1.3《三角函数的计算》教学设计

合集下载

1.3三角函数的计算(教案)

1.3三角函数的计算(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对三角函数计算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们学习了三角函数的计算。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,关于三角函数的定义和性质,我发现部分学生在理解上还存在困难。在以后的教学中,我需要更加注重直观演示和实际操作,让学生通过观察和体验,更好地理解三角函数的概念。同时,加强对特殊角度三角函数值的讲解,帮助学生熟练掌握并运用到实际问题中。
此外,我在教学过程中注意到,学生们对于三角函数在实际生活中的应用还不够了解。在以后的教学中,我需要多举一些生活中的实例,让学生们认识到三角函数在现实世界中的重要性,激发他们的学习兴趣。
最后,关于教学方法和策略,我觉得可以尝试更多元化的方式,如利用信息技术手段,引入动画、视频等资源,让课堂更加生动有趣。同时,注重分层教学,针对不同学生的学习需求,给予个性化的指导,提高他们的学习效果。
1.3三角函数的计算(教案)
一、教学内容
本节课选自教材第九章《三角函数》的1.3节,主要教学内容包括:
1.掌握正弦、余弦、正切函数的定义及性质;
2.学会使用计算器计算角度的正弦、余弦、正切值;
3.熟悉特殊角度(30°、45°、60°等)的正弦、余弦、正切值;
4.能够运用Biblioteka 角函数解决实际问题,如测量物体的高度、求解直角三角形边长等。
(二)新课讲授(用时10分钟)

