最值提高分课时作业

高考数学总复习 2.2函数的单调性与最值提高分课时作业

【题组设计】2014届高考数学(人教版)总复习“提高分”课时作业 2.2函数的单调性与最值(含2013年模拟题)【考点排查表】考查考点及角度 难度及题号错题记录 基础中档 稍难 函数单调性的判断与证明10 13求函数的单调区间 1,3 7 函数单调性的应用2,45,6,8,119,12一、选择题1.(2013·山东省实验中学模拟)下列函数中,在其定义域内,既是奇函数又是减函数的是( )A .f (x )=1xB .f (x )=-xC .f (x )=2-x-2xD .f (x )=tan x【解析】 f (x )=1x是奇函数,但在定义域上不单调,f (x )=-x 为非奇非偶函数.f (x )=-tan x 在定义域上是奇函数,但不单调,故A 、B 、D 均不正确.【答案】 C2.若函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( )A.⎣⎢⎡⎦⎥⎤12,3B.⎣⎢⎡⎦⎥⎤2,103C.⎣⎢⎡⎦⎥⎤52,103 D.⎣⎢⎡⎦⎥⎤3,103 【解析】 令t =f (x ),则12≤t ≤3,则函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数,则g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103,故值域为⎣⎢⎡⎦⎥⎤2,103.【答案】 B 3.函数y =13+2x -x2的单调递增区间是( )A .(-∞,1)B .(1,+∞)C .(-1,1)D .(1,3)【解析】 依题意3+2x -x 2>0,即-1<x <3. ∴函数的定义域为(-1,3).又函数y =-x 2+2x +3=-(x -1)2+4在(1,3)上单调递减,所以原函数的单调递增区间是(1,3).【答案】 D4.(2013·海淀模拟)已知偶函数f (x )在区间[0,+∞)单调增加,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 【解析】 f (x )是偶函数,其图象关于y 轴对称, ∴f (2x -1)=f (|2x -1|).又f (x )在[0,+∞)上递增, ∴f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇔|2x -1|<13⇔13<x <23. 【答案】 A5.已知函数f (x )=x 2-2ax +a ,在区间(-∞,1)上有最小值,则函数g (x )=f xx在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【解析】 f (x )在(-∞,1)上有最小值,对称轴x =a ≤1.又g ′(x )=xf ′x -f xx 2=x 2-a x 2=1-ax2,当x >1时,g ′(x )>0,∴g (x )在(1,+∞)上是增函数,故选D.【答案】 D6.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为( ) A .4 B .5 C .6 D .7【解析】由f (x )=min{2x ,x +2,10-x }(x ≥0)画出图象,最大值在A 处取到.联立⎩⎪⎨⎪⎧y =x +2,y =10-x ,得y =6. 【答案】 C 二、填空题7.函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log 12x )是单调增区间是________.【解析】 设g (x )=f (u ),u =log 12x ,∵u =log 12x 在(0,+∞)上是减函数,且g (x )=f (log 12x )是单调增函数,则g =f (x )应为减函数,则-12≤log 12x ≤0,∴1≤x ≤ 2.∴单调增区间为[1,2]. 【答案】 [1,2]8.已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值范围是________.【解析】 依题意,原不等式等价于⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2m -1<1-2m⇔⎩⎪⎨⎪⎧-1<m <3-12<m <32m <23⇔-12<m <23.【答案】 ⎝ ⎛⎭⎪⎫-12,239.已知函数f (x )=1-1-x 2,x ∈[0,1],对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①(x 2-x 1)[f (x 2)-f (x 1)]<0;②x 2f (x 1)<x 1f (x 2); ③f (x 2)-f (x 1)>x 2-x 1;④f x 1+f x 22>f ⎝⎛⎭⎪⎫x 1+x 22.其中正确结论的序号是________.【解析】 函数f (x )=1-1-x 2,x ∈[0,1]的图象如图所示,命题①可等价为⎩⎪⎨⎪⎧x 2-x 1>0f x 2<fx 1,即f (x )在x ∈[0,1]上是单调递减函数,命题①错误;对于命题②,作差即可知其正确;命题③可变形为f x 2-f x 1x 2-x 1>1,不等式左端的几何意义是图象上任意两点连线的斜率,由图象知斜率不都大于1,命题③错误;对于命题④,因为图象是凹函数,满足f x 1+f x 22>f ⎝⎛⎭⎪⎫x 1+x 22,所以命题④正确.【答案】 ②④ 三、解答题 10.判断函数f (x )=axx +1在(-1,+∞)上的单调性,并证明.【证明】 当a >0时,函数y =f (x )在(-1,+∞)上单调递增. 当a <0时,函数y =f (x )在(-1,+∞)上单调递减. 设任意的-1<x 1<x 2, 则f (x 1)-f (x 2)=ax 1x 1+1-ax 2x 2+1=ax 1x 2+1-ax 2x 1+1x 1+1x 2+1=a x 1-x 2x 1+1x 2+1.∵-1<x 1<x 2,∴x 1-x 2<0,x 1+1>0,x 2+1>0.∴当a >0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数y =f (x )在(-1,+∞)上单调递增.同理当a <0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴函数y =f (x )在(-1,+∞)上单调递减.11.已知函数f (x )=log 3mx 2+8x +n x 2+1的定义域为R ,值域为[0,2],求m 与n 的值.【解】 若m =0时,则f (x )=log 38x +n x 2+1的定义域为⎝ ⎛⎭⎪⎫-n 8,+∞,与题设矛盾,故m ≠0.于是由f (x )的定义域为R ,有mx 2+8x +n >0恒成立,故m >0且Δ=64-4mn <0.令y =mx 2+8x +nx 2+1,①则应有1≤y ≤9,即题设条件转化为x ∈R 时,y =mx 2+8x +nx 2+1的值域为[1,9].由①式变形得(m -y )x 2+8x +(n -y )=0.当m ≠y 时,∵x ∈R ,∴Δ=64-4(m -y )(n -y )≥0,整理得y 2-(m +n )y +mn -16≤0,由题意⎩⎪⎨⎪⎧m +n =1+9,mn -16=1×9,解得⎩⎪⎨⎪⎧m =5,n =5.当m =y 时,②式可化为8x +n -m =0,这时m =n =5满足条件.∴m =5,n =5.12.已知函数f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 【解】 (1)当a =12时,f (x )=x +12x +2,设1≤x 1<x 2,Δx =x 2-x 1>0,则Δy =f (x 2)-f (x 1)=(x 2-x 1)(1-12x 1x 2).∵1≤x 1<x 2,∴1-12x 1x 2>0,∴Δy >0,∴f (x )在[1,+∞)上是增函数, ∴f (x )的最小值为f (1)=72.(2)在区间[1,+∞)上f (x )>0恒成立, 即x 2+2x +a >0恒成立,设g (x )=x 2+2x +a ,x ∈[1,+∞),则g (x )=(x +1)2+a -1在区间[1,+∞)上是增函数, ∴当x =1时,g (x )min =3+a ,故当3+a >0即a >-3时,f (x )>0恒成立. 故a 的取值范围为a >-3. 四、选做题13.已知函数f (x )=a ·2x+b ·3x,其中常数a ,b 满足a ·b >0. (1)若a ·b >0,判断函数f (x )的单调性;(2)若a ·b <0,求f (x +1)>f (x )时的x 的取值范围. 【解】 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2, 则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2) ∵2x 1<2x 2,a >0⇒a (2x 1-2x 2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x 2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理函数f (x )在R 上是减函数.(2)f (x +1)-f (x )=a ·2x +2b ·3x>0,当a <0,b >0时,⎝ ⎛⎭⎪⎫32x >-a 2b ,则x >log 1.5⎝ ⎛⎭⎪⎫-a 2b ;当a >0,b <0时,⎝ ⎛⎭⎪⎫32x <-a 2b ,则x <log 1.5⎝ ⎛⎭⎪⎫-a 2b .。

