八年级数学上册13.2.2证明学案无答案新版沪科版

合集下载

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的重点内容,本节内容是在学生已经掌握了命题与定理的基础上进行进一步的深入学习。

本节课的主要内容是让学生了解证明的方法和步骤,学会如何正确地进行数学证明。

教材通过具体的例子引导学生理解证明的过程,并通过练习让学生掌握证明的方法。

二. 学情分析学生在学习本节内容之前,已经学习了命题与定理的基本概念,对命题和定理有了初步的理解。

但是,学生在证明方面还缺乏系统的训练,证明的方法和步骤还不够清晰。

因此,在教学过程中,需要教师引导学生理解证明的过程,并通过大量的练习让学生掌握证明的方法。

三. 教学目标1.让学生理解证明的概念和方法,掌握证明的基本步骤。

2.培养学生进行数学证明的能力,提高学生的逻辑思维能力。

3.通过数学证明的学习,培养学生的耐心和细致,提高学生的学习兴趣。

四. 教学重难点1.教学重点:让学生理解证明的概念和方法,掌握证明的基本步骤。

2.教学难点:如何引导学生理解证明的过程,如何让学生掌握证明的方法。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生理解证明的过程。

2.使用小组合作学习的方法,让学生在合作中学习,提高学生的学习效果。

3.通过大量的练习,让学生在实践中掌握证明的方法。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备相关的教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)教师通过提问的方式引导学生回顾命题与定理的基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT或黑板,呈现本节课的主要内容,让学生了解本节课的学习目标。

3.操练(10分钟)教师通过具体的例子,引导学生理解证明的过程,让学生掌握证明的基本步骤。

4.巩固(10分钟)教师布置一些练习题,让学生在练习中巩固所学的内容,提高学生的证明能力。

5.拓展(10分钟)教师通过一些综合性的练习题,让学生在练习中提高自己的逻辑思维能力,提高学生的学习兴趣。

八年级数学上册13.2.2证明学案(无答案)沪科版(new)

八年级数学上册13.2.2证明学案(无答案)沪科版(new)

第2课时证明班级:_______ 小组:_______ 姓名:_______学习目标:1、了解公理、定理、证明的内涵,会进行简单的推理。

2、经历探索证明的过程,弄清证明的基本方法,以及书写形式,体会演绎推理的意义。

学习重点:掌握推理方法学习难点:发展演绎推理意识学习过程:一、知识链接1、命题:负数的绝对值是它的相反数,这个命题的题设是_____________,结论是____________,它是____________命题2、如何进行推理证明?二、自主学习1、下列命题(1)同位角相等,两直线平行(2)经过两点有一条直线,并且只有一条直线(3)两点之间所有连线中,线段最短(4)经过直线外一点,有且只有一条直线平行于这条直线是大家公认的真命题是公理:公理:2、下列命题:(1)三角形内角和等于180°(2)对顶角相等是定理:定理:3、证明: 叫做证明4、尝试的填一填(1)已知:如图所示:BD⊥AC,EF⊥AC,D、F为垂足,∠1=∠2,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC()∴BD∥EF()∴∠2=∠CBD ()又∵∠1=∠2 ( )∴∠1=∠CBD ()∴GD∥BC ( )∴∠ADG=∠C ( )(2)已知:如图所示∠1=∠2,∠C+∠D=180°求证:EF∥BC证明:∵∠1=∠2(已知)∴AD∥_________( )又∵∠C+∠D=180°(已知)∴AD∥_______()∴EF∥_________( )5、自我展示(1)已知:如图直线c与直线a,b相交且∠1=∠2求证:a∥b总结归纳:证明是由条件(已知)出发,经过一步一步的推理,最后推出结论(求证)正确的过程证明的根据是:(2)已知:如图所示,AD⊥BC于D,EG⊥BC于G,∠E=∠3求证:AD平分∠BAC三、学习小结:这节课你学了哪些知识?四、达标检测1、在下列的括号内,填上推理的依据:已知:如图点B、A、E在一条直线上∠1=∠B求证:∠C=∠2证明:∵∠1=∠ B( )∴AD∥B C()∴∠C=∠2 ()2、在下列括号内,填上推理的依据已知:如图∠1=∠2求证:AB∥CD证明:∵∠1=∠ 2()又∵∠2=∠ 3()∴∠1=∠3 ( )∴AB∥CD ()3、已知:如图AB∥A′B′、BC∥B′C′、BC交A′B′于点D,求证:∠B=∠B′五、学习反思尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节课的主要内容是让学生理解命题的概念,掌握证明的方法和技巧。