三角函数的计算教案

三角函数的计算教案

三角函数的计算教案【引言】三角函数是数学中一种重要的概念,它能帮助我们计算三角形的各种属性和解决实际问题。

本教案旨在介绍三角函数的计算方法和相关性质,帮助学生掌握基本的计算技巧,以及理解三角函数在实际生活中的应用。

【教案】一、正弦函数的计算正弦函数是三角函数中最基本的一种,用于计算直角三角形中的各种属性。

以下是计算正弦函数的步骤:1. 根据题目给出的角度,确定所要计算的三角形。

假设我们要计算一个直角三角形ABC。

2. 使用三角函数表或计算器,查找给定角度的正弦值。

例如,若给出角A的值为30度,则可以在表中找到角度为30度对应的正弦值是0.5。

3. 根据正弦函数的定义,正弦值等于对边长度与斜边长度之比。

应用已知的正弦值,计算对边的长度。

假设斜边长度为10个单位,则对边长度为0.5乘以10,即5个单位。

4. 完成计算并进行必要的近似处理,得到最终结果。

在这个例子中,我们得出对边长度为5个单位。

二、余弦函数的计算余弦函数在三角学和实际问题中也有广泛的应用。

以下是计算余弦函数的步骤:1. 同样地,根据题目给出的角度,确定需要计算的三角形。

2. 使用三角函数表或计算器,查找给定角度的余弦值。

例如,若给出角B的值为45度,则可以在表中找到角度为45度对应的余弦值是0.707。

3. 根据余弦函数的定义,余弦值等于邻边长度与斜边长度之比。

应用已知的余弦值,计算邻边的长度。

假设斜边长度为8个单位,则邻边长度为0.707乘以8,约等于5.656个单位。

4. 进行必要的近似处理,得到最终结果。

在这个例子中,我们得出邻边长度约为5.656个单位。

三、切线函数的计算切线函数与正弦和余弦函数有密切的关系,能帮助我们计算斜边和对边的比值。

以下是切线函数的计算步骤:1. 根据题目给出的角度,确定所要计算的三角形。

2. 使用三角函数表或计算器,查找给定角度的切线值。

例如,若给出角C的值为60度,则可以在表中找到角度为60度对应的切线值是1.732。

九年级数学 第一章 直角三角形的边角关系 1.3 三角函数的计算教学

九年级数学 第一章 直角三角形的边角关系 1.3 三角函数的计算教学
(2)由cosA=0.15,得∠A≈81.4°;由cosB=0.8,得 ∠B≈36.9°;
(3)由tanA=2.4,得∠A≈67.4°;由tanB=0.5,得 ∠B≈26.6°.
12/10/2021
第十五页,共三十一页。
拓广探索 比一比,你能得出什么结论?
角 度
(jiǎodù)
增 大
sin15°32 ' = 0.2678
(1)求大楼与电视塔之间的距离AC;
(2)求大楼的高度CD(精确到1米).
12/10/2021
第二十八页,共三十一页。
解析 (1)利用△ABC是等腰直角三角形易得AC的长;
(2)在Rt△BDE中,运用直角三角形的边角关系(guān xì)即 可求出BE的长,用AB的长减去BE的长度即可.
(1)求改直后的公路(gōnglù)AB的长; (2)问公路改直后该段路程比原来缩短了多少千米(精确 到0.1)?
12/10/2021
第十八页,共三十一页。
(1)求改直后的公路(gōnglù)AB的长;
解:(1)过点C作CD⊥AB于点D, ∵AC=10千米(qiān mǐ),∠CAB=25°, ∴CD=sin∠CAB·AC=sin25°×10≈0.42×10=4.2(千米),AD =cos∠CAB·AC=cos25°×10≈0.91×10=9.1(千米). ∵∠CBA=45°,∴BD=CD=4.2(千米),
第二十六页,共三十一页。
5.sin70°,cos70°,tan70°的大小(dàxiǎo)关系是( D) A.tan70°<cos70°<sin70° B.cos70°<tan70°<sin70° C.sin70°<cos70°<tan70° D.cos70°<sin70°<tan70°