2014年(全国卷II)(含答案)高考文科数学

2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。

高考数学 第二章 第六节 幂函数与二次函数课时作业 理 新人教A版

高考数学 第二章 第六节 幂函数与二次函数课时作业 理 新人教A版

【全程复习方略】(广东专用)2014年高考数学第二章第六节幂函数与二次函数课时作业理新人教A版一、选择题1.已知幂函数y=f(x)通过点(2,2错误!未找到引用源。

),则幂函数的解析式为( )(A)y=2错误!未找到引用源。

(B)y=错误!未找到引用源。

(C)y=错误!未找到引用源。

(D)y=错误!未找到引用源。

2.(2013·潮州模拟)若f(x)是幂函数,且满足错误!未找到引用源。

f(4)f(2)=3,则f(错误!未找到引用源。

)= ( )(A)3 (B)-3 (C)错误!未找到引用源。

(D)-错误!未找到引用源。

3.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是( ) (A)[1,+∞) (B)[0,2](C)[1,2] (D)(-∞,2]4.(2013·湛江模拟)若f(x)=x2-x+a,f(-m)<0,则f(m+1)的值是( )(A)正数(B)负数(C)非负数(D)不能确定正负5.已知P=错误!未找到引用源。

,Q=(错误!未找到引用源。

)3,R=(错误!未找到引用源。

)3,则P,Q,R的大小关系是( )(A)P<Q<R(B)Q<R<P(C)Q<P<R(D)R<Q<P6.设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( )7.函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是递减的,则实数a的取值范围是( ) (A)[-3,0) (B)(-∞,-3](C)[-2,0] (D)[-3,0]8.(2013·佛山模拟)设函数f(x)=x2+(2a-1)x+4.若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a 的取值范围是( )(A)a>错误!未找到引用源。

