2012普通高校招生考试大纲全国卷文数

合集下载

2012年普通高等学校招生全国统一考试文科数学(浙江卷)

2012年普通高等学校招生全国统一考试文科数学(浙江卷)

浙江文科1.(2012浙江,文1)设全集U ={1,2,3,4,5,6},集合P ={1,2,3,4},Q ={3,4,5},则P ∩(∁U Q )=( ). A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5}D .{1,2}D 由已知得,∁U Q ={1,2,6},所以P ∩(∁U Q )={1,2}. 2.(2012浙江,文2)已知i 是虚数单位,则3i 1i+-=( ). A .1-2iB .2-iC .2+iD .1+2iD ∵3i 1i +-=(3i)(1i)(1i)(1i)++-+=233i i i 2+++=1+2i ,∴选D .3.(2012浙江,文3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ).A .1 cm 3B .2 cm 3C .3 cm 3D .6 cm 3A 由三视图得,该三棱锥底面面积S =12×2×1=1(cm 2),高为3 cm ,由体积公式,得V =13Sh =13×1×3=1(cm 3).4.(2012浙江,文4)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( ). A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件C l 1与l 2平行的充要条件为a ×2=2×1且a ×4≠-1×1,得a =1,故选C . 5.(2012浙江,文5)设l 是直线,α,β是两个不同的平面,( ). A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥βB A 选项中由l ∥α,l ∥β不能确定α与β的位置关系,C 选项中由α⊥β,l ⊥α可推出l ∥β或l ⊂β,D 选项由α⊥β,l ∥α不能确定l 与β的位置关系.6.(2012浙江,文6)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( ).A y =cos 2x +1图象上所有点的横坐标伸长到原来的2倍得y 1=cos x +1,再向左平移1个单位长度得y 2=cos (x +1)+1,再向下平移1个单位长度得y 3=cos (x +1),故相应图象为A . 7.(2012浙江,文7)设a ,b 是两个非零向量.( ). A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |C 由|a +b |=|a |-|b |两边平方可得,|a |2+2a ·b +|b |2=|a |2-2|a ||b |+|b |2,即a ·b =-|a ||b |,∴cos <a ,b >=-1,即a 与b 反向,根据向量共线定理,则存在实数λ,使得b =λa.8.(2012浙江,文8)如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( ). A .3B .2CDB 由题意可知椭圆的长轴长2a 1是双曲线实轴长2a 2的2倍,即a 1=2a 2,而椭圆与双曲线有相同的焦点.故离心率之比为21ca c a =12a a =2.9.(2012浙江,文9)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ). A .245B .285C .5D .6C ∵x +3y =5xy ,∴15y +35x=1.∴3x +4y =(3x +4y )×1=(3x +4y )135y 5x ⎛⎫+ ⎪⎝⎭=3x 5y +95+45+12y 135x5≥+5, 当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立.10.(2012浙江,文10)设a >0,b >0,e 是自然对数的底数,( ). A .若e a +2a =e b +3b ,则a >b B .若e a +2a =e b +3b ,则a <b C .若e a -2a =e b -3b ,则a >bD .若e a -2a =e b -3b ,则a <bA 考查函数y =e x +2x 为单调增函数,若e a +2a =e b +2b ,则a =b ;若e a +2a =e b +3b ,∴a >b .故选A .11.(2012浙江,文11)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 .160 根据分层抽样的特点,此样本中男生人数为560560420+×280=160. 12.(2012浙江,文12)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为的概率是 . 25 五点中任取两点的不同取法共有25C =10种,的情况有4种,故概率为410=25.13.(2012浙江,文13)若某程序框图如图所示,则该程序运行后输出的值是.1120 当i =1时,T =11=1,当i =2时,T =12,当i =3时,T =123=16,当i =4时,T =164=124,当i =5时,T =1245=1120,当i =6时,结束循环,输出T =1120.14.(2012浙江,文14)设z =x +2y ,其中实数x ,y 满足x y 10,x y 20,x 0,y 0,-+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩则z 的取值范围是.70,2⎡⎤⎢⎥⎣⎦不等式组表示的可行域如图阴影部分,结合图象知,O 点,C 点分别使目标函数取得最小值、最大值,代入得最小值为0,最大值为72.15.(2012浙江,文15)在△ABC 中,M 是线段BC 的中点,AM =3,BC =10,则AB ·AC= . -16AB ·AC =(AM+MB )·(AM +MC )=2AM +AM ·MC +AM ·MB +MB ·MC =|AM |2+(MB +MC )·AM +|MB ||MC|cos π=9-25=-16.16.(2012浙江,文16)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f 32⎛⎫ ⎪⎝⎭= . 32 f 32⎛⎫ ⎪⎝⎭=f 322⎛⎫- ⎪⎝⎭=f 12⎛⎫- ⎪⎝⎭=f 12⎛⎫ ⎪⎝⎭=12+1=32.17.(2012浙江,文17)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.94x2+(y+4)2=2到直线y=x所以y=x2+a到y=x而与y=x,分别是y=x+2与y=x-2,而抛物线y=x2+a开口向上,所以y=x2+a与y=x+2相切,可求得a=94.18.(2012浙江,文18)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.解:(1)由b sin A cos B及正弦定理aAsin =bB sin,得sin B B,所以tan B所以B=3.(2)由sin C=2sin A及aAsin =cCsin,得c=2a.由b=3及余弦定理b2=a2+c2-2ac cos B,得9=a2+c2-ac.所以a c=19.(2012浙江,文19)已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.解:(1)由S n=2n2+n,得当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=4n-1.所以a n=4n-1,n∈N*.由4n-1=a n=4log2b n+3,得b n=2n-1,n∈N*.(2)由(1)知a n b n=(4n-1)·2n-1,n∈N*.所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故T n=(4n-5)2n+5,n∈N*.20.(2012浙江,文20)如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF;(2)求BC1与平面B1C1EF所成的角的正弦值.(1)证明:①因为C1B1∥A1D1,C1B1⊄平面ADD1A1,所以C1B1∥平面A1D1DA.又因为平面B1C1EF∩平面A1D1DA=EF,所以C1B1∥EF,所以A1D1∥EF.②因为BB1⊥平面A1B1C1D1,所以BB1⊥B1C1.又因为B1C1⊥B1A1,所以B1C1⊥平面ABB1A1,所以B1C1⊥BA1.在矩形ABB 1A 1中,F 是AA 1的中点,tan ∠A 1B 1F =tan ∠AA 1B即∠A 1B 1F =∠AA 1B ,故BA 1⊥B 1F . 所以BA 1⊥平面B 1C 1EF .(2)解:设BA 1与B 1F 交点为H ,连结C 1H.由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与面B 1C 1EF 所成的角. 在矩形AA 1B 1B 中,ABAA 1=2,得BH.在直角△BHC 1中,BC 1=BH得sin ∠BC 1H =1BH BC所以BC 1与平面B 1C 1EF21.(2012浙江,文21)已知a ∈R ,函数f (x )=4x 3-2ax +a . (1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0. (1)解:由题意得f '(x )=12x 2-2a .当a ≤0时,f '(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞).当a >0时,f '(x )=12x x ⎛+ ⎝,此时函数f (x )的单调递增区间为⎛-∞ ⎝和⎫+∞⎪⎪⎭.单调递减区间为⎡⎢⎣.(2)证明:由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2|=4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2.设g (x )=2x 3-2x +1,0≤x ≤1,则g '(x )=6x 2-2=6x x ⎛ ⎝⎭⎝⎭,于是所以,g (x )min =g ⎝⎭=10.所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.22.(2012浙江,文22)如图,在直角坐标系xOy 中,点P 11,2⎛⎫ ⎪⎝⎭到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t ,1)是C 上的定点,A ,B 是C 上的两动点,且线段AB 被直线OM 平分. (1)求p ,t 的值;(2)求△ABP 面积的最大值.解:(1)由题意知2pt 1,p 51,24=⎧⎪⎨+=⎪⎩得1p ,2t 1.⎧=⎪⎨⎪=⎩(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ). 由题意知,设直线AB 的斜率为k (k ≠0).由211222y x ,y x ,⎧=⎨=⎩得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ·2m =1.所以直线AB 方程为y -m =12m(x -m ),即x -2my +2m 2-m =0.由22x 2my 2m m 0,y x,⎧-+-=⎨=⎩ 消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1·y 2=2m 2-m . 从而|AB 211k +|y 1-y 2214m +24m 4m -设点P 到直线AB 的距离为d ,则d 2214m +设△ABP 的面积为S ,则S =12|AB |·d =|1-2(m -m 2)|2m m -.由Δ=4m -4m 2>0,得0<m <1.令u 2m m -0<u ≤12,则S =u (1-2u 2).设S (u )=u (1-2u 2),0<u ≤12,则S '(u )=1-6u 2.由S '(u )=0,得u 10,2⎛⎫ ⎪⎝⎭,所以S (u )max =S ⎝⎭.故△ABP .。