《1.3三角函数的计算》 教案

《1.3三角函数的计算》  教案

1.3三角函数的计算教学目标:1.能够用计算器进行有关三角函数值的计算.2.能够运用计算器辅助解决含三角函数值计算的实际问题,提高用现代工具解决实际问题的能力.3.通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值.重点与难点:重点:用计算器辅助进行三角函数的计算及其在生活中的实际问题. 难点:建构数学模型,解决实际问题.课前准备:教师准备:多媒体课件,导学案.学生准备:课下复习三角函数函数的定义及30°、45°、60°的三角函数值等相关知识.教学过程:一、创境导入,提出问题同学们大多都玩过滑滑梯吧!看下面这幅图片,一个小朋友不小心摔了下去,所以园区负责人为了增强滑滑梯的安全性,采取了以下措施,请你帮他来实现.【多媒体展示】把滑梯的倾斜角由原来的45°改为20°,已知滑梯高2m ,如果滑梯高度不变,那么改善前、后的滑梯占地分别多长.(结果精确到0.01m )处理方式:让学看完图片后,独立读题、思考并给出自己的答案,改善前滑梯占地借助特殊角45°角的正切值求解可得答案为tan BCBDC DC∠=,tan 45BC DC =,21DC=,2DC =; 类似的可以得出tan BC BAC AC ∠=,2tan BAC AC∠=,22tan tan 20AC BAC ==∠.这与前面特殊角度的三角函数值不同,就目前我们的知识基础没有办法继续完成本问题的解答,得到最终的答案,引起知识冲撞,进而自然而然引出我们今天讲要研讨的问题:用计算器来进行三角函数的有关计算,请看屏幕明晰今天的学习目标.1.能够用计算器进行有关三角函数值的计算.2.能够运用计算器辅助解决含三角函数值计算的实际问题.设计意图:计算器对于学生来说,并不陌生,在学习七年级数学时,曾用计算器进行过有理数的计算;在学习八年级数学时,曾用计算器进行过数的开方.所以,本节课在开课伊始,采用滑梯改善前后,坡角由特殊角度改为一般角,引起合理知识冲撞,创设出情景,引入新课内容和学习目标.应用这种形式,一方面能调动学生的学习积极性,激发学生的学习激情,创设积极的浓厚的学习氛围,另一方面导入新课,让学生明确本节课将要使用的学具和学习任务.二、自主合作,解决问题探究活动一:请同学们阅读课本P12第7行---表格末和P14页第一行---P14页第9行,自学后,完成下面自学探究问题题组一.探究问题题组一1.用科学计算器求三角函数值'''= ;cos19°= .sin26°= ;tan3528352.用科学计算器求角度sinA=0.9816,∠A= ;cos B=0.8607,∠B= ;tanC=56.78 ,∠C= ;处理方式:待学生自学研讨后,进行展评答案,交流学习感悟!对于这个探究问题题组,只要能认真研读课本,按顺序按键,完全正确解答它们应该是没有问题的.但是,在学生展评后,应该加以强调1.用计算器求三角函数值时,计算结果一般精确到万分位.2.用计算器根据三角函数值求角度时,计算结果一般精确到1',注意结果的形式要是以度为单位时,一般要精确到万分位,如果要用度分秒表示,要在按完最后一个数字后按“”,就呈现度分秒为单位的结果了.具体的操作流程:1.学生独立思考.2.小组内讨论交流.3.展示汇报.4.修订答案.5.解后反思.【多媒体展示标准答案】 1.用科学计算器求三角函数值sin 26°= 0.4384 ;tan 352835'''= 0.7127 ;cos 19°= 0.9455. 2.用科学计算器求角度sinA =0.9816,∠A =785931'''; cos B =0.8607, ∠B =303617'''; tanC =56.78 ,∠C =885927''';当处理完问题1、2后,教师再次追问:“如果得出的角度想转化为度、分、秒,该如何按键得出答案呢?”,教会学生如何更好的利用课本学习知识和获取知识.设计意图:本环节目的是实施目标1,让学生学会应用计算器进行求三角函数值或求角度.为实现这个目标,设计问题1的目的是借助计算器求三角函数值,问题2是已知三角函数求角度,应用的第二功能解决问题,让学生感受数学知识的正反两用的可逆过程,培养学生逆用知识的能力.为探究活动二构建知识和平台..探究活动二:引入科学计算器的辅助功能后,我们就可以求任意一个锐角的三角函数值了,从而对于生活中的实际问题我们就可以非常顺利的解决了.比如下面的问题,我们就可以借助科学计算器来解决了.(多媒体展示)问题1.如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200米,已知缆车行 驶的路线与水平面的夹角为∠a =16°,那么缆车垂直上升的距离是多少?(结果精确到si nco sta n0.01m )问题2.如图,当缆车继续由点B 到达点D 时,它又走过了200 m ,缆车由点B 到点D 的行驶路线与水平面的夹角是∠β,缆车上升了133.8m ,由此你能计算出∠β的大小吗?