(B)a≥错误!未找到引用源。

(C)a<错误!未找到引用源。

高考数学大一轮复习第二章函数、导数及其应用课时作业

高考数学大一轮复习第二章函数、导数及其应用课时作业

课时作业6 函数的奇偶性与周期性一、选择题1.(2014·广东卷)下列函数为奇函数的是( ) A .f (x )=2x-12xB .f (x )=x 3sin x C .f (x )=2cos x +1D .f (x )=x 2+2x解析:令f (x )=2x -12x =2x -2-x ,其定义域为R ,且f (-x )=2-x -2x=-f (x ),∴f (x )为奇函数.答案:A2.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =13对称,则f (-23)=( )A .0B .1C .-1D .2解析:由f (x )是奇函数可知,f (0)=0,f (-23)=-f (23).又因为y =f (x )的图象关于x=13对称,所以f (0)=f (23),因此f (-23)=0,故选A. 答案:A3.(2014·大纲卷)奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .1解析:∵f (x +2)为偶函数,∴f (-x +2)=f (x +2),又∵f (x )为奇函数,∴f (-x +2)=-f (x -2),∴f (x +2)=-f (x -2),即f (x +4)=-f (x ),∴f (x )是以8为周期的函数,∴f (8)+f (9)=f (0)+f (1)=0+1=1.答案:D4.(2014·山东卷)对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos(x +1)解析:f (x )=f (2a -x )可得函数关于直线x =a 对称,结合选项,只有D 选项中函数有对称轴,故选D.答案:D5.x 为实数,[x ]表示不超过x 的最大整数,则函数f (x )=x -[x ]在R 上为( ) A .奇函数 B .偶函数 C .增函数D .周期函数解析:由题知,f (x )=x -[x ]=⎩⎪⎨⎪⎧...x +1, x ∈[-1,x , x ∈[0,x -1, x ∈[1,x -2, x ∈[2,…据此画出f (x )的部分图象如图所示:由图象知,f (x )为周期为1的周期函数. 答案:D6.若奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式xf x<0的解集为( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3) 解析:如图,作出f (x )的草图:由xf x<0可知x ,f (x )异号,∴不等式的解为-3<x <0或0<x <3.答案:B 二、填空题7.(2014·新课标卷Ⅱ)偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.解析:y =f (x )为偶函数,知f (x )=f (-x ),图象关于x =2对称,知f (2-x )=f (2+x ).f (-1)=f (1)=f [2+(-1)]=f [2-(-1)]=f (3)=3.答案:38.如果函数g (x )=⎩⎪⎨⎪⎧2x -3,x,f x , x是奇函数,则f (x )=________.解析:令x <0,∴-x >0,g (-x )=-2x -3,∴g (x )=2x +3,∴f (x )=2x +3. 答案:2x +39.(2014·湖南卷)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.解析:因为f (x )=ln(e 3x+1)+ax 为偶函数,则f (-x )=f (x ),所以f (-x )=ln(e -3x+1)+a (-x )=ln(e 3x +1)-3x -ax =ln(e 3x+1)+ax ,则-3-a =a ,得a =-32.答案:-32三、解答题10.已知函数f (x )=2|x -2|+ax (x ∈R )有最小值. (1)求实数a 的取值范围.(2)设g (x )为定义在R 上的奇函数,且当x <0时,g (x )=f (x ),求g (x )的解析式. 解:(1)f (x )=⎩⎪⎨⎪⎧a +x -4, x ≥2,a -x +4, x <2,要使函数f (x )有最小值,需⎩⎪⎨⎪⎧a +2≥0,a -2≤0,所以-2≤a ≤2,即当a ∈[-2,2]时,f (x )有最小值. (2)因为g (x )为定义在R 上的奇函数, 所以g (0)=0.设x >0,则-x <0, 所以g (x )=-g (-x )=(a -2)x -4,所以g (x )=⎩⎪⎨⎪⎧a -x -4, x >0,0, x =0,a -x +4, x <0.11.已知函数f (x )=2x+k ·2-x,k ∈R . (1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞),都有f (x )>2-x成立,求实数k 的取值范围. 