2012年普通高校招生考试大纲全国卷语文

2012年普通高校招生考试大纲全国卷语文

绝密★启用前2012年普通高等学校招生全国统一考试语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷5至8页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用........橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.。

3.第Ⅰ卷共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、(12分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是A. 颀.长(qí)悚.然(sù)彰善瘅.恶(dàn)韬光养晦.(huì)b. 人寰.(huán)攫.取(jué)寻瑕伺隙.(xì)啮.臂为盟(niè)C.抵牾.(wǔ)横亘.(gèn)造福桑梓.(zǐ)筋.疲力尽(jīn)D.鞭挞.(tà)骨骼.(gé)辗.转反侧(niǎn)蜚.声中外(fēi)2.下列各句中,加点的成语使用恰当的一项是A.该产品的试用效果非常好,相信它大量投产后将不孚众望....,公司一定会凭借产品的优异品质在激烈的市场竞争中取得骄人业绩。

B.某市两家报社相继推出的立体报纸受到广大市民的热烈追捧,更多的立体报纸呼之欲...出.,可能会成为当地报业的一种发展趋势。

C.中国古典家具曾经非常受消费者亲睐,后来很长一段时间市场上却没有了踪影,而在全球崇古风气盛行的今天,它又渐入佳境....了。

D.这位专家的回答让我有一种醍醐灌顶....的感觉,实在没想到这个困扰我两年的问题他却理解得那么轻松。

3、下列各句中,没有语病的一句是A、他在英语国家工作一年,不但进一步提高了英语交际能力,还参加过相关机构组织的阿拉伯语培训,掌握了阿拉伯语的基础应用。

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年高考试题:文科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2、每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3、第Ⅰ卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、选择题(1)已知集合{|}{|}{|}{|}A x xB x xC x xD x x ==是平行四边形,是矩形,是正方形,是菱形,则( ).()()()()A A B B C B C D C D A D⊆⊆⊆⊆【考点】集合【难度】容易【点评】本题考查集合之间的运算关系,即包含关系。