处理方式:学生独立思考后,小组内讨论交流,形成问题解决方案,推选代表组间展示汇报. 问题1、2都是三角函数在生活中的实际应用,这就要求学生有从实际问题抽象概括数学模型的能力,在学生展示过程中,主要让学生展示自己建构数学模型的过程,训练和培养学生抽象概括实际问题为数学问题的能力,其中问题1是已知角求边长;问题2是已知边求角,学生交流后老师强调解题步骤,形成规范的解题模式.具体的操作流程: 1. 学生独立思考. 2.小组内讨论交流. 3.展示汇报. 4.修订答案. 5.解后反思.【多媒体展示标准答案】设计意图:这一组题是借助科学计算器进行的三角函数的计算,在生活实际中的应用,°16s =sin =2000.275655.12m A BCABBC BC ∆∠∠=∴∴⨯∴≈1.解:在Rt ABC 中,C=90,,inA=,BC AB A=200sin16()°s 133.8s 0.66920042DEBD βββ∆∠====∴==∴=2.解:在Rt BDE 中,E 90,BD 200m ,DE 133.8min ,in目的是培养学生建构数学模型的能力、规范解题的能力,教师做好板书的示范作用,教会学生建构数学模型,并会按照解决数学问题的步骤写规范的解题步骤,既会已知角求有关长度,也会已知长度,求角度,实现知识的和技能的正反应用,培养学生综合应用知识的能力.探究活动三:【在同学们的共同努力下,我们对于任意一个锐角的三角函数我们都可以借助科学计算器进行计算了.这样对于改造滑滑梯的问题就可以迎刃而解了.请同学们独立解决一下滑滑梯改造后占地多长吧.】解:在Rt ⊿ACB 中,tan BCBAC AC ∠=2tan BAC AC ∴∠= 22tan tan 20AC BAC ∴==∠5.50.AC m ∴=处理方式:由于前面已经分析到22tan tan 20AC BAC ==∠这一步,再加上刚才探究完科学计算器进行任意角的三角函数了,所以学生独立完成滑滑梯改造后占地多长应该易如反掌了.但是在解决完之后,一定要巡视指导学生注意答案精确度的要求,这是学生常常忽略的地方,使学生能规范的答题,完整的答题. 设计意图:这样设计的目的一是前后呼应,使整堂课浑然一体,成为一个完整的体系. 其二是使学生真正的体会到数学在生活中的应用,体会到数学的价值,从而更加认真的研究数学,提高学生学习数学的积极性了.三、小结感悟,能力提升同学们,反思才能进步,总结方能提高,让我们就象虚心的竹子一样,打一节进步一节成长一步吧!通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.生:畅谈自己的收获!师:再画龙点睛,展示知识结构,提出对学生的期望和更高的要求.【其中我们在利用计算器进行三角函数的计算时,其按键顺序和注意事项是值得我们重点识记的,就让我们再来共同回忆一下吧!】1.在用计算器求三角函数值时,其按键顺序【以求tan182132'''的值为例】是在用计算器求角度时其其按键顺序【以已知sin α=0.9816求α的值为例】是设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.四、达标检测,反馈提高通过本节课的学习,同学们的收获很多!“学的好不好,一试便知道”.请同学们利用刚才你们的探究成果解决下面的问题,希望各位同学都能顺利通过我们开课伊始制定的目标考核.加油哇,聪明的孩子们!A组(必做题):1.用科学计算器计算:≈________.(结果精确到0.01)2.若tanA=2.7474,且∠A为锐角,则sinA= .A.0.9397B.0.3420C.0.9D.0.42303.为了方便行人推自行车过某天桥,市政府在10m高的天桥两端修建了40m的斜道.这条斜道的倾斜角是多少?B组(选做题):4.如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm伞架DE DF AE AF AB AC长度363636368686(1)求AM的长.︒+56tan331(2)当∠BAC=104°时,求AD的长(精确到1cm).处理方式:学生做题时教师巡视,发现对今天所学知识掌握不够好的学生及时辅导,鼓励学生遇到问题时及时询问,做完的学生教师当堂批改,指出对错.若有时间A组第3题可以让学生黑板板书,师生共同点评,B组选做题第4题可以让A组学生到黑板尝试板演,旨在给其他志在攻坚的学生抛砖引玉,做个示范.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的. 分层设置作业,注重基础的夯实,能力的提升.使不同的学生都得到更大的收获,都能获得成功的喜悦.五、布置作业,课后促学A.必做题:课本P15第2题、第3题、第4题.B.选做题:课本P27第23题.板书设计。