教材通过引入生活中的实例,让学生体会命题的意义,进而引导学生学习证明的基本方法。

教材内容由浅入深,循序渐进,有利于学生掌握。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对数学概念有一定的理解。

但是,对于证明这一概念,学生可能较为陌生,需要通过具体的实例来引导学生理解和掌握。

此外,学生在学习过程中可能存在对证明方法的不理解,需要教师耐心引导和讲解。

三. 教学目标1.让学生理解命题的概念,能正确写出题设和结论。

2.让学生掌握证明的方法和技巧,能运用所学的证明方法解决实际问题。

3.培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

四. 教学重难点1.重点:命题的概念,证明的方法和技巧。

2.难点:证明方法的灵活运用,对复杂命题的证明。

五. 教学方法1.采用实例导入法,通过生活中的实例引导学生理解命题的意义。

2.采用问题驱动法,引导学生思考和探索证明的方法。

3.采用分组合作法,让学生在合作中交流和分享证明的方法和经验。

4.采用讲解法,教师对重点和难点进行讲解和解答。

六. 教学准备1.准备相关的生活实例,用于导入和讲解。

2.准备一些证明题目,用于巩固和拓展。

3.准备PPT,用于展示和讲解。

七. 教学过程1.导入(5分钟)通过一个生活实例,如“如果一个人是男生,那么他一定有喉结”,让学生理解命题的概念,引导学生写出题设和结论。

2.呈现(10分钟)呈现一些简单的命题,如“勾股定理”和“平行线的性质”,让学生尝试证明。

教师在旁边指导,解答学生的疑问。

3.操练(10分钟)学生分组合作,每组选择一个命题进行证明。

教师巡回指导,检查学生的证明过程,纠正错误。

4.巩固(10分钟)教师选取一些学生的证明题目,进行讲解和分析,让学生理解和掌握证明的方法和技巧。

新沪科版数学八年级上册13.2《命题与证明》导学案2

新沪科版数学八年级上册13.2《命题与证明》导学案2

新沪科版数学八年级上册13.2《命题与证明》导学案2班级姓名时间课题:13.2.2 命题与证明一、自学目标(认定目标不放松)1.了解基本事实、定理的意义;2.能对真命题的证明过程给出依据。

二、自学过程1.请仔细阅读教科书P 至观察止并在书上做好记号。

2、我们学过了几个基本事实?请你写出来。

3.什么叫定理?和基本事实有什么联系和区别?4.数学符号的认识:因为怎么表示?所以呢?三、自学质疑(学要思,思要钻)请写下你的疑问:孙疃中心学校”st”互助学习“三步九环节”学案之研学案课题:13.2.2 命题与证明【研学目标】1. 了解公理、定义和证明的意义;2. 初步学会简单的证明过程,能对真命题的证明过程提出依据3. 经历探究简单的证明过程,初步学会简单的推理方法 【研学重点】简单的几何推理格式 【研学难点】用推理的方式证明真命题。

【研学过程】 活动一:阅读教材 想一想:“两点之间线段最短”、“经过直线外一点有且只有一条直线与已知直线平行”、“过两点有且只有一条直线 ”这些命题有什么共同之处?几何推理中,把这些“从长期实践中总结出来,不需要再证明的真命题叫基本事实”在真命题中需要从基本事实和其他真命题出发,用推理的方法证明为正确,并被选作判断命题真假的依据。

这样的真命题叫做什么呢? 这样的真命题叫做“定理”。

什么叫“演绎推理”?从已知条件出发,根据定义、公理、已证定理,并根据逻辑规则,推导出结论的方法叫“演绎推理”。

演绎推理的过程,叫做演绎证明,简称证明。

活动二:证明依据例:已知:如图,直线c 与直线a 、b 相交,且∠1=∠2求证:a ∥b 证明: 练习:1、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:ab 123c4ab 12c(1)∵a ∥b,∴∠1=∠3(_________________); (2)∵∠1=∠3,∴a ∥b(_________________); (3)∵a ∥b,∴∠1=∠2(__________________); (4)∵a ∥b,∴∠1+∠4=180º (_________________) (5)∵∠1=∠2,∴a ∥b(__________________); (6)∵∠1+∠4=180º,∴a ∥b(_______________). 2、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2, 求证:BE ∥CF证明:∵AB ⊥BC ,BC ⊥CD (已知) ∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质) ∴BE ∥CF ( )3、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角。