在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解。

(2)函数1(1)y x x =+-≥的反函数为( ). 2()1(0)A yx x =-≥ 2()1(1)B yx x =-≥ 2()1(0)C yx x =+≥ 2()1(1)D yx x =+≥ 【考点】反函数【难度】容易【点评】本题考查反函数的求解方法,注意反函数的定义域即为原函数的值域。

在高一数学强化提高班上学期课程讲座1,第二章《函数与初等函数》中有详细讲解,在高考精品班数学(文)强化提高班中有对函数相关知识的总结讲解。

(3)若函数()s i n [0,2]3x fx ϕϕ+=∈(π)是偶函数,则ϕ=( ).()2A π 2()3B π 3()2C π 5()3D π 【考点】三角函数与偶函数的结合【难度】中等【点评】本题考查三角函数变换,及偶函数的性质。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。

2012年普通高等学校招生全国统一考试文科数学(江西卷)

2012年普通高等学校招生全国统一考试文科数学(江西卷)

江西文科1.(2012江西,文1)若复数z =1+i (i 为虚数单位),z 是z 的共轭复数,则z 2+2z 的虚部为( ). A .0B .-1C .1D .-2A 因为z =1+i ,所以z =1-i .而z 2=(1+i )2=2i ,2z =(1-i )2=-2i , 所以z 2+2z =0,故选A .2.(2012江西,文2)若全集U ={x ∈R |x 2≤4},则集合A ={x ∈R ||x +1|≤1}的补集∁U A 为( ). A .{x ∈R |0<x <2} B .{x ∈R |0≤x <2} C .{x ∈R |0<x ≤2}D .{x ∈R |0≤x ≤2}C 由已知得,全集U ={x ∈R |-2≤x ≤2},集合A ={x ∈R |-2≤x ≤0},结合数轴得∁U A ={x ∈R |0<x ≤2},故选C .3.(2012江西,文3)设函数f (x )=2x 1,x 1,2,x 1,x ⎧+≤⎪⎨>⎪⎩ 则f (f (3))=( ).A .15B .3C .23D .139D 因为3>1,所以f (3)=23.又因为23≤1,所以f 23⎛⎫ ⎪⎝⎭=223⎛⎫ ⎪⎝⎭+1=139.于是f (f (3))=f 23⎛⎫ ⎪⎝⎭=139,故选D .4.(2012江西,文4)若ααααsin cos sin cos +-=12,则tan 2α=( ).A .-34B .34C .-43D .43 B 因为ααααsin cos sin cos +-=12,所以α1α1tan tan +-=12,解方程得tan α=-3.于是根据倍角公式可得tan 2α=22α1αtan tan -=34,故选B .5.(2012江西,文5)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ). A .76 B .80 C .86 D .92B 由已知条件得,|x |+|y |=n (n ∈N +)的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80,故选B .6.(2012江西,文6)小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为().图1图2A .30%B .10%C .3%D .不能确定C 由题图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C . 7.(2012江西,文7)若一个几何体的三视图如图所示,则此几何体的体积为().A .112B .5C .92D .4 D 由三视图可判断该几何体为直六棱柱,其底面积为4,高为1,所以体积为4,故选D .8.(2012江西,文8)椭圆22x a +22y b =1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ). A .14BC .12D2B 因为A ,B 为左,右顶点,F 1,F 2为左,右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c . 又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2.所以离心率e =c a故选B .9.(2012江西,文9)已知f (x )=sin 2x 4π⎛⎫+ ⎪⎝⎭.若a =f (lg 5),b =f 15lg ⎛⎫ ⎪⎝⎭,则( ).A .a +b =0B .a -b =0C .a +b =1D .a -b =1C 由降幂公式得f (x )=sin 2x 4π⎛⎫+ ⎪⎝⎭=12x 22cos π⎛⎫-+ ⎪⎝⎭=12+12sin 2x , 于是a =f (lg 5)=12+12sin (2lg 5),b =f 15lg ⎛⎫ ⎪⎝⎭=f (-lg 5)=12+12sin (-2lg 5)=12-12sin (2lg 5),所以a +b =1,故选C.10.(2012江西,文10)如右图,|OA |=2(单位:m ),|OB |=1(单位:m ),OA 与OB 的夹角为6π,以A 为圆心,AB 为半径作圆弧与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m /s )沿线段OB 行至点B ,再以速率3(单位:m /s )沿圆弧行至点C 后停止;乙以速率2(单位:m /s )沿线段OA 行至点A 后停止.设t时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图像大致是( ).A 因为|OB |=1,甲在OB 段的速率为1,所以在OB 段行至点B 恰好为1 s ;|OA |=2,乙在OA 段的速率为2,所以在OA 段行至点A 恰好为1 s ,所以在甲由点O 至点B ,乙由点O 至点A 这段时间,S (t )=12t 2(0≤t ≤1)是增函数而且S 加速增大.由于乙到点A 后停止,所以在甲由点B沿圆弧运动过程中,面积S 是在匀速增大,所以图像应为一条线段,而在甲到达点C 后面积S 不再变化,所以图像应为一条平行于x 轴的直线,故选A .11.(2012江西,文11)不等式2x 9x 2-->0的解集是 . (-3,2)∪(3,+∞) 不等式2x 9x 2-->0可化为(x -2)(x -3)(x +3)>0,由穿根法(如图)得,所求不等式的解集为(-3,2)∪(3,+∞).12.(2012江西,文12)设单位向量m =(x ,y ),b =(2,-1).若m ⊥b ,则|x +2y |=.因为m ⊥b , 所以m ·b =2x -y =0.① 又因为m 为单位向量,所以x 2+y 2=1.②由①②解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩所以|x +2y13.(2012江西,文13)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N +都有a n +2+a n +1-2a n =0,则S 5= .11 设等比数列{a n }的公比为q ,则a n +2+a n +1-2a n =a 1·q n +1+a 1·q n -2a 1·q n -1=0,即q 2+q -2=0,解得q =-2,q =1(舍去),所以S 5=51-(-2)1-(-2)=11.14.(2012江西,文14)过直线x +y -0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是.如图所示,过P 点作圆x 2+y 2=1的两条切线,切点分别为A ,B ,由已知得,∠APO =30°, 所以|PO |=2.设P 点坐标为(x 0,y 0),则002200x y 0,x y 4,⎧+-⎪⎨+=⎪⎩解得00x y ⎧⎪⎨=⎪⎩ 故所求坐标为15.(2012江西,文15)下图是某算法的程序框图,则程序运行后输出的结果是 .3 当T =0,k =1时,sin k 2π>sin (k 1)2π-,所以a =1,T =1,k =2; 当T =1,k =2时,sin k 2π<sin (k 1)2π-,所以a =0,T =1,k =3;当T =1,k =3时,sin k 2π<sin (k 1)2π-,所以a =0,T =1,k =4;当T =1,k =4时,sin k 2π>sin (k 1)2π-,所以a =1,T =2,k =5;当T =2,k =5时,sin k 2π>sin (k 1)2π-,所以a =1,T =3,k =6,此时k ≥6,所以输出T =3.16.