解:(1)因为f (x )=2x +k ·2-x是奇函数, 所以f (-x )=-f (x ),x ∈R ,即2-x+k ·2x =-(2x +k ·2-x ),所以(1+k )+(k +1)·22x=0,对一切x ∈R 恒成立,所以k =-1.(2)因为x ∈[0,+∞),均有f (x )>2-x, 即2x +k ·2-x >2-x成立, 所以1-k <22x对x ≥0恒成立, 所以1-k <(22x )min .因为y =22x在[0,+∞)上单调递增,所以(22x)min =1. 所以k >0.1.设定义在R 上的奇函数y =f (x ),满足对任意t ∈R ,都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于( )A .-12B .-13C .-14D .-15解析:由f (t )=f (1-t ),得f (1+t )=f (-t )=-f (t ), 所以f (2+t )=-f (1+t )=f (t ), 所以f (x )的周期为2.又f (1)=f (1-1)=f (0)=0,所以f (3)+f ⎝ ⎛⎭⎪⎫-32=f (1)+f ⎝ ⎛⎭⎪⎫12 =0-⎝ ⎛⎭⎪⎫122=-14.故选C.答案:C2.已知函数f (x )是定义在R 上的偶函数,f (x +1)为奇函数,f (0)=0,当x ∈(0,1]时,f (x )=log 2x ,则在(8,10)内满足方程f (x )+1=f (1)的实数x 的值为________.解析:根据已知得f (-x )=f (x ),f (-x +1)=-f (x +1),即f (x +1)=-f (x -1),以x +1代x ,得f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即4为函数f (x )的一个周期.再由f (-x +1)=-f (x +1),以-x +1代x ,可得f (x )=-f (2-x ),当x ∈[1,2)时,2-x ∈(0,1],所以当x ∈[1,2)时,f (x )=-log 2(2-x ).当x ∈(8,9]时,x -8∈(0,1],此时f (x )=f (x -8)=log 2(x -8),方程f (x )+1=f (1),即f (x )=-1,即log 2(x -8)=-1,解得x =172;当x ∈(9,10)时,x -8∈(1,2),此时f (x )=f (x -8)=-log 2(8-x ),方程f (x )+1=f (1),即f (x )=-1,即-log 2(10-x )=-1,解得x =8(舍去).综上可知,在(8,10)内满足方程f (x )+1=f (1)的实数x 的值为172.答案:1723.奇函数f (x )满足对任意x ∈R 都有f (2+x )+f (2-x )=0,且f (1)=9,则f (2 010)+f (2 011)+f (2 012)的值为________.解析:奇函数f (x )满足f (2+x )+f (2-x )=0,则f (2+x )=-f (2-x )=f (x -2),所以函数f (x )是周期为4的周期函数,f (2 010)+f (2 011)+f (2 012)=f (2)+f (3)+f (4),令x =0,则f (2)=0;令x =2,则f (4)=f (0)=0;由f (3)=f (-1)=-f (1)=-9,故f (2 010)+f (2 011)+f (2 012)=-9.答案:-9 4.已知函数f (x )=ax +b 1+x 2的定义域为(-1,1),满足f (-x )=-f (x ),且f (12)=25. (1)求函数f (x )的解析式;(2)用单调性的定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (x 2-1)+f (x )<0.解:(1)由f (-x )=-f (x ),得-ax +b 1+x 2=-ax -b 1+x 2⇒b =0,则f (x )=ax 1+x 2,又由f (12)=25,所得a =1;所以f (x )=x1+x2.(2)设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1-x 2-x 1x 2+x 211+x 22又-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0,1+x 21>0,1+x 22>0, 从而f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) 所以f (x )在(-1,1)上是增函数.(3)由f (x 2-1)+f (x )<0得f (x 2-1)<-f (x )即f (x 2-1)<f (-x )由(2)知f (x )在(-1,1)上是增函数,则⎩⎪⎨⎪⎧-1<x 2-1<1-1<x <1x 2-1<-x⇒⎩⎪⎨⎪⎧-2<x <0,或0<x <2-1<x <1-1-52<x <-1+52⇒-1<x <0或0<x <-1+52所以,原不等式的解集为(-1,0)∪(0,-1+52).。