九年级数学下册1.3《三角函数的计算》1初中九年级下册数学

九年级数学下册1.3《三角函数的计算》1初中九年级下册数学

变式训练(xùnliàn)
• 1.如图,∠C=90°,∠DBC=30°,AB=BD,利用 (lìyòng)此图求tan75°的值.
2+ 3
第二十页,共二十二页。
课堂 总结 (kètáng)
• 1.本节课你有什么收获? • 2.本节课你认为自己解决的问题是什么? • 3.通过今天的学习(xuéxí),你想进一步研究的问题是什
第七页,共二十二页。
学习 新知 (xuéxí)
• 如图所示,这是求sin16°,cos42°,tan85°和 sin72°38′25″按键(àn 顺序 jiàn)
第八页,共二十二页。
按键顺序
sin16 °
sin 1 6 =
cos42 ° cos 4 2 =
tan85°
tan 8 5
=
显示结 果
0.275637355
2.解:∠θ≈56°1″
第十七页,共二十二页。
计算 3.
(jìsuàn)
(1)2 cos2 30-°2 sin 60°·cos 45°;
= 2 ·( 3 )-2 2 · ·3 2
2
22
= 3 6
2
(2)2 sin30°-3 tan 45°+4 cos 60°;
= 2· 1 2
=0
-3 ·1+4 ·
第十页,共二十二页。
同学们,仔细想想,除了这个例题当中给出的几种 情况外,你们还能计算什么(shén me)?为什么(shén me)?你 们又是怎么计算的呢?
第十一页,共二十二页。
例1 如图,在Rt△ABC中,∠C=90°, 已知AB=12cm,∠A=35 ° , 求△ABC的周长和面积(miàn jī).
(周长精确到0.1cm,面积保留3个有效数字)