(2012江西,文16)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知3cos (B -C )-1=6cos B cos C . (1)求cos A ;(2)若a =3,△ABC 的面积为求b ,c . 解:(1)由3cos (B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1, 即cos (B +C )=-13,从而cos A =-cos (B +C )=13.(2)由于0<A <π,cos A =13,所以sin A 又S△ABC =即12bcsin A =解得bc =6.由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+c 2=13.解方程组22bc 6,b c 13,=⎧⎨+=⎩得b 2,c 3=⎧⎨=⎩或b 3,c 2.=⎧⎨=⎩17.(2012江西,文17)已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .解:(1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2),由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得c 2,k 2,=⎧⎨=⎩所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2), 于是a n =2n .(2)T n =ni 1=∑ia i =ni 1=∑i ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2n ,T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.18.(2012江西,文18)如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率; (2)求这3点与原点O 共面的概率.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种, y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种, z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种. 因此,从这6个点中随机选取3个点的所有可能结果共20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有:A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为p 1=220=110.(2)选取的这3个点与原点O 共面的所有可能结果有:A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为p 2=1220=35.19.(2012江西,文19)如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB =12,AD =5,BC =2DE =4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合于点G ,得到多面体CDEFG .(1)求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积.(1)证明:因为DE ⊥EF ,CF ⊥EF ,所以四边形CDEF 为矩形.由GD =5,DE =4,得GE3, 由GC =CF =4,得FG=4, 所以EF =5.在△EFG 中,有EF 2=GE 2+FG 2, 所以EG ⊥GF .又因为CF ⊥EF ,CF ⊥FG ,得CF ⊥平面EFG , 所以CF ⊥EG .所以EG ⊥平面CFG ,即平面DEG ⊥平面CFG . (2)解:在平面EGF 中,过点G 作GH ⊥EF 于点H ,则GH =EGEF=125,因为平面CDEF ⊥平面EFG ,得GH ⊥平面CDEF ,V CDEFG =13S CDEF ·GH =16.20.(2012江西,文20)已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA +MB |=OM ·(OA +OB)+2. (1)求曲线C 的方程;(2)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与PA ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.解:(1)由MA =(-2-x ,1-y ),MB =(2-x ,1-y ),得|MA +MBOM ·(OA +OB)=(x ,y )·(0,2)=2y ,2y +2, 化简得曲线C 的方程是x 2=4y .(2)直线PA ,PB 的方程分别是y =-x -1,y =x -1,曲线C 在Q 处的切线l 的方程是y =0x 2x -20x 4,且与y 轴的交点为F 20x 0,-4⎛⎫ ⎪⎝⎭,分别联立方程组220000y x 1,y x 1,x x x x y x ,y x ,2424=--=-⎧⎧⎪⎪⎨⎨=-=-⎪⎪⎩⎩解得D ,E 的横坐标分别是x D =0x 22-,x E =0x 22+, 则x E -x D =2,|FP |=1-20x 4,故S △PDE =12|FP |·|x E -x D |=12·20x 14⎛⎫- ⎪⎝⎭·2=204x 4-,而S △QAB =12·4·20x 14⎛⎫- ⎪⎝⎭=204x 2-,则QAB PDES S =2,即△QAB 与△PDE 的面积之比为2.21.(2012江西,文21)已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足f (0)=1,f (1)=0. (1)求a 的取值范围;(2)设g (x )=f (x )-f '(x ),求g (x )在[0,1]上的最大值和最小值. 解:(1)由f (0)=1,f (1)=0得c =1,a +b =-1,则f (x )=[ax 2-(a +1)x +1]e x ,f '(x )=[ax 2+(a -1)x -a ]e x , 依题意须对于任意x ∈(0,1),有f '(x )<0.当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图像开口向上, 而f '(0)=-a <0,所以须f '(1)=(a -1)e <0,即0<a <1;当a =1时,对任意x ∈(0,1)有f '(x )=(x 2-1)e x <0,f (x )符合条件; 当a =0时,对于任意x ∈(0,1),f '(x )=-x e x <0,f (x )符合条件; 当a <0时,因f '(0)=-a >0,f (x )不符合条件. 故a 的取值范围为0≤a ≤1.(2)因g (x )=(-2ax +1+a )e x ,g '(x )=(-2ax +1-a )e x ,当a =0时,g '(x )=e x >0,g (x )在x =0上取得最小值g (0)=1,在x =1上取得最大值g (1)=e .当a =1时,对于任意x ∈(0,1)有g '(x )=-2x e x <0,g (x )在x =0取得最大值g (0)=2,在x =1取得最小值g (1)=0. 当0<a <1时,由g '(x )=0得x =1a 2a->0.①若1a 2a-≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0取得最小值g (0)=1+a ,在x =1取得最大值g (1)=(1-a )e .②若1a 2a -<1,即13<a <1时,g (x )在x =1a 2a -取得最大值g 1a 2a -⎛⎫ ⎪⎝⎭=2a 1a2a e -,在x =0或x =1取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤11e e -+时,g (x )在x =0取得最小值g (0)=1+a ;当11e e -+<a <1时,g (x )在x =1取得最小值g (1)=(1-a )e .。