(湖南专用)2014届高考数学一轮复习第二章函数2.6《幂函数》课时作业理

(湖南专用)2014届高考数学一轮复习第二章函数2.6《幂函数》课时作业理

课时作业9 幂函数一、选择题1.已知幂函数f (x )=x α的图象经过点⎝ ⎛⎭⎪⎫2,22,则f (4)的值为( ). A .16 B .116 C .12D .2 2.设12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a <1,则下列不等关系成立的是( ). A .a a <a b <b a B .a a <b a <a bC .a b <a a <b aD .a b <b a <a a3.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( ).A .y =x 3B .y =cos xC .y =1x2 D .y =ln |x | 4.设a =,b =,c =,则a ,b ,c 的大小关系是( ).A .a >c >bB .a >b >cC .c >a >bD .b >c >a5.下列说法正确的是( ).A .幂函数一定是奇函数或偶函数B .任意两个幂函数图象都有两个以上交点C .如果两个幂函数的图象有三个公共点,那么这两个幂函数相同D .图象不经过(-1,1)的幂函数一定不是偶函数6. 幂函数y =x -1及直线y =x ,y =1,x =1将平面直角坐标系的第一象限分成八个“区域”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数y =的图象经过的“区域”是( ).A .④,⑦B .④,⑧C .③,⑧D .①,⑤7.若函数f (x )是幂函数,且满足f f =3,则f ⎝ ⎛⎭⎪⎫12的值等于( ). A .-3 B .-13 C .3 D .13二、填空题8.若函数f (x )=则f (f (f (0)))=__________.9.若y =是偶函数,且在(0,+∞)内是减函数,则整数a 的值是__________.10.给出下列四个命题:①函数y =a x (a >0,且a ≠1)与函数y =log a a x (a >0,且a ≠1)的定义域相同;②函数y =x 3与y =3x 的值域相同;③函数y =12+12x -1与y =+2x 2x ·2x都是奇函数; ④函数y =(x -1)2与y =2x -1在区间[0,+∞)上都是增函数.其中正确命题的序号是__________.三、解答题11.已知f (x )=(m 2+m )·,当m 取什么值时,(1)f (x )是正比例函数;(2)f (x )是反比例函数;(3)在第一象限内它的图象是上升曲线.12. 函数f (x )=2x 和g (x )=x 3的图象的示意图如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出示意图中曲线C1,C2分别对应哪一个函数?(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},指出a,b的值,并说明理由;(3)结合函数图象示意图,请把f(8),g(8),f(2 011),g(2 011)四个数按从小到大的顺序排列.参考答案一、选择题1.C 解析:由已知,得22=2α, 即2α=,∴α=-12, ∴f (x )=.∴f (4)==12. 2.C 解析:12<⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a <11>b >a >0,在A 和B 中,y =a x (0<a <1)在定义域内是单调递减的,则a a >a b ,所以结论不成立;在C 中,y =x n (n >0)在(0,+∞)内是单调递增的,又a <b ,则a a <b a ,即a b <a a <b a .3.D 解析:y =x 3是奇函数,排除A 选项;y =cos x 在(0,+∞)不单调,排除B ;y =1x2=x -2在(0,+∞)单调递减,排除C.故选D.4.A 解析:构造指数函数y = (x ∈R ),由该函数在定义域内单调递减,所以b <c ;又y = (x ∈R )与y = (x ∈R )之间有如下结论成立:当x >0时,有>,故>,∴a >c ,故a >c >b .5.D6.D 解析:对幂函数y =x α,当α∈(0,1)时,其图象在x ∈(0,1)的部分在直线y =x上方,且图象过点(1,1),当x >1时其图象在直线y =x 下方,故经过第①⑤两个“卦限”.7.D 解析:依题意设f (x )=x α(α∈R ),则有4α2α=3,即2α=3,得α=log 23,则f (x )=,于是f ⎝ ⎛⎭⎪⎫12====13. 二、填空题8.1 解析:f (f (f (0)))=f (f (-2))=f (1)=1.9.1,3,5或-1 解析:由题意得,a 2-4a -9应为负偶数,即a 2-4a -9=(a -2)2-13=-2k (k ∈N *),(a -2)2=13-2k ,当k =2时,a =5或-1;当k =6时,a =3或1.10.①③ 解析:①中y =a x 与y =log a a x =x 的定义域均为R ;②中y =x 3的值域为R ,而y =3x 的值域为(0,+∞);③y =12+12x -1是奇函数, y =(1+2x )2x ·2x =1x (2x +12x +2)也是奇函数; ④y =(x -1)2在[0,+∞)上不单调,y =2x -1在[0,+∞)上是单调递增函数,故①③正确.三、解答题11.解:(1)由题意知⎩⎪⎨⎪⎧m 2+m ≠0,m 2-2m -1=1,解得m =1± 3. (2)由题意知⎩⎪⎨⎪⎧ m 2+m ≠0,m 2-2m -1=-1,解得m =0(舍)或2,∴m =2.(3)由题意知⎩⎪⎨⎪⎧m 2+m >0,m 2-2m -1>0, 解得m ∈(-∞,-1)∪(1+2,+∞).12.解:(1)由图象可知C 1对应的函数为g (x )=x 3,C 2对应的函数为f (x )=2x .(2)a =1,b =9,因为f (1)=2>g (1)=1,f (2)=4<g (2)=8,所以x 1∈[1,2],即a =1.f (3)=8<g (3)=27,f (4)=16<g (4)=64,f (5)=32<g (5)=125,…,f (9)=512<g (9)=729,f (10)=1 024>g (10)=1 000,所以x 2∈[9, 10],即b =9.(3)由题意可得,f (8)<g (8)<g (2 011)<f (2 011).。

