Do_2014年山东高考理科数学试题含答案(Word版)

合集下载

2014年高考真题——理科数学(山东卷)解析版含解析

2014年高考真题——理科数学(山东卷)解析版含解析

绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科 类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需 改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相 应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案; 不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中, 只有一个选项符合题目要求的。

1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a A .i 45- B .i 45+ C .i 43- D .i 43+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B AA .[0,2]B .(1,3)C . [1,3)D .(1,4) 3.函数1)(log 1)(22-=x x f 的定义域为A .)210(, B . )2(∞+,C .),2()210(+∞ ,D . )2[]210(∞+,, 4.用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是 A .方程02=++b ax x 没有实根 B .方程02=++b ax x 至多有一个实根0舒张压/kPa频率 / 组距0.360.240.160.08171615141312 C .方程02=++b ax x 至多有两个实根 D .方程02=++b ax x 恰好有两个实根 5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是A .111122+>+y x B .)1ln()1ln(22+>+y x C .y x sin sin > D .33y x >6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为 A .22 B .24 C .2 D .47.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单 位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分 别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组 与第二组共有20人,第三组中没有疗效的有6人, 则第三组中有疗效的人数为A .6B .8C .12D .188.已知函数12)(+-=x x f ,kx x g =)(.若方程)()(x g x f =有两个不相等的实根,则实数k 的取值范围是A .)210(, B .)121(,C .)21(, D .)2(∞+, 9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为 A .5 B .4 C .5 D .210.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 A .02x =±y B .02=±y x C .02y x =± D .0y 2x =±第Ⅱ卷(共100分)二.填空题:本大题共5小题,每小题5分,共25分。

2014年山东高考理科数学试题含答案(Word版)(卷)

2014年山东高考理科数学试题含答案(Word版)(卷)

山东理科数学一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi += (A )54i -(B )54i +(C )34i -(D )34i +(2)设集合{||1|2}A x x =-<,{|2,[0,2]}xB y y x ==∈,则A B =(A )[0,2](B )(1,3)(C )[1,3)(D )(1,4)(3)函数()f x =(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞(D )1(0,][2,)2+∞(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根 (5)已知实数,x y 满足xya a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y >(D )22x y >(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为 (A )22(B )42(C )2(D )4(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(A )1(B )8(C )12(D )18(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是(A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞(9)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为 (A )5(B )4(C )5(D )2(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为3,则2C 的渐近线方程为 (A )20x y ±=(B )20x y ±=(C )20x y ±=(D )20x y ±=二、填空题:本大题共5小题,每小题5分,共25分(11)执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .(12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 .(13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . (14)若24()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x 是2()4g x x =-关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 . 1.3.。

2014年山东省高考数学试卷(理科)

2014年山东省高考数学试卷(理科)