13.2命题的证明 教案-沪科版数学八年级上册

13.2命题的证明 教案-沪科版数学八年级上册

课题:13.2命题与证明(1)一、教学内容和内容解析教学内容:命题的概念与结构,命题的真假及判断,原命题和逆命题的区分以及反例的概念。

内容解析:本节内容是沪科版初中数学八年级(上)第13章第2节的内容,本节课通过只凭剪拼的直观操作法来说明三角形的内角和为180°这个结论难以令人信服的,说明推理证明的必要接着学习命题、命题的结构、互逆命题、反例等知识;本节内容是将前面学习的几何性质与后面即将学习的证明联系起来;通过本节课的学习初步训练学生逻辑推理思维能力,同时也为接下来的证明奠定基础.二、教学目标1、结合具体实例了解命题、真命题、假命题、原命题、逆命题、反例的概念,区分命题的条件和结论,了解原命题和逆命题的关系;2、经历探究命题以及结构的过程,体会命题的内涵,明确反例的意义和作用,经历一系列问题串的探究过程,掌握有关数学概念的学习方法,为后继学习做好准备;3、在师生互动过程中,掌握有关数学概念的学习方法,为后继学习做好准备,同时不断提高学生学好数学的信心。

三、教学重难点重点:认识命题的意义和结构,判断命题的真假,以及互逆命题之间的关系。

难点:反例构造的过程。

四、教学策略分析为了实现教学目标,根据教学内容及学生的学习特点,本着“学生为主体”的教学理念,通过问题引领启发、引导、合作、探究,以及组合的教学媒体,把复杂的问题变成简易的过程,注重教学方法的渗透。

五、教学支持条件分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学知识的本质和发现数学规律。

根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体教学系统辅助教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,吸引了学生的注意力,激发了学生学习数学的兴趣。