2014届高考数学总复习 2.8函数与方程提高分课时作业(含2013年模拟题) 新人教A版

2014届高考数学总复习 2.8函数与方程提高分课时作业(含2013年模拟题) 新人教A版

【题组设计】2014届高考数学(人教版)总复习“提高分”课时作业 2.8函数与方程(含2013年模拟题)【考点排查表】考查考点及角度 难度及题号错题记录基础 中档 稍难 函数零点的判定 1,2 5,6,9 11,13二分法 3 8 函数零点的综合应用47,1012一、选择题1.设f (x )=x 3+bx +c 是[-1,1]上的增函数,且f (-12)·f (12)<0,则方程f (x )=0在[-1,1]内( )A .可能有3个实数根B .可能有2个实数根C .有唯一的实数根D .没有实数根【解析】 由f (x )在[-1,1]上是增函数且f (-12)·f (12)<0,知f (x )在[-12,12]上有唯一实数根,所以方程f (x )=0在[-1,1]上有唯一实数根.【答案】 C2.(2013·某某模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是( )A.⎝ ⎛⎭⎪⎫14,12B .(1,2) C.⎝ ⎛⎭⎪⎫12,1D .(2,3) 【解析】 由f (x )的图象知0<b <1,f (1)=0,从而-2<a <-1,g (x )=ln x +2x +a ,g (x )在定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=2+a >0,g ⎝ ⎛⎭⎪⎫12·g (1)<0,故选C.【答案】 C3.若函数f (x )的零点与g (x )=4x+2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( )A .f (x )=4x -1B .f (x )=(x -1)2C .f (x )=e x-1 D .f (x )=ln(x -12)【解析】∵4个选项中的零点是确定的. A :x =14,B :x =1;C :x =0;D :x =32.又∵g (0)=40+2×0-2=-1<0,g (12)=412+2×12-2=1>0,∴g (x )=4x+2x -2的零点介于(0,12)之间.从而选A.【答案】 A4.若函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点,则a 的取值X 围是( ) A .(-1,1) B .[1,+∞) C .(1,+∞) D .(2,+∞)【解析】 当a =0时,函数的零点是x =-1;当a ≠0时,若Δ>0,f (0)·f (1)<0,则a >1;若Δ=0,即a =-18,函数的零点是x =-2,故选C.【答案】 C5.(2012·某某高考)函数f (x )=x cos 2x 在区间[0,2π]上的零点个数为( ) A .2 B .3 C .4 D .5【解析】 由f (x )=x cos 2x =0,得x =0或cos 2x =0;其中,由cos 2x =0,得2x =k π+π2(k ∈Z ),故x =k π2+π4(k ∈Z ).又因为x ∈[0,2π],所以x =π4,3π4,5π4,7π4,所以零点的个数为1+4=5个.故选D.【答案】 D6.(2012·高考)函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为( )A .0B .1C .2D .3【解析】f (x )=x 12-⎝ ⎛⎭⎪⎫12x 的零点,即令f (x )=0,根据此题可得x 12=⎝ ⎛⎭⎪⎫12x,在平面直角坐标系中分别画出幂函数y =x 12和指数函数y =⎝ ⎛⎭⎪⎫12x的图象,可得交点只有一个,所以零点只有一个,故选B.【答案】 B 二、填空题7.已知函数f (x )=x |x -4|-5,则当方程f (x )=a 有三个根时,实数a 的取值X 围是________.【解析】f (x )=x |x -4|-5=⎩⎪⎨⎪⎧x 2-4x -5,x ≥4-x 2+4x -5,x <4,在平面直角坐标系中画出该函数的图象,可得当直线y =a 与该函数的图象有三个交点时,a 的取值X 围是-5<a <-1.【答案】 -5<a <-18.(2013·某某模拟)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数值如下:那么方程【解析】 通过参考数据可以得到:f (1.375)=-0.260<0,f (1.437 5)=0.162>0,且1.4375-1.375=0.062 5<0.1,所以,方程x 3+x 2-2x -2=0的一个近似根为1.437 5. 【答案】 1.437 59.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________【解析】∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a-2×3=b ,∴⎩⎪⎨⎪⎧a =-1b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <1. 【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <1三、解答题10.函数f (x )=x 3-3x +2.(1)求f (x )的零点;(2)求分别满足f (x )<0,f (x )=0,f (x )>0的x 的取值X 围.【解】f (x )=x 3-3x +2=x (x -1)(x +1)-2(x -1)=(x -1)(x 2+x -2)=(x -1)2(x +2).(1)令f (x )=0,函数f (x )的零点为x =1或x =-2. (2)令f (x )<0,得x <-2;所以满足f (x )<0的x 的取值X 围是(-∞,-2); 满足f (x )=0的x 的取值集合是{1,-2};令f (x )>0,得-2<x <1或x >1,满足f (x )>0的x 的取值X 围是(-2,1)∪(1,+∞).11.若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值X 围.【解】 设f (x )=3x 2-5x +a ,则f (x )为开口向上的抛物线(如图所示). ∵f (x )=0的两根分别在区间(-2,0),(1,3)内,∴⎩⎪⎨⎪⎧f -2>0,f 0<0,f 1<0,f3>0,即⎩⎪⎨⎪⎧3×-22-5×-2+a >0,a <0,3-5+a <0,3×9-5×3+a >0,解得-12<a <0.∴所求a 的取值X 围是(-12,0).12.已知函数f (x )=x 2+bx +c (b ,c ∈R ),满足f (1)=0. (1)若函数f (x )有两个不同的零点,求b 的取值X 围;(2)若对x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),方程f (x )=12[f (x 1)+f (x 2)]有两个不相等的实根,证明必有一实根属于(x 1,x 2).【解】 (1)由题意知:b +c +1=0,即c =-(1+b ), ∴f (x )=x 2+bx -(1+b ), 若f (x )有两个零点,则f (x )=0有两个不相等的实根,∴b 2+4(1+b )=(b +2)2>0,∴b ≠-2. 