初中数学《1.3 三角函数的计算》教案

初中数学《1.3  三角函数的计算》教案

§.1 三角函数的有关计算(第1课时)教学目标1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数意义.2.能够用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.教学重点1.用计算器由已知锐角求三角函数值.2.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点用计算器辅助解决含三角函数值计算的实际问题.教学方法探索——引导.教学过程一、提出问题,引入新课课本P15引例如图,当登山缆车的吊箱经过点A到达点B时,它走过了200米,已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?怎样用科学计算器求三角函数值呢?二、讲授新课1.用科学计算器求一般锐角的三角函数值.讲解计算器的使用(参照课本)2.下面就请同学们利用计算器求出本节刚开始提出的问题.3.下面请同学们用计算器计算下列各式的值(多媒体演示).(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°.(以小组为单位,展开竞赛,看哪一组既快又准确)4.你能用计算器计算说明下列等式成立吗?(用多媒体演示)下列等式成立吗?(1)sin15°+sin25°=sin40°;(2)cos20°+cos26°=cos46°;(3)tan25°+tan15°=tan40°.由此,你能得出什么结论?三、用计算器辅助解决含有三角函数值计算的实际问题.当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面的夹角是∠β=42°,由此你能想到还能计算什么?四、随堂练习P17五、课时小结本节课主要内容如下:(1)运用计算器计算由已知锐角求它的三角函数值.(2)运用计算器辅助解决含三角函数值计算的实际问题.六、课后作业习题1.4的第1.2题§1.3.1 三角函数的有关计算(一)1.用计算器由已知锐角求它的三角函数值熟练操作,求sin16°,cos42°,tan85°,sin72°38′25″.2.用计算器辅助解决含三角函数值计算的实际问题.。

《三角函数的计算》教学设计

《三角函数的计算》教学设计

《三角函数的计算》教学设计
教学内容:三角函数的计算
教学目标:1.能够了解三角函数的概念;2.能够掌握三角函数的计算公式;3.能够熟练应用三角函数来解决实际问题。

教学重点:掌握三角函数的计算公式,熟练应用三角函数解决实际问题。

教学过程:
一、课前准备
1.教师准备教学教材和教学辅助媒体;
2.教师准备相关实验器材和实验任务;
3.学生准备教学笔记和梳理学习资料;
二、课堂指导
1.让学生围绕三角函数概念进行讨论,帮助其掌握三角函数的概念;
2.引入实验器材,实验相关实验任务,帮助学生掌握三角函数的计算公式;
3.师生讨论实际应用场景,结合三角函数的计算公式,熟练掌握三角函数的计算方法;
4.针对学生未掌握的知识点,针对性讲解,帮助学生掌握;
5.给学生布置习题,帮助学生巩固掌握所学知识。

三、板书设计
三角函数:
sinA=y/r
cosA=x/r
tanA=y/x
cotA=x/y
四、课堂检测
1.问答题:
(1)三角函数是什么?
三角函数是指通过反三角函数,正弦函数,余弦函数和正切函数等,利用三角形的边长和角度,通过数学函数表示三角形特征的函数。

(2)三角函数的应用是什么?。

三角函数的计算教案

三角函数的计算教案

三角函数的计算教案标题:三角函数的计算教案教案目标:1. 理解三角函数的定义和性质;2. 学会使用三角函数计算角度的正弦、余弦和正切值;3. 掌握解三角函数方程的方法;4. 运用三角函数计算实际问题。