疑问:(1)在剪拼时,发现三个内角难以拼成一个平角,只是接近180°的某个值。

(2)度量三个角,然后相加,有的接近179°,有的接近181°,不是很准确地都得180°。

八年级数学上册13.2命题与证明教案(新版)沪科版

八年级数学上册13.2命题与证明教案(新版)沪科版

13.2 命题与证明第1课时命题1.了解命题的含义.2.对命题的概念有正确的理解.3.会区分命题的条件和结论.重点找出命题的条件(题设)和结论.难点命题概念的理解.一、创设情境,导入新课教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.1.如果两个角是对顶角,那么这两个角相等;2.两直线平行,同位角相等;3.同旁内角相等,两直线平行;4.直角都相等.二、合作交流,探究新知学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、4是正确的,句子3是错误的.像这样对某一事件作出正确或不正确判断的语句叫做命题.上面判断性语句1、2、4都是正确的命题,称为真命题,3是错误的命题,称为假命题.教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的.题设是已知事项,结论是由已知事项推出的事项,这样的命题常可写成“如果,,那么,,”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论.有的命题的题设与结论不十分明显,可以将它写成“如果,,那么,,”的形式,就可以分清它的题设和结论了.例如,命题4可写成“如果两个角是直角,那么这两个角相等.”应用迁移、巩固提高1.教师提出问题1:把命题“三个角都相等的三角形是等边三角形”改写成“如果,,那么,,”的形式,并分别指出命题的题设和结论.学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”.这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”.2.教师提出问题2:把下列命题写成“如果,,那么,,”的形式,并说出它们的条件和结论.(1)对顶角相等;(2)如果a>b,b>c, 那么a>c.学生小组交流后回答,学生回答后,教师给出答案.(1)条件:如果两个角是对顶角;结论:那么这两个角相等.(2)条件:如果a>b,b>c;结论:那么a>c.对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个命题叫逆命题.说出上题的逆命题,并讨论.三、运用新知,深化理解例1 写出下列命题的题设和结论:(1)如果a2=b2,那么a=b;(2)对顶角相等;(3)三角形内角和等于180°.分析:第(1)题中有“如果”“那么”,条件结论明显,第(2)(3)题可先改写成“如果,,那么,,”的形式,再找出题设和结论.解:(1)题设是“a2=b2”,结论是“a=b”;(2)改写:如果两个角是对顶角,那么这两个角相等.题设:“两个角是对顶角”,结论:“这两个角相等”;(3)改写:如果三个角是一个三角形的三个内角,那么这三个角的和等于180°.题设:“三个角是一个三角形的三个内角”,结论:“三个角的和等于180°”.【归纳总结】通常情况下命题都可以写成“如果,,那么,,”的形式,当条件结论不是很明显的时候,把所给命题改写成“如果,,那么,,”的形式可以帮助我们找出题设和结论,在改写时,要做到语句通顺,措辞准确.例2 写出下列命题的逆命题,并判断逆命题的真假.(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果△ABC是直角三角形,那么△ABC的内角中一定有两个锐角.分析:(1)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据邻补角的定义判断命题的真假;(2)交换原命题中“如果”和“那么”后面的部分即可得到原命题的逆命题,然后根据三角形的角的关系判断命题的真假.解:(1)逆命题为:如果∠α+∠β=180°,那么∠α与∠β是邻补角,此逆命题为假命题;(2)逆命题为:如果一个三角形中有两个锐角,那么这个三角形是直角三角形,此逆命题为假命题.【归纳总结】将命题的条件与结论互换,得到新命题,我们把这样的两个命题称为互逆命题,其中一个叫原命题,另一个叫做原命题的逆命题.当一个命题是真命题时,它的逆命题不一定是真命题,所举的例子,如果符合命题条件,但不满足命题的结论,称之为反例;要说明一个命题是假命题,只要举出一个反例即可.四、课堂练习,巩固提高1.教材P77练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知命题命题的概念:对某一事件作出正确或者不正确判断的语句(或式子)叫做命题;命题的结构:由题设和结论两部分组成,常写成“如果,,那么,,”的形式;命题的分类:真命题和假命题(要说明一个命题是假命题,只要举出一个反例即可);逆命题:原命题为“如果p,那么q”,逆命题则为“如果q,那么p”.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84习题13.2第1~3题.第2课时证明(一)1.理解和掌握定理的概念,了解证明(演绎推理)的概念.2.了解证明的基本步骤和书写格式,能运用已学过的几何知识证明一些简单的几何问题.重点证明的含义和表述格式.难点按规定格式表述证明的过程.一、创设情境,导入新课教师借助多媒体设备向学生演示,比较线段AB和线段CD的长度.通过简单的观察,并尝试用数学的方法加以验证,体会验证的必要性和重要性.二、合作交流,探究新知证明的引入(1)命题“等腰直角三角形的斜边是直角边的2倍”是真命题吗?请说明理由.分析:根据需要画出图形,用几何语言描述题中的已知条件和要说明的结论.教师对具体的说理过程予以详细的板书.小结归纳得出证明的含义,让学生体会证明的初步格式.(2)通过教材例3,例4的教学理解证明的含义,体会证明的格式和要求.【归纳总结】证明几何命题的表述格式:①按题意画出图形;②分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;③在“证明”中写出推理过程.三、运用新知,深化理解例1 如图,下列推理中正确的有( )①因为∠1=∠2,所以b∥c(同位角相等,两直线平行);②因为∠3=∠4,所以a∥c(内错角相等,两直线平行);③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行).A.0个B.1个C.2个D.3个分析:结合图形,根据平行线的判定方法逐一进行判断.①因为∠1、∠2不是同位角,所以不能证明b∥c,故错误;②因为∠3=∠4,所以a∥c(内错角相等,两直线平行),正确;③因为∠4+∠5=180°,所以b∥c(同旁内角互补,两直线平行),正确.故正确的是②③,共2个.故选 C.【归纳总结】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.例2 完成下面的证明过程:已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知),∴∠D+∠EFD=180°,∴AD∥______(同旁内角互补,两直线平行).又∵∠1=∠2(已知),∴______∥BC(内错角相等,两直线平行),∴EF∥______,∴∠3=∠B(两直线平行,同位角相等).分析:求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.∵∠D=110°,∠EFD=70°,∴∠D+∠EFD=180°,∴AD∥EF.又∵∠1=∠2,∴AD ∥BC,∴EF∥BC.故答案为:EF,AD,BC.【归纳总结】本题考查了平行线的性质和判定的应用,平行线的性质有:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.反过来就是平行线的判定.四、课堂练习,巩固提高1.教材P78~79练习及P80练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)证明的含义.(2)真命题证明的步骤和格式.(3)思考、探索:假命题的判断如何说理、证明?