即b 的取值X 围是{b |b ∈R 且b ≠-2}. (2)证明:设g (x )=f (x )-12[f (x 1)+f (x 2)]则g (x 1)=12[f (x 1)-f (x 2)],g (x 2)=-12[f (x 1)-f (x 2)],∴g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2,∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0, ∴g (x )必有一根属于(x 1,x 2),即方程f (x )=12[f (x 1)+f (x 2)]必有一实根属于(x 1,x 2).四、选做题13.(2013·某某模拟)若A ={a,0,-1},B =⎩⎨⎧⎭⎬⎫c +b ,1b +a ,1,且A =B ,f (x )=ax 2+bx +c .(1)求f (x )零点的个数;(2)当x ∈[-1,2]时,求f (x )的值域;(3)若x ∈[1,m ]时,f (x )∈[1,m ],求m 的值.【解】 (1)∵A =B ,∴⎩⎪⎨⎪⎧a =10=c +b-1=1b +a,∴⎩⎪⎨⎪⎧a =1b =-2c =2.∴f (x )=x 2-2x +2.又Δ=4-4×2=-4<0,所以f (x )没有零点. (或因为f (x )=(x -1)2+1>0,所以f (x )没有零点.) (2)∵f (x )的对称轴x =1,∴当x ∈[-1,2]时,f (x )min =f (1),f (x )max =f (-1)=5, ∴f (x )∈[1,5].(3)∵f (x )在x ∈[1,m ]上为增函数, ∴⎩⎪⎨⎪⎧f 1=1fm =m⇒⎩⎪⎨⎪⎧1=1,m 2-2m +2=m .∴m =1或m =2,m =1不成立,则m =2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(六)1.下列函数中,在区间(-∞,0)上是减函数的是( )A .y =1-x 2B .y =x 2+xC .y =--xD .y =x x -1答案 D2.若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4,∴a ≤-3.3.下列函数满足“对∀x 1,x 2∈(0,+∞)且x 1≠x 2时恒有f (x 2)-f (x 1)x 2-x 1<0”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)答案 A解析 条件即f (x )在(0,+∞)为减函数,只有1x 符合条件.4.(2013·石家庄一模)已知函数f (x )=⎩⎨⎧2,x ≥0,-x +2,x <0,则满足不等式f (3-x 2)<f (2x )的x 的取值范围为( )A .(-3,-3)B .(-3,1)C .[-3,0)D .(-3,0)答案 D解析 作出f (x )图像如图.∵f (3-x 2)<f (2x ),∴⎩⎨⎧3-x 2>2x ,2x <0.解得-3<x <0.选D. 5.函数f (x )=1-1x -1( )A .在(-1,+∞)上单调递增B .在(1,+∞)上单调递增C .在(-1,+∞)上单调递减D .在(1,+∞)上单调递减 答案 B解析 f (x )可由-1x 沿x 轴向右平移一个单位,再向上平移一个单位得,如图.6.若函数f (x )=log a (x 2-ax +12)有最小值,则实数a 的取值范围是 ( ) A .(0,1) B .(0,1)∪(1,2) C .(1,2) D .[2,+∞)答案 C解析 当a >1且x 2-ax +12有最小值时,f (x )才有最小值log a 2-a 24,∴⎩⎨⎧a >1,Δ<0⇒1<a < 2.7.若函数f (x )是R 上的增函数,对实数a 、b ,若a +b >0,则有 ( ) A .f (a )+f (b )>f (-a )+f (-b ) B .f (a )+f (b )<f (-a )+f (-b )C .f (a )-f (b )>f (-a )-f (-b )D .f (a )-f (b )<f (-a )-f (-b ) 答案 A解析 ∵a +b >0,∴a >-b ,b >-a . ∴f (a )>f (-b ),f (b )>f (-a ),∴选A.8.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是 ( )A .(3,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,-1)答案 A解析 由已知易得⎩⎨⎧x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减. 9.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数答案 A解析 当x <0时,-x >0,-(2x +1x )=(-2x )+(-1x )≥2(-2x )·(-1x )=22,即2x +1x ≤-22,2x +1x -1≤-22-1,即f (x )≤-22-1,当且仅当-2x =-1x ,即x =-22时取等号,此时函数f (x )有最大值,选A.10.已知f (x )为R 上的减函数,则满足f (|1x |)<f (1)的实数x 的取值范围是 ( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案 C解析 由已知得|1x |>1⇒-1<x <0或0<x <1,故选C.11.(2012·安徽)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.答案 -6解析 f (x )=|2x +a |=⎩⎪⎨⎪⎧2x +a ,x ≥-a2,-2x -a ,x <-a 2,∵函数f (x )的增区间是[3,+∞), ∴-a2=3,即a =-6.12.(2012·上海)已知函数f (x )=e |x -a |(a 为常数),若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.答案 (-∞,1]解析 f (x )=⎩⎨⎧e x -a,x ≥a ,e a -x ,x <a ,当x ≥a 时f (x )单调递增,当x <a 时,f (x )单调递减,又f (x )在[1,+∞)上是增函数,所以a ≤1.13.若奇函数f (x )在(-∞,0]上单调递减,则不等式f (lg x )+f (1)>0的解集是________.答案 (0,110)解析 因为f (x )为奇函数,所以f (-x )=-f (x ),又因为f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.不等式f (lg x )+f (1)>0可化为f (lg x )>-f (1)=f (-1),所以lg x <-1,解得0<x <110. 14.给出下列命题①y =1x 在定义域内为减函数; ②y =(x -1)2在(0,+∞)上是增函数; ③y =-1x 在(-∞,0)上为增函数; ④y =kx 不是增函数就是减函数. 其中错误命题的个数有________. 答案 3解析 ①②④错误,其中④中若k =0,则命题不成立.15.