教学资源:1. 教科书:包含三角函数的定义、性质和计算方法;2. 白板/黑板和可擦笔;3. 幻灯片或投影仪。

教学步骤:引入:1. 使用幻灯片或黑板上展示一个直角三角形,并引导学生回顾三角函数的定义和符号表示;2. 提问学生对三角函数的理解和应用,激发学生的兴趣。

探究:1. 让学生观察和记录不同角度的正弦、余弦和正切值;2. 引导学生发现和总结三角函数的周期性和对称性;3. 提供一些简单的角度计算问题,让学生运用三角函数计算角度的正弦、余弦和正切值。

讲解:1. 通过幻灯片或黑板上的示例,详细讲解三角函数的计算方法和性质;2. 强调角度的单位(弧度和度)及其转换关系;3. 解释如何使用三角函数计算角度的正弦、余弦和正切值。

练习:1. 分发练习题,让学生独立或合作完成;2. 监督学生的练习过程,及时解答疑惑并纠正错误。

拓展:1. 提供一些挑战性问题,让学生应用三角函数解决实际问题;2. 鼓励学生思考和讨论不同解法的优缺点。

总结:1. 对本节课的内容进行总结,强调三角函数的重要性和应用;2. 检查学生对三角函数计算的掌握情况,解答他们可能有的疑问。

作业:1. 布置相关的作业题,巩固学生对三角函数计算的掌握;2. 鼓励学生在实际生活中寻找应用三角函数的例子,并写下自己的思考和发现。

评估:1. 观察学生在课堂上的参与程度和练习的完成情况;2. 收集学生的作业,检查他们对三角函数计算的理解和应用。

教学延伸:1. 引导学生进一步探究三角函数的图像和性质;2. 探讨三角函数在物理、工程等领域的应用。

备注:教案中的步骤和内容可以根据具体教学情况进行调整和扩展。

同时,应根据学生的知识水平和学习能力,选择合适的教学方法和资源,确保教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角函数的计算》教学设计一、学生知识状况分析1. 本章前两节学生学习了三角函数的定义,三角函数sinα、cosα、tanα值的具体意义,并了解了30°,45°,60°的三角函数值.2. 学生已经学会使用计算器进行有理数的加、减、乘、除及平方运算,对计算器的功能及使用方法有了初步的了解.二、教学任务分析随着学习的进一步深入,当面临实际问题的时候,如果给出的角不是特殊角,那么如何解决实际的问题,为此,本节学习用计算器计算sinα、cosα、tanα的值,以及在已知三角函数值时求相应的角度.掌握了用科学计算器求角度,使学生对三角函数的意义,对于理解sinα、cosα、tanα的值∠α之间函数关系有了更深刻的认识.根据学生的起点和课程标准的要求,本节课的教学目标和任务是:知识与技能1. 经历用计算器由已知锐角求三角函数的过程,进一步体会三角函数的意义.2. 能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.过程与方法在实际生活中感受具体的实例,形成三角形的边角的函数关系,并通过运用计算器求三角函数值过程,进一步体会三角函数的边角关系.情感态度与价值观通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值教学重点:用计算器求已知锐角的三角函数值.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点:能够用计算器辅助解决含三角函数值计算的实际问题三、教学过程分析三、教学过程分析本节课设计了六个教学环节:复习引入,探索新知、例题讲解,随堂练习,课堂小结,布置作业,课外探究.第一环节 复习引入活动内容:用多媒体展示学生前段时间所学的知识,提出问题,从而引入课题.直角三角形的边角关系:三边的关系: 222a c b =+,两锐角的关系: ∠A+∠B=90°.边与角的关系:锐角三角函数 c a B A ==cos sin ,c b B A ==sin cos ,ba A =tan , 特殊角30°,45°,60°的三角函数值.引入问题:1、你知道sin16°等于多少吗?1sin A ?4A =∠=2、已知则第二环节探索新知活动内容一:ABsin16°米中的“sin16°”是多少呢? 我们知道,三角函数中,当角的大小确定时,三角函数值与直角三角形的大小无关,随着角度的确定而确定.对于特殊角30°、45°、60°可以根据勾股定理和含这些特殊角的直角三角形的性质,求出它们的三角函数值,而对于一般锐角的三角函数值,我们该怎么办?我们需借助于科学计算器求出这些锐角的三角函数值.怎样用科学计算器求三角函数值呢?1.用科学计算器求一般锐角的三角函数值.用科学计算器求三角函数值,要用到和键.我们对下面几个角的三角函数sin16°,cos72°38′25″和tan85°的按键顺序如下表所示.(多媒体演示)按键顺序显示结果sin16°sin 1 6 = sin16°=0.275637355cos72°38′25″cos72°38′25″=0.2983699067tan85°tan85=11.4300523同学们可用自己的计算器按上述按键顺序计算sin16°,cos72°38′25″,tan85°.看显示的结果是否和表中显示的结果相同.(教学时应注意不同的计算器按键方式可能不同,可引导学生利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以鼓励同学们互相交流用计算器计算三角函数值的方法)用计算器求三角函数值时,结果一般有10个数位,我们的教材中有一个约定.如无特别说明,计算结果一般精确到万分位.下面就请同学们利用计算器求出本节刚开始提出的问题.用计算器求得BC =sin16°≈0.2756.[问题]如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200米,已知缆车行驶的路线与水平面的夹角为∠a =16°,那么缆车垂直上升的距离是多少?在Rt △ABC 中,∠α=16°,AB=200米,需求出BC.根据正弦的定义,sin16°=200BC AB BC , ∴BC =ABsin16°=200 sin16°≈55.12m.对问题进一步探索:当缆车继续由点B 到达点D 时,它又走过了200 m ,缆车由点B 到点D 的行驶路线与水平面的夹角是∠β=42°,由此你能想到还能计算什么?学生思考后,有如下几种解决方案:方案一:可以计算缆车从B 点到D 点垂直上升的高度.方案二:可以计算缆车从A 点到D 点,一共垂直上升的高度、水平移动的距离.