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P84~85习题13.2第5~8题.第3课时证明(二)1.通过对三角形内角和定理的探究,进一步了解证明的基本过程.2.能将几何命题的文字语言用图形语言和符号语言表示出来.重点根据具体的证明过程,填写推理的理由.难点将文字语言表述的证明题改写成用图形语言和符号语言表述的证明题.一、创设情境,导入新课在前面的学习中,我们已经知道三角形的内角和等于180°,你还记得这个结论的探索过程吗?(1.度量法; 2.折叠法; 3.剪拼法.)但观察和实验得到的结论并不一定可靠,这样就需要进行几何证明.二、合作交流,探究新知1.三角形内角和定理的证明(1)理解题意,分清题目的条件和结论;(2)请同学们分别用图形语言和符号语言表述命题.已知:△ABC,求证:∠A+∠B+∠C=180°.证法一:(请学生参照剪贴的方法去证明)证法二:(引导学生仿照证法一添加辅助线转化成平角去证明)除此之外还有哪些证法呢?引导学生积极思考.2.总结证明命题的一般步骤:(1)理解题意:分清命题的条件(已知),结论(求证);(2)根据条件画出图形并在图形上标出字母;(3)结合图形和命题写出已知和求证;(4)分析因果关系,探索证明思路;(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;(6)检查表述过程是否正确,完善.3.小试牛刀尝试写出下列问题的已知、求证并画图:(1)求证:直角三角形的两个锐角互余.(2)求证:对顶角相等.4.证明:直角三角形的两个锐角互余.(请学生画图口答即可.)推论1:直角三角形两锐角互余.由公理、定理直接得出的真命题叫做推论.推论2:有两个角互余的三角形是直角三角形.三、运用新知,深化理解例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.分析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠2+∠3=180°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠HPE+∠2+∠3=180°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A+∠B+∠C=180°.【归纳总结】本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解答本题的关键.例2 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?分析:要判断△AHC的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC和∠DCA,这两个角是同旁内角,于是联想到已知条件中的AB∥CD.解:△AHC是直角三角形.理由如下:因为AB∥CD,所以∠BAC+∠DCA=180°.又因为AH,CH分别平分∠BAC和∠DCA,所以∠1=12∠BAC,∠2=12DCA,所以∠1+∠2=12(∠BAC+∠DCA),所以∠1+∠2=90°,所以△AHC为直角三角形.【归纳总结】判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.四、课堂练习,巩固提高1.教材P81~82练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知三角形内角和定理的证明及推论1、2三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.六、布置作业请同学们完成《探究在线·高效课堂》“课时作业”内容.第4课时三角形的外角1.了解三角形的外角.2.知道三角形的一个外角等于与它不相邻的两个内角的和,一个外角大于与它不相邻的任何一个内角.3.学会运用简单的说理来计算三角形的相关的角.重点三角形外角的性质.难点运用三角形外角性质进行有关计算时能准确地推理.一、创设情境,导入新课什么是三角形的内角?它是由什么组成的?三角形的内角和定理的内容是什么?教师提出问题,学生举手回答问题.【教学说明】为本节课进一步学习与三角形有关的角作准备.二、合作交流,探究新知探究问题1:如图,把△ABC的一边BC延长到D,得∠ACD,它不是三角形的内角,那它是三角形的什么角?练习:如图,∠ADB,∠BPC,∠BDC,∠DPC分别是哪个三角形的外角?问题2:观察问题1图,∠ACD与∠ACB是什么关系,由此你能得到什么结论?教师利用投影出示图形,并提出问题.教师指出像这样的角叫做三角形的外角,它是由三角形的一边和另一边的延长线组成的.然后教师利用投影出示练习,安排学生举手回答,并按照外角的定义一一指明这些角分别由哪些边组成.完成以后,教师提出问题2,并让学生进行讨论.然后师生共同归纳总结,得出结论:1.三角形的一个外角等于与它不相邻的两个内角的和.2.三角形的一个外角大于与它不相邻的任何一个内角.归纳总结的过程就是让学生说理证明的过程,教师要让学生说一说,练一练.【教学说明】教师指明外角的定义以后,马上进行练习,便于巩固学生对概念的理解.结合图形,培养学生的图形变换能力.通过学生的归纳,总结,证明,让学生自己去发现结论,让学生体验主动探究的成功与快乐.通过观察、讨论等一系列活动,再让学生进行证明,由于准备进行得比较充分,学生能够较顺利地说出证明的过程.培养学生的推理论证能力.三、运用新知,深化理解教师出示教材例5,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角.然后师生共同写出规范的解答过程.思考:还有没有其他的方法可以证明?【教学说明】先让学生分析,培养学生的分析图形能力,然后师生共同解决,规范学生的解答过程.继续提出新的问题,培养学生的发散思维和创新能力.例1 已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.分析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG,∠EGF分别是△BDF,△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【归纳总结】解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.例2 如图,求证:(1)∠BDC>∠A;(2)∠BDC=∠B+∠C+∠A.如果点D在线段BC的另一侧,结论会怎样?分析:通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角).∴∠1+∠2>∠3+∠4(不等式的性质).即:∠BDC>∠BAC.(2)由(1)作图知∠1=∠3+∠B,∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和).∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质),即:∠BDC=∠B+∠C+∠BAC.证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠DEC是△ABE的一个外角(已作),∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BDC>∠A(不等式的性质).(2)由(1)作图知∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和),∵∠DEC是△ABE的一个外角,∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).∴∠BDC=∠B+∠C+∠A(等量代换).【教学说明】让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明过程中,引导学生作辅助线找到一个过渡角.四、课堂练习,巩固提高1.教材P83练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知教师引导学生谈谈对三角形外角的认识.主要从定义和性质两个方面.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P85习题13.2第9题.。