2012年普通高等学校招生全国统一考试(大纲全国卷)文科数学及答案

2012年普通高等学校招生全国统一考试(大纲全国卷)文科数学及答案

2012年普通高等学校招生全国统一考试(大纲全国卷)数 学(供文科考生使用)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={|x x 是平行四边形},B ={|x x 矩形},C ={|x x 是正方形},D ={|x x 是菱形},则( )A.A B ⊆B.C B ⊆C.D C ⊆D.A D ⊆ 2.函数(1)y x =≥-的反函数为( )A.()210y x x =-≥B.()211y x x =-≥C.()210y x x =+≥D.()211y x x =+≥3.若函数()[]()sin0,2π3x f x ϕϕ+=∈是偶函数,则ϕ=( ) A.π2 B.2π3C.3π2D.5π3 4.已知α为第二象限角,3sin ,5α=则sin2α=( )A.2425-B.1225-C.1225D.24255.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A.2211612x y +=B.221128x y +=C.22184x y +=D.221124x y += 6.已知数列{}n a 的前n 项和为11,1,2,n n n S a S a +==则n S =( )A.12n -B.13()2n -C. 12()3n -D.112n - 7.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A.240种B.360种C.480种D.720种8.已知正四棱柱1111ABCD A B C D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为( )A.2D.19.ABC ∆中,AB 边的高为CD .若,,0,||1,||2,CB CA ==⋅===a b a b a b 则AD =( )A. 1133-a bB.2233-a bC.3355-a bD.4455-a b10.已知12,F F 为双曲线22:2C x y -=的左,右焦点,点P 在C 上,12||2||,PF PF =则12cos F PF ∠=( )A.14B.35C.34D.45 11.已知125ln π,log 2,x y z e -===,则( ) A.x y z << B.z x y <<C.z y x <<D.y z x << 12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,1,3AE BF ==动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A.8B.6C.4D.3本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~24题为选考题,考生根据要求做答.二、填空题(本大题共4小题,每小题5分,共20分)13.81()2x x+的展开式中2x 的系数为________14.若,x y 满足约束条件10x 30,x 330x y y y -+≥⎧⎪+-≤⎨⎪+-≥⎩则3z x y =-的最小值为________15.当函数()sin 02πy x x x =≤<取得最大值时,x =________16.已知正方体1111ABCD A B C D -中,,E F 分别为11,BB CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为________三、解答题(本大题共6小题,共70分.解答题应写出文字说明,证明过程或演算步骤.) 17.(本小题10分)ABC ∆中,内角,,A B C 成等差数列,其对边,,a b c 满足223b ac =,求A .18.(本小题12分)已知数列{}n a 中,11,a =前n 项和23n n n S a +=.(1)求23,a a ;(2)求{}n a 的通项公式.19.(本小题12分)如图,四棱锥P A B C D -中,底面ABCD 为菱形,PA ⊥底面ABCD,2,AC PA E ==是PC 上的一点,2.PE EC =(1)证明:PC ⊥平面BED ;(2)设二面角A PB C --为90︒,求PD 与平面PBC 所成角的大小.20.(本小题12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲,乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲,乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲,乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.21.(本小题12分)已知函数()3213f x x x ax =++.(1)讨论()f x 的单调性;(2)设()f x 有两个极值点12,x x ,若过两点()()()()1122,,,x f x x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值.22.(本小题12分)已知抛物线()2:1C y x =+与圆()2221:(1)()02M x y r r -+-=>有一个公共点A ,且在A 处两曲线的切线为同一直线l .(1)求r ;(2)设,m n 是异于l 且与C 及M 都相切的两条直线,,m n 的交点为D ,求D 到l 的距离.P E DC B ABACAC BCDDC DB 13.7 14.1- 15.5π6 16.3517. 【解析】由A .B .C 成等差数列可得2B A C =+,而A B C π++=,故33B B ππ=⇒=且23C A π=-而由223b ac =与正弦定理可得2222sin 3sin sin 2sin 3sin()sin 33B AC A A ππ=⇒⨯=-所以可得232223(sin cos cos sin )sin sin sin 1433A A A A A A ππ⨯=-⇒+=⇒1cos 2121sin(2)262A A A π-+=⇒-=,由27023666A A ππππ<<⇒-<-<,故 266A ππ-=或5266A ππ-=,于是可得到6A π=或2A π=。