2014年山东省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i2.(5分)(2014•山东)设集合A={x丨丨x﹣1丨<2},B={y丨y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3)C.[1,3)D.(1,4)3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D. x3>y36.(5分)(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2B.4C.2D.47.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12 D.188.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2)D.(2,+∞)9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.210.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n的值为_________.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为_________.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=_________.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为_________.15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是_________.三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.解答:解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)(2014•山东)设集合A={x丨丨x﹣1丨<2},B={y丨y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3)C.[1,3)D.(1,4)考点:交集及其运算.专题:集合.分析:求出集合A,B的元素,利用集合的基本运算即可得到结论.解答:解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C点评:本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:根据函数出来的条件,建立不等式即可求出函数的定义域.解答:解:要使函数有意义,则,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函数的定义域为(0,)∪(2,+∞),故选:C点评:本题主要考查函数定义域的求法,根据对数函数的性质是解决本题的关键,比较基础.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根考点:反证法与放缩法.专题:函数的性质及应用.分析:直接利用命题的否定写出假设即可.解答:解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.点评:本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.l n(x2+1)>ln(y2+1)C.s inx>siny D.x3>y3考点:指数函数的图像与性质;对数函数的图像与性质.专题:函数的性质及应用.分析:本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.解答:解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.若x=1,y=﹣1时,满足x>y,但==,故>不成立.B.若x=1,y=﹣1时,满足x>y,但ln(x2+1)=ln(y2+1)=ln2,故ln(x2+1)>ln(y2+1)不成立.C.当x=π,y=0时,满足x>y,此时sinx=sinπ=0,siny=sin0=0,有sinx>siny,但sinx>siny不成立.D.∵函数y=x3为增函数,故当x>y时,x3>y3,恒成立,故选:D.点评:本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2B.4C.2D.4考点:定积分.专题:导数的综合应用.分析:先根据题意画出区域,然后然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.解答:解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫02(4x﹣x3)dx,而∫02(4x﹣x3)dx=(2x2﹣x4)|02=8﹣4=4∴曲边梯形的面积是4,故选:D.点评:考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.7.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12 D.18考点:频率分布直方图.专题:概率与统计.分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;解答:解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.点评:本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2)D.(2,+∞)考点:函数的零点.专题:函数的性质及应用.分析:画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.解答:解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.点评:本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.2考点:简单线性规划.专题:数形结合.分析:由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.解答:解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.点评:本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.解答:解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,,C2的渐近线方程为:y=,即x±y=0.故选:A.点评:本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n的值为3.考点:程序框图.专题:算法和程序框图.分析:计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.解答:解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.点评:本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.考点:平面向量数量积的运算;三角形的面积公式.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义,求得AB•AC=,再根据△ABC的面积为AB•AC•sinA,计算求得结果.解答:解:△ABC中,∵•=AB•AC•cosA=tanA,∴当A=时,有AB•AC•=,解得AB•AC=,△ABC的面积为AB•AC•sinA=××=,故答案为:.点评:本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:画出图形,通过底面面积的比求解棱锥的体积的比.解答:解:如图,三棱锥P﹣ABC中,D,E分别为PB,PC的中点,三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,∴A到底面PBC的距离不变,底面BDE底面积是PBC面积的=,∴==.故答案为:.点评:本题考查三棱锥的体积,着重考查了棱锥的底面面积与体积的关系,属于基础题.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.考点:二项式系数的性质;基本不等式.专题:二项式定理.分析:利用二项式定理的展开式的通项公式,通过x幂指数为3,求出ab关系式,然后利用基本不等式求解表达式的最小值.解答:解:(ax2+)6的展开式中x3项的系数为20,所以T r+1==,令12﹣3r=3,∴r=3,,∴ab=1,a2+b2≥2ab=2,当且仅当a=b=1时取等号.a2+b2的最小值为:2.