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例
2.设计一系列子问题,如“三角形内角和能否大于180度?”“三角形内角和是否等于180度?”等,引导学生逐步深入探究。
3.引导学生运用转化思想,将复杂的几何问题转化为简单的问题,提高学生解决问题的能力。
4.鼓励学生提出自己的疑问,组织讨论,促进学生思维的发展。
(三)小组合作
1.组织学生分组进行讨论,鼓励学生互相交流、分享思路。
3.通过示例,讲解如何运用三角形内角和定理解决实际问题,让学生体会数学的应用价值。
(三)学生小组讨论
1.设计探究活动,让学生分组讨论如何证明三角形内角和定理。
2.引导学生运用归纳推理、类比推理等方法,深入探究三角形内角和成果,互相交流、学习。
(四)总结归纳
1.教师引导学生总结三角形内角和定理的证明方法,巩固所学知识。
2.总结三角形内角和定理在实际生活中的应用,强调数学的实际价值。
3.引导学生反思自己在讨论过程中的表现,总结自己的优点和不足。
(五)作业小结
1.设计课后作业,让学生运用所学知识解决实际问题,巩固所学内容。
2.要求学生在作业中运用转化思想,提高解决问题的能力。
3.鼓励学生在课后进行自主学习,深入研究三角形内角和定理的相关知识。
二、教学目标
(一)知识与技能
1.让学生掌握三角形内角和定理,理解并能够运用该定理解决实际问题。
2.培养学生空间想象能力,通过观察、实践,让学生能够形象地理解三角形内角和定理。
3.培养学生逻辑思维能力,学会运用归纳推理、类比推理等方法,证明三角形内角和定理。
4.培养学生运用数学知识解决实际问题的能力,将所学知识运用到生活中,提高学生解决实际问题的能力。
4.运用多媒体技术辅助教学,为学生提供丰富的学习资源,提高课堂教学效果。