2012年普通高等学校招生全国统一考试数学卷(四川.文)含详解

2012年普通高等学校招生全国统一考试数学卷(四川.文)含详解

a2 b2 c c c
|PF|∈[a-c,a+c]
b2 于是 ∈[a-c,a+c] c
即 ac-c2≤b2≤ac+c2
ac c 2 a 2 c 2 ∴ 2 2 2 a c ac c
w_w w. k#s5_u.c o* m
c 1 a c 1或 c 1 a 2 a
个单位长度,再把所得各点的 10
横坐标伸长到原来的 2 倍(纵坐标不变) ,所得图像的函数解析式是高^考#资*源^网 (A) y sin(2 x

10
) )
(B) y sin(2 x

5
)
(C) y sin( x
1 2

10
(D) y sin( x
1 2

20
)
解析:将函数 y sin x 的图像上所有的点向右平行移动 式为 y=sin(x-
w_w w. k#s5_u.c o*m
y 80 70 (15,55)
(A)甲车间加工原料 10 箱,乙车间加工原料 60 箱 (B)甲车间加工原料 15 箱,乙车间加工原料 55 箱 (C)甲车间加工原料 18 箱,乙车间加工原料 50 箱
(D)甲车间加工原料 40 箱,乙车间加工原料 30 箱高^考#资*源^网 解析:解析:设甲车间加工原料 x 箱,乙车间加工原料 y 箱
40 1 800 20 160 320 200 120 8, 16 , 10 , 6 20 20 20 20
故各层中依次抽取的人数分别是 答案:D
(5)函数 f ( x) x mx 1的图像关于直线 x 1 对称的充要条件是
2
(A) m 2
(B) m 2

2012年普通高等学校招生全国统考试语文(全国卷、新课标版)

2012年普通高等学校招生全国统考试语文(全国卷、新课标版)

2012年普通高等学校招生全国统一考试语文本试题卷分第I卷(阅读题)和第11卷(表达题)两部分。

考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第I卷阅读题甲必考题一、现代文阅读((9分,每小题3分)阅读下面的文字,完成1-3题。

“黑箱,是控制论中的概念,意为在认识上主体对其内部情况全然不知的对象.“科技黑箱”的含义与此有所不同,它是一种特殊的存贮知识、运行知识的设施或过程,使用者如同面对黑箱,不必打开,也不必理解和掌握其中的知识,只需按规则操作即可得到预期的结果.例如电脑、手机、摄像机、芯片,以及药品等,可以说,几乎技术的全部中间和最终成果都是科技黑箱.在科技黑箱的生产过程中,科学知识是通泌出,价值观和伦理道德则对科学知识进行选择。

除此以外,科技黑箱中还整合了大童人文的、社会的知识,并且或多或少渗透了企业文化和理念。

这样,在电脑或手机中就集成了物理学、计葬机科学、管理学、经济学、美学,以及对市场的调研和政府的相关政策等知识.科技黑箱是特殊的传播与共享知识的媒体,具有三大特点。

首先,它使得每一个使用者—不仅牛顿,都能直接“站在巨人的肩上”继续前进.试想,如果要全世界的电脑使用者都透彻掌握电脑的工作原理,掌握芯片上的电子理论,那需要多少时间?知识正是通过科技黑箱这一途径而达到最大限度的共享。

如今,计葬机天才、黑客的年龄越来越小,神童不断出现,他们未必理解计算机的制作过程就能编写软件、破译密码。

每一代新科技黑箱的出现,就为相对“无知识”的年轻一代的崛起与赶超提供了机会。

其次.处在相付低端的科技黑箱往往与语境和主体无关,而处于高端的科技黑箱则需满足特定主体在特定场合乃至心理的需要。

人们很少能对一把锤子做什么改进,而使用一个月后的电脑则已经深深地打上了个人的印记,这就锐明,在认识变得简单易行之时,实践变得复杂和重要.最后,当科技为我们打开一扇又一扇门的时候,我们能拒绝它的诱惑不进去吗?而一旦进去,我们的行为能不受制于房间和走道的形状吗?表面上是使用者在支配科技黑箱,然而科技黑箱却正在使用者“不知情”的情况下,对使用者施加潜移双化的影响,也就是说使用者被生产方对象化了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2012年普通高等学校招生全国统一考试语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷5至8页。

考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡.........。

皮擦干净后,再选涂其他答案标号,在试题卷上作答无效3.第Ⅰ卷共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

一、(12分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是A. 颀.长(qí)悚.然(sù)彰善瘅.恶(dàn)韬光养晦.(huì)b. 人寰.(huán)攫.取(jué)寻瑕伺隙.(xì)啮.臂为盟(niè)C.抵牾.(wǔ)横亘.(gèn)造福桑梓.(zǐ)筋.疲力尽(jīn)D.鞭挞.(tà)骨骼.(gé)辗.转反侧(niǎn)蜚.声中外(fēi)2.下列各句中,加点的成语使用恰当的一项是A.该产品的试用效果非常好,相信它大量投产后将不孚众望....,公司一定会凭借产品的优异品质在激烈的市场竞争中取得骄人业绩。