用计算器辅助计算出结果:(1)在Rt △DBE 中,∠β=42°,BD =200 m ,缆车上升的垂直高度DE =BDsin42°=200sin42°≈133.83(米).(2)由前面的计算可知,缆车从A →B →D 上升的垂直高度为BC+DE=55.12+133.83=188.95(米).(3)在Rt △ABC 中,∠α=16°,AB=200米,AC =ABcos16°≈200×0.9613=192.23(米).在RtADBE 中,∠β=42°,BD =200米.BE =BD ·cos42°≈200×0.7431=148.63(米).缆车从A →B →D 移动的水平距离为BE+AC =192.23+148.63=340.86(米). 活动目的:对教材中的问题,需要求出16°角的三角函数值,由此引出一般锐角的三角函数的计算问题.实际教学效果:学生根据之前所学的三角函数的定义得出边角的关系,并对问题进行拓展,让学生对非特殊角的三角函数进行理解,对实际问题进行体会,由此感受到学习新知识的需要,产生探索的欲望.活动内容二: 课前提出的问题41sin A ,则∠A 等于多少. 我们来看下面这个实际问题:[问题]随着人民生活水平的提高,私家小轿车越来越多,为了交通安全及方便行人推车过天桥,某市政府要在10 m 高的天桥两端修建40m 长的斜道.请问这条斜道的倾斜角是多少? (如下图所示)活动目的:通过上例创设问题情境,激发学习兴趣,学生要解决这个问题必须先求sinA =41 AC BC ,再求∠A ,把这个问题归结为“已知三角函数值求相应锐角的大小”.实际教学效果:学生的求知欲被激发起来,思维处于活跃状态,每个同学都积极探索解决这个实际问题的办法与途径.寻求方法活动内容:练习掌握已知三角函数值求角度,要用到、、键的第二功能 “sin -1,cos -1,tan -1”和 键. 例如: ①已知sinA =0.9816,求锐角A.②已知cosA =0.8607,求锐角A.③已知tanA =56.78,求锐角A.按键顺序如下表:按键顺序 显示结果 sinA=0.9816sin -10.9816=78.99184039cosA=0.8607cos -10.8607=30.60473007 tanA=56.78tan -156.78=88.99102049上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.1=0.25.按键顺序为这一环节的引例中sinA=4.显示结果为sin-10.25=14.47751219°,再按键可显示14°28′39″,所以∠A=14°28′39″.(以后在用计算器求角度时如果没有特别说明,结果精确到1″即可.)(教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤.)活动目的:前一环节课已经学习如何利用科学计算器求已知角的三角函数值,通过本环节学习,使学生掌握如何利用科学计算器由锐角三角函数值求相应的锐角的大小,即已知三角函数值求角度,要用到、、键的第二功能“sin-1,cos-1,tan-1”和键.此外,通过这一环节促进学生的可逆性联想.实际教学效果:学生能够利用科学计算器由已知锐角三角函数值反过来求相应的锐角的大小,并从中体会用科学计算器解决问题的优势,体会了三角函数值和对应角度的对应关系.活动内容(练一练):下面请同学们用计算器计算下列各式的值(多媒体演示).1、用计算器求下列各式的值.(1)sin56°;(2)cos20.5°;(3)tan44°59′59″;(4)sin15°+cos61°+tan76°.(以小组为单位,展开竞赛,看哪一组既快又准确)答案:(1)sin56°≈0.8290;(2)cos20.5°≈0.9367;(3)tan44°59′59″≈1.0000; (4)sin15°+cos61°+tan76°≈0.2588+0.4848+4.0108=4.7544.2.已知sin θ=0.82904,求锐角θ的大小.答案:θ≈56°活动目的:通过上面的练习,使学生通过亲手操作掌握利用计算器由已知锐角三角函数值求相应锐角大小的方法,并能进行不同角度单位之间的转换.实际教学效果:学生能够正确使用计算器解决已知锐角三角函数值求相应锐角的大小的问题(包括函数值为无理数的情形).第三环节:例题讲解例1.求图中避雷针的长度(结果精确到0.01m).解:∵2050tan ,2056tan BC BD =︒=o ∴︒=56tan 20BD ︒=50tan 20BC∴m BC BD CD 82.550tan 2056tan 20≈-=-=︒︒例2:工件上有一V 形槽,测得它的上口宽20mm,深19.2mm,求V 形角(∠ACB)的大小(结果精确到1°).第四环节:随堂练习练习1: 某水库大坝的横断面是梯形ABCD,坝顶宽CD=3m,斜AD=16m,坝高8m,斜坡BC 的坡比为1:3,求斜坡BC 的坡角∠B 和坝底宽AB.A BN2. 如图,根据图中已知数据,求△ABC 的面积.AB C3. 如图,根据图中已知数据,求AD.D32°4cm 46°AB C第五环节课堂小结活动内容:谈一谈:这节课你学习掌握了哪些新知识?通过这节课的学习你有哪些收获和感想?活动目的:鼓励学生结合本节课的学习,从数学方法、数学思维与科学工具等方面谈自己的收获与感想.实际教学效果:学生畅所欲言谈自己的学习感受和实际收获:学会了运用计算器计算已知锐角的三角函数值以及由三角函数值求角;运用三角函数解决与直角三角形有关的实际问题;三角函数的有关知识与现实生活有密切的联系.进一步认识数学方法、数学思维与科学工具的功能,增强在解决问题的过程中综合运用三个方面解决问题的意识.第六环节布置作业习题1.4.第七环节课外探究活动内容:拓展创新演练:如图,某地夏日一天中午,太阳光线与地面成80°角,房屋朝南的窗户高AB=1.8 m,要在窗户外面上方安装一个水平挡板AC,使光线恰好不能直射室内,求挡板AC的宽度教育资料(结果精确到0.01 m) .四、教学反思本节课让学生经历从实际问题中抽象出锐角三角函数模型的过程,鼓励学生用计算器完成复杂的计算,从而让学生能够利用工具进行数学的解答.本节课的目的是让学生体会对于实际问题,一旦建立了数学模型,在已知边和角的关系求边,或者已知边和边的关系求角,都可以用科学计算器完成.在教学过程中,首先教会学生怎样使用科学计算器,然后多给几个例子计算,以便熟练的掌握.学生在抽象三角函数的模型是关键,这里应多给时间让学生思考,不能操之过急..。

相关文档
最新文档