沪科版数学八年级上册13.2命题与证明 教案3

沪科版数学八年级上册13.2命题与证明  教案3

13.2命题与证明〔第1课时〕工程内容课题13.2命题与证明〔第1课时〕修改与创新教学目标1、理解命题、真命题、假命题的意义,会区分命题的条件和结论。

2、理解定义、根本领实、定理、推论、证明的意义。

教学重、难点教学重点:区分一个命题的条件和结论。

证明一个几何命题的方法和步骤。

教学难点:一个几何命题综合法证明思路的分析与证明过程的标准表述。

教学准备多媒体课件教学过程一、证明〔1〕概念:从的概念和条件出发,依据已被确认的事实和公认的逻辑规那么,推导出某结论正确与否的过程。

〔由于证明的需要,可以在原来的图形上添加一些线,这样的线叫辅助线〕。

推导证明的条件除了条件外,还有公认的事实、公理和学过的定理。

例:〔1〕证明“对顶角相等〞分析:第一步的因是∠1与∠2,∠2与∠3分别是邻补角,果是∠1+∠2=180°,∠2+∠3=180°。

确立因果关系的依据是——邻补角的意义.第二步的因是∠1+∠2=180°,∠2+∠3=180°,果是∠1+∠2=∠2+∠3,依据是——等量代换。

第三步的因是∠1+∠2=∠2+∠3,果是∠1=∠3。

依据是——等量减等量,差相等。

整体来看,前一步的果为后一步的证明提供了因,这样一连串连贯、有序的因果关系组成了完整的证明过程。

证明一般采用的分析方法是:从“要证什么〞着眼,探寻“需要知道什么〞,由此考虑“只要证什么〞,一直追寻到“〞。

而证明的表述一般是从“〞开场,推导出“可知〞,直到求证的“结论〞。

例:〔学生做〕,如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,且∠1=∠2.求证:AD平分∠BAC,填写“分析〞和“证明〞中的空白.分析:要证明AD平分∠BAC,只要证明∠ =∠,而∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由BC的两条垂线可推出∥,这时再观察这两对角的关系已不难得到结论.证明:∵AD⊥BC,EF⊥BC〔〕∴∥〔〕∴ = 〔两直线平行,内错角相等.〕= 〔两直线平行,同位角相等.〕∵〔〕∴,即AD平分∠BAC 〔〕例:,如图,AD⊥BC于D,EF⊥BC于F,EF交AB于G,交CA延长线于E,且∠1=∠2.求证:AD平分∠BAC二、命题〔1〕概念:对某一件事情作出正确或不正确的判断的句子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时证明
班级:_______ 小组:_______ 姓名:_______
学习目标:1、了解公理、定理、证明的内涵,会进行简单的推理。

2、经历探索证明的过程,弄清证明的基本方法,以及书写形式,体会演绎推理
的意义。

学习重点:掌握推理方法
学习难点:发展演绎推理意识
学习过程:
一、知识链接
1、命题:负数的绝对值是它的相反数,这个命题的题设是_____________,结论是____________,它是____________命题
2、如何进行推理证明?
二、自主学习
1、下列命题(1)同位角相等,两直线平行
(2)经过两点有一条直线,并且只有一条直线
(3)两点之间所有连线中,线段最短
(4)经过直线外一点,有且只有一条直线平行于这条直线
是大家公认的真命题是公理:
公理:
2、下列命题:(1)三角形内角和等于180°(2)对顶角相等
是定理:
定理:
3、证明:叫做证明
4、尝试的填一填
(1)已知:如图所示:BD⊥AC,EF⊥AC,D、F为垂足,
∠1=∠2,求证:∠ADG=∠C
证明:∵BD⊥AC,EF⊥AC ()
∴BD∥EF ()
∴∠2=∠CBD ()
又∵∠1=∠2 ()
∴∠1=∠CBD ()
∴GD∥BC ()
∴∠ADG=∠C ()
(2)已知:如图所示∠1=∠2,∠C+∠D=180°
求证:EF∥BC
证明:∵∠1=∠2(已知)
∴AD∥_________()
又∵∠C+∠D=180°(已知)
∴AD∥_______()
∴EF∥_________()
5、自我展示
(1)已知:如图直线c与直线a,b相交且∠1=∠2
求证:a∥b
总结归纳:证明是由条件(已知)出发,经过一步一步的推理,最后推出结论(求证)正确的过程
证明的根据是:
(2)已知:如图所示,AD⊥BC于D,EG⊥BC于G,∠E=∠3
求证:AD平分∠BAC
三、学习小结:这节课你学了哪些知识?
四、达标检测
1、在下列的括号内,填上推理的依据:
已知:如图点B、A、E在一条直线上∠1=∠B
求证:∠C=∠2
证明:∵∠1=∠B ()
∴AD∥BC ()
∴∠C=∠2 ()
2、在下列括号内,填上推理的依据
已知:如图∠1=∠2
求证:AB∥CD
证明:∵∠1=∠2 ()
又∵∠2=∠3 ()
∴∠1=∠3 ()
∴AB∥CD ()
3、已知:如图AB∥A′B′、BC∥B′C′、BC交A′B′于点D,
求证:∠B=∠B′
五、学习反思。

相关文档
最新文档