B.某市两家报社相继推出的立体报纸受到广大市民的热烈追捧,更多的立体报纸呼之欲出....,可能会成为当地报业的一种发展趋势。

C.中国古典家具曾经非常受消费者亲睐,后来很长一段时间市场上却没有了踪影,而在全球崇古风气盛行的今天,它又渐入佳境....了。

D.这位专家的回答让我有一种醍醐灌顶....的感觉,实在没想到这个困扰我两年的问题他却理解得那么轻松。

3、下列各句中,没有语病的一句是A、他在英语国家工作一年,不但进一步提高了英语交际能力,还参加过相关机构组织的阿拉伯语培训,掌握了阿拉伯语的基础应用。

B、建立监督机制非常重要,企业对制度的决策、出台、执行到取得成效的每个环节都纳入监督的范围,就能切实有效地增强执行力。

C、她对公益活动很有热情,并将这份热情带个了她所从事的产品策划和品牌推广工作中去,为公司树立良好的社会形象做出了贡献。

D、次贷危机引发的全球性金融危机带来的影响还在持续,随着经济全球化的日益深化,如何缓解就业压力已成为世界各国最大的难题。

4、依次填入下面一段文字横线处的语句,衔接最恰当的一组是、、、、、。

如在某些汉印中,就有“荼”字省作“茶”字的写法。

①民间的书写着出于某种考虑,将“荼”减去一笔,这就成了“茶”字②随着饮茶习俗的推广,“茶”字的使用频率越来越高③“荼”简写为“茶”,汉代已露端倪④在中庸之前“荼”字写作“茶”,这恐怕不是我们人人都知道的⑤茶作为饮品,我们都很熟悉⑥“茶”有多个义项,“茶叶”义是其中之一A、④⑥⑤②①③B、⑥②①⑤④③C、⑤④⑥②①③D、⑥④⑤②③①二、(9分,每小题3分)阅读下面文字,完成5-7题。

“横江西望阻西秦,汉水东连扬子津,白浪如山那可渡,狂风愁杀峭帆人。

”这是李白《横江词》的第三首。

横江即采石矶对岸的横江浦渡口。

王琦《李太白集辑注》引有胡三省《资治通鉴鉴注》,“扬子津在今真州扬子县南,”扬子县位置在江都(扬州)西南,已靠近大江,扬子津更在其南,则是江边的津渡了。

李白在诗中所以会由横江浦联想到扬子津,正式这个缘故。

扬子津当时必然久已驰名,因为它乃是从江都入江的运河渡头,可是开元之后却为瓜洲所取代,中晚唐人诗中提到瓜洲的很多,而扬子津却很少见。

胡三省乃宋元间人。

那时候《资治通鉴》就已经需要有人来为扬子津做注了。

扬子津作为运河渡口自然早已有之,扬子县的得名因此有可能是出于扬子津,然而它自身却久已沉埋,不为人所知晓了。

扬子津原来是个近江面的较低洼处。

可是它与南岸从润州入江的运河渡口并不正好相对,嫌偏西了一些,而江中靠北岸处又有沙洲,这就造成了航行上的不便。

《新唐书齐浣传》:“(浣)迁润州,州北距瓜步沙尾,于汇六十里,州多败溺,浣徒漕路由京口,治伊娄渠已达扬子,岁无覆舟减运钱数十万。

”也就是说,渡江进入北岸的运河,不再通过扬子津,而是通过新开的伊娄河到达扬子县。

李白《提瓜州新河饯族叔舍人贪》诗云:“齐公凿新河,万古流不绝。

”指的便是这条河,而瓜洲从此也就取代了扬子津,成为大江北岸运河的著名津渡。

白居易有《长相思》词:“汴水流,泗水流,流到瓜洲”古渡头。

”白居易的时代去开元未远,而瓜洲就已经成了古渡头,至于比起瓜洲来更古的扬子津,自然是早已在人们的记忆之中消失了。

瓜洲浦成为便利的津渡是犹豫它正对南岸江边的京口,而京口的漕路是在开元二十五年齐浣迁润州后才兴修的,换句话说,旧漕路原来并不通京口。

而要开辟一条通京口的新漕路却是十分艰辛的。

宋代《新唐书音训》云:“京口在润州城东北甘露寺侧。

”甘露寺正位于北固山,所以迁徙这段漕路,势必要紧贴着北固山下与山根的顽石打交手战,这样的工程自非一日之功。

这也就是李白《丁督护歌》中所描绘的“万人凿磐石,无由达江浒”的施工场面。

过去有些注家以为“无由达江浒”是犹豫运载石头的缘故。

其实水运主要看舟船的吃水量,而不在于运石头还是运粮食,只要不超过吃水量,运什么都一样可行。

其所以“无由达江浒”,只是由于山下的顽石还没有被凿通而已。

这里李白的三首诗正好可以为瓜洲浦取代扬子津这一变迁作证,而同时《横江词》为李白早年作品,也就又多了一条证据。

(摘编自林庚《闲话扬子津》)5、下列关于本文第一段内容的表达,不符合原文意思的一项是A.李白《横江词》第三首由横江浦联想到扬子津,是因为这两个地方都是长江边上有名的运河渡口。