故答案为:2.点评:本题考查二项式定理的应用,基本不等式的应用,基本知识的考查.15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).考点:函数恒成立问题;奇偶函数图象的对称性.专题:函数的性质及应用.分析:根据对称函数的定义,将不等式恒成立转化为直线和圆的位置关系,即可得到结论.解答:解:根据“对称函数”的定义可知,,即h(x)=6x+2b﹣,若h(x)>g(x)恒成立,则等价为6x+2b﹣>,即3x+b>恒成立,设y=3x+b,y=,作出两个函数对应的图象如图,当直线和上半圆相切时,圆心到直线的距离d=,即|b|=2,∴b=2或﹣2,(舍去),即要使h(x)>g(x)恒成立,则b>2,即实数b的取值范围是(2,+∞),故答案为:(2,+∞)点评:本题主要考查对称函数的定义的理解,以及不等式恒成立的证明,利用直线和圆的位置关系是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.考点:平面向量数量积的运算;正弦函数的单调性;函数y=Asin(ωx+φ)的图象变换.专题:平面向量及应用.分析:(Ⅰ)由题意可得函数f(x)=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),解方程组求得m、n的值.(Ⅱ)由(Ⅰ)可得f(x)=2sin(2x+),根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)=2sin(2x+2φ+)的图象,再由函数g(x)的一个最高点在y轴上,求得φ=,可得g(x)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得x的范围,可得g(x)的增区间.解答:解:(Ⅰ)由题意可得函数f(x)=•=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),可得.解得m=,n=1.(Ⅱ)由(Ⅰ)可得f(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+).将y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,显然函数g(x)最高点的纵坐标为2.y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,故函数g(x)的一个最高点在y轴上,∴2φ+=2kπ+,k∈Z,结合0<φ<π,可得φ=,故g(x)=2sin(2x+)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得kπ﹣≤x≤kπ,故y=g(x)的单调递增区间是[kπ﹣,kπ],k∈Z.点评:本题主要考查两个向量的数量积公式,三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题.17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定.专题:空间向量及应用.分析:(Ⅰ)连接AD1,易证AMC1D1为平行四边形,利用线面平行的判定定理即可证得C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,易求C1(﹣1,0,),D1,(0,0,),M(,,0),=(1,1,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),可求得=(0,2,1),而平面ABCD的法向量=(1,0,0),从而可求得平面C1D1M和平面ABCD所成的角(锐角)的余弦值.解答:解:(Ⅰ)连接AD1,∵ABCD﹣A1B1C1D1为四棱柱,∴CD C1D1,又M为AB的中点,∴AM=1.∴CD∥AM,CD=AM,∴AM C1D1,∴AMC1D1为平行四边形,∴AD1∥MC1,又MC1⊄平面A1ADD1,AD1⊂平面A1ADD1,∴C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,则C1(﹣1,0,),D1,(0,0,),M(,,0),∴=(1,0,0),=(﹣,,﹣),设平面C1D1M的法向量=(x1,y1,z1),则,∴=(0,2,1).显然平面ABCD的法向量=(0,0,1),cos<,>|===,显然二面角为锐角,∴平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.点评:本题考查用空间向量求平面间的夹角,主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)分别求出回球前落点在A上和B上时,回球落点在乙上的概率,进而根据分类分布原理,可得小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的取值有0,1,2,3,4,6六种情况,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.解答:解:(Ⅰ)小明回球前落点在A上,回球落点在乙上的概率为+=,回球前落点在B上,回球落点在乙上的概率为+=,故小明两次回球的落点中恰有一次的落点在乙上的概率P=×(1﹣)+(1﹣)×=+=.(Ⅱ)ξ的可能取值为0,1,2,3,4,6其中P(ξ=0)=(1﹣)×(1﹣)=;P(ξ=1)=×(1﹣)+(1﹣)×=;P(ξ=2)=×=;P(ξ=3)=×(1﹣)+(1﹣)×=;P(ξ=4)=×+×=;P(ξ=6)=×=;故ξ的分布列为:ξ0 1 2 34P故ξ的数学期望为E(ξ)=0×+1×+2×+3×+4×+6×=;点评:本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.考点:数列的求和;数列的函数特性;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.解答:解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.考点:利用导数研究函数的单调性;函数在某点取得极值的条件.专题:导数的综合应用.分析:(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.解答:解:(Ⅰ)f(x)的定义域为(0,+∞),∴f′(x)=(x>0),当k≤0时,kx≤0,∴e x﹣kx>0,令f′(x)=0,则x=2,∴当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x﹣kx,x∈[0,+∞).∵g′(x)=e x﹣k=e x﹣e lnk,当0<k≤1时,当x∈(0,2)时,g′(x)=e x﹣k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)函数f(x)在(0,2)内存在两个极值点当且仅当解得:e综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)点评:本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想.是一道导数的综合应用题.属于中档题.21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;抛物线的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的p值;(2)(ⅰ)设出点A的坐标,求出直线AB的方程,利用直线l1∥l,且l1和C有且只有一个公共点E,求出点E的坐标,写出直线AE的方程,将方程化为点斜式,可求出定点;(ⅱ)利用弦长公式求出弦AB的长度,再求点E到直线AB的距离,得到关于面积的函数关系式,再利用基本不等式求最小值.解答:解:(1)当点A的横坐标为3时,过点A作AG⊥x轴于G,,∴.∵△ADF为正三角形,∴.又∵,∴,∴p=2.∴C的方程为y2=4x.(2)(ⅰ)设A(x1,y1),|FD|=|AF|=x1+1,∴D(x1+2,0),∴.由直线l1∥l可设直线l1方程为,联立方程,消去x得①由l1和C有且只有一个公共点得△=64+32y1m=0,∴y1m=﹣2,这时方程①的解为,代入得x=m2,∴E(m2,2m).点A的坐标可化为,直线AE方程为y﹣2m=(x﹣m2),即,∴,∴,∴,∴直线AE过定点(1,0);(ⅱ)直线AB的方程为,即.联立方程,消去x得,∴,∴=,由(ⅰ)点E的坐标为,点E到直线AB的距离为=,∴△ABE的面积=,当且仅当y1=±2时等号成立,∴△ABE的面积最小值为16.点评:本题考查了抛物线的定义的应用、标准方程求法,切线方程的求法,定点问题与最值问题.参与本试卷答题和审题的老师有:caoqz;maths;qiss;sxs123;wfy814;翔宇老师;孙佑中;静定禅心;minqi5(排名不分先后)菁优网2015年2月1日。