函数f (x )=|log a x |(0<a <1)的单调递增区间是________. 答案 [1,+∞)解析 函数图像如图.16.在给出的下列4个条件中,①⎩⎨⎧0<a <1,x ∈(-∞,0) ②⎩⎨⎧ 0<a <1,x ∈(0,+∞) ③⎩⎨⎧ a >1,x ∈(-∞,0) ④⎩⎨⎧a >1,x ∈(0,+∞)能使函数y =log a 1x 2为单调递减函数的是________. (把你认为正确的条件编号都填上). 答案 ①④解析 利用复合函数的性质,①④正确.17.设函数f (x )=2x +a ·2-x -1(a 为实数).若a <0,用函数单调性定义证明:y =f (x )在(-∞,+∞)上是增函数.解析 设任意实数x 1<x 2, 则f (x 1)-f (x 2)∴f (x 1)-f (x 2)<0,∴f (x )是增函数. 18.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 答案 (1)略 (2)0<a ≤1解析 (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2). ∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.1.已知函数f (x )=⎩⎨⎧ax 2+1(x ≥0),(a +2)e ax(x <0)为R 上的单调函数,则实数a 的取值范围是( )A .[-1,0)B .(0,+∞)C .[-2,0)D .(-∞,-2)答案 A解析 若f (x )在R 上单调递增,则有⎩⎨⎧ a >0,a +2>0,a +2≤1,此不等式组无解;若f (x )在R 上单调递减,则有⎩⎨⎧a <0,a +2>0,a +2≥1,解得-1≤a <0.综上,实数a 的取值范围是[-1,0).2.f (x )=⎩⎨⎧ax -1,x ≤2,log a (x -1)+3,x >2是定义域上的单调函数,则a 的取值范围是________.答案 (1,2]解析 由题意知a >0,且f (x )=⎩⎨⎧ax -1,x ≤2,log a (x -1)+3,x >2是定义域上的单调增函数,因此⎩⎨⎧a >1,2a -1≤log a (2-1)+3.故1<a ≤2. 3.若函数f (x )=4xx 2+1在区间(m,2m +1)上是单调递增函数,则m ∈________. 答案 (-1,0]解析 ∵f ′(x )=4(1-x 2)(x 2+1)2,令f ′(x )>0,得-1<x <1. ∴f (x )的增区间为(-1,1). 又∵f (x )在(m,2m +1)上单调递增, ∴⎩⎨⎧m ≥-1,2m +1≤1,∴-1≤m ≤0. ∵区间(m,2m +1), ∴2m +1>m ,即m >-1. 综上,-1<m ≤0.4.函数f (x )=x 2x -1(x ∈R 且x ≠1)的单调增区间是______.答案 (-∞,0)和(2,+∞)解析 将原函数y =x 2x -1变形为y =(x -1)+1x -1+2,显然x -1在区间(-∞,-1)和(1,+∞)内取值时,函数单调递增,即得x 在区间(-∞,0)和(2,+∞)内取值时,函数单调递增.5.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.答案 (-1,2-1) 解析画出f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0的图像,由图像可知,若f (1-x 2)>f (2x ),则⎩⎨⎧ 1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1, 2-1). 6.判断函数f (x )=axx 2-1(a ≠0)在区间(-1,1)上的单调性. 答案 a >0时,函数f (x )在(-1,1)上为减函数; a <0时,函数f (x )在(-1,1)上为增函数. 解析 方法一 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=a (x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1). ∵(x 1x 2+1)(x 2-x 1)(x 21-1)(x 22-1)>0,∴a >0时,函数f (x )在(-1,1)上为减函数; a <0时,函数f (x )在(-1,1)上为增函数. 方法二 对f (x )求导,有f ′(x )=-a (x 2+1)(x 2-1)2,∵x ∈(-1,1),∴(x 2-1)2>0,x 2+1>0.∴当a <0时,f ′(x )>0,f (x )在(-1,1)上为增函数, 当a >0时,f ′(x )<0,f (x )在(-1,1)上为减函数.7.函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R 上的增函数; (2)若f (4)=5,解不等式f (3m 2-m -2)<3. 答案 (1)略 (2){m |-1<m <43}解析 (1)证明:设x 1,x 2∈R ,且x 1<x 2,则x2-x1>0,∴f(x2-x1)>1.f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0. ∴f(x2)>f(x1).即f(x)是R上的增函数.(2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,∴f(2)=3.∴原不等式可化为f(3m2-m-2)<f(2).∵f(x)是R上的增函数,∴3m2-m-2<2,解得-1<m<4 3.故m的解集为{m|-1<m<4 3}.8.已知函数f(x)自变量取值区间A,若其值域区间也为A,则称区间A为f(x)的保值区间.(1)求函数f(x)=x2形如[n,+∞)(n∈R)的保值区间;(2)g(x)=x-ln(x+m)的保值区间是[2,+∞),求m的取值范围.答案(1)[0,+∞)或[1,+∞)(2)-1解析(1)若n<0,则n=f(0)=0,矛盾.若n≥0,则n=f(n)=n2,解得n=0或1.所以f(x)的保值区间为[0,+∞)或[1,+∞).(2)因为g(x)=x-ln(x+m)的保值区间是[2,+∞),所以2+m>0,即m>-2.令g′(x)=1-1x+m>0,得x>1-m.所以g(x)在(1-m,+∞)上为增函数,同理可得g(x)在(-m,1-m)上为减函数.若2≤1-m即m≤-1时,则g(1-m)=2得m=-1满足题意.若m>-1时,则g(2)=2,得m=-1,矛盾.所以满足条件的m 值为-1. 9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值. 解析 (1)证明:方法一 设x 2>x 1>0,则 x 2-x 1>0,x 1x 2>0.∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数.方法二 ∵f (x )=1a -1x ,∴f ′(x )=(1a -1x )′=1x 2>0. ∴f (x )在(0,+∞)上为增函数.(2)∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增, ∴f (12)=12,f (2)=2,∴a =25.。

相关文档
最新文档