B.中晚唐人的诗中很少提到扬子津,是因为当时瓜洲已经取代扬子津成为长江边上的运河渡口了。

C.胡三省虽然是宋元间人,但是读背诵司马光的《资治通鉴》已经有困难,需要有人来做注解才行。

D.扬子县谓语江都的西南方,之所以被命名为“扬子”,可能是因为该县的南部有久已驰名的扬子津。

6.下列理解,不符合原文意思的一项是A.扬子津是长江边上的低洼处,并且跟南岸的运河渡口又不正好相对,而江中正对扬子津处又有沙洲,造成船舶航行十分不便。

B.齐浣迁官润州之后,把长江南岸的漕路迁徙到京口,又在北岸开凿了伊娄河,这样船舶渡江以后,就不再通过扬子津北上。

C.瓜洲浦地处伊娄河的入江处,由于正对着南岸江边的京口,并且京口已经开凿了新漕路,所以瓜洲浦就成为一个便利的渡口。

D.有注家认为李白诗句“无由达江浒”,是说由于石头过重,无法用船运到江浒。

其实用船运石头和粮食是一样的,注家此说不能成立。

7.根据原文内容,下列推断不正确的一项是A.对于南岸从润州入江的运河渡口来说,扬子津嫌偏西了一些,瓜洲浦则正对南岸的京口,所以瓜洲浦在扬子津的东面。

B.齐浣对漕路的改造,使船舶渡江到达北岸运河渡口的行程缩短了,并减少了覆舟的危险,为航运业的发展作出了贡献。

C.从礼拜《丁督护歌》中的“万人凿磐石”一句,可以知道开辟京口漕路的过程是非常艰辛的,耗费了大量的人力物力。

D.文中所引礼拜的三首诗正好反映了瓜洲浦取代扬子津的历史变迁,其中《横江词》写作最早,《丁督护歌》则写作最晚三、(9分,每小题3分)阅读下面的文言文,完成8~10题郭浩宇充道,德顺军陇干人。

徽宗时,尝率百骑抵灵州城下,夏人以千骑追之,浩手斩二骑,以首还。

从种师道进筑茸平,敌据塞水源,以渴我师,浩率精骑数百夺之。

敌攻石尖山,浩冒.阵而前,流失中左肋,怒不拔,奋力大呼,得贼乃已.;诸军从之,敌遁去,由是知名。

累迁中州刺史。

钦宗即位,以种师道荐,召对,奏言:“金人暴露,日久思归。

乞.给轻兵间道驰滑台,时.其半度,可击也。

”会和战异议,不能用。

帝问西事,浩曰:“臣在任已闻警,虑夏人必乘间盗边,愿选将设备。

”已而果攻泾原路,取西安州、怀德军。

绍圣开拓之地,复尽失之。

建炎元年,知原州。

二年,金人取长安,泾州守臣夏大节弃城遁,郡人亦降。

浩适夜半至郡,所将才二百人,得金人,使之还,曰:“为语汝将曰,我郭浩也,欲战即来决战。

”金人遂引去。

绍兴元年,金人破饶风岭,盗梁、洋,入凤州,攻和尚原。

浩适与吴璘往援,斩获万计。

迁邠州观察使,徙知兴元府。

饥民相聚米仓山为乱,浩讨平之。

徙知利州。

金人以步骑十余万破和尚原,进窥川口,抵杀金平,浩与吴玠大破之。

迁彰武军承宣使。

玠按本路提点刑狱宋万年阴与敌境通,利所鞫不同,由是与浩意不协,朝廷乃徙浩知金州兼永兴军路经略使。

金州残弊特甚,户口无几,浩招辑流亡,开营田,以其规置颁示诸路。

他军以匮急仰给朝廷,浩独积赢钱十万缗以助户部,朝廷嘉之,凡有奏请,得以直达。

九年,改金、洋、房州节制。

十四年,召见,拜检校少保。

十五年,卒,年五十九。

(节选自《宋史郭浩传》)8.对下列句子中队加点词的解释,不正确的一项是A.敌攻石尖山,浩冒阵而前冒:贸然B.奋力大呼,得贼乃己己:停止C.乞给轻兵间道驰滑台乞:请求D. 时其半度,可击也。

时:等候9.以下各组句子中,全部表明郭浩奋勇抗击金人的一组是①浩手斩二骑,以首还②流失中左肋,怒不拔③所将才二百人,得金人④浩适与吴璘往援,斩获万计⑤相聚米仓山为乱,浩讨平之⑥浩与吴玠大破之A.①②③B.①⑤⑥C.②④⑤D.③④⑥10.下了对原文有关内容的概括和分析,不正确的一项是A 郭浩有胆有勇,屡立战功。

徽宗时,他抗击夏人曾以少敌多:跟随种师道征战,他率领数百精骑夺回被敌军占据的水源,几次升官后担任中州刺史。

B 郭浩卓有见识,可惜建议未被采纳。

钦宗即位后曾照他询问抗金之策以及西部战事,他坚决主战,提出应对之策,而朝廷举措失当,国土蒙受损失。

C 郭浩、吴介共同破敌,郭不同意这一做法,被调往金州。

D 郭浩政治有方,金州状况好转。

他初到任时间,金州极度破败,百姓流亡,经治理后积有余钱资助户部,收到朝廷嘉勉,并给与奏请可以直达的优遇绝密☆启用前2012年普通高等学校招生全国统一考试语文第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.第Ⅱ卷共4页,请用直径0.5毫米的黑色墨水签字笔在答题卡上个体的答题区域内做答,在试卷上作答无效........。

3.第Ⅱ卷共11小题,共120分。

四、(23分)(注意:在试题卷上作答无效.........)11.把第Ⅰ卷文言文阅读材料中画横线的句子翻译成现代汉语。

(10分)(1)臣在任已闻警,虑夏人必乘间盗边,愿选将设备。

译文(2)浩招辑流亡,开营田,以其规置颁示诸路。

译文12.阅读下面这首唐诗,然后回答问题。

相关文档
最新文档