2014年山东高考理科数学试卷及答案

2014年山东高考理科数学试卷及答案

2014年山东卷高考理科数学真题及答案一.选择题:本大题共10小题,每小题5分,共50分。

1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为学科网共轭复数,则=+2)(bi a ( ) (A )i 45- (B) i 45+ (C) i 43- (D) i 43+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B A ( )(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 3.函数1)(log 1)(22-=x x f 的定义域为 ( )(A))210(, (B) )2(∞+, (C) ),2()210(+∞ , (D) )2[]210(∞+,, 4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少学科网有一个实根”时要做的假设是( ) (A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根 (C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是 ( )(A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为 ( )(A )22 (B )24 (C )2 (D )47.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 ( )舒张压/kPa(A )6 (B )8 (C ) 12(D )188.已知函数()12+-=x x f ,()kx x g =.若方程()()x g x f=有两学科网个不相等的实根,则实数k的取值范围是 ( )(A )),(210 (B )),(121(C )),(21 (D )),(∞+29.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为 ( )(A )5 (B )4 (C )5 (D )210.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 ( ) (A )02x =±y (B )02=±y x (C )02y x =± (D )0y 2x =±二.填空题:本大题共5小题,每小题5分,共25分,学科网答案须填在题中横线上。

2014全国高考山东卷数学真题及答案

2014全国高考山东卷数学真题及答案

2014年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,选择符合题目要求的选项。

1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A (A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+, (C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是 (A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根(C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 答案:A5.已知实数y x ,满足)10(<<<a a a yx,则下列关系式恒成立的是 (A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为(A )22(B )24(C )2(D )4 答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa(A )6 (B )8 (C ) 12(D )18 答案:C8.已知函数()12+-=x x f ,()kx x g =.若方程()()x g x f=有两个不相等的实根,则实数k 的取值范围是(A )),(210(B )),(121(C )),(21(D )),(∞+2答案:B9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2 答案:B10.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A )02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =±答案:A二.填空题:本大题共5小题,每小题5分,共25分,答案须填在题中横线上。

2014年山东高考理科数学试题含答案(Word版)

2014年山东高考理科数学试题含答案(Word版)

若 CD1 垂直于 面 ABCD 且 CD1 = 弦值.
3 ,求 面 C1 D1M 和 面 ABCD 所成的角 锐角 的余
6
18
本小题满分 12 分 球台面被网分成 、乙两部分,如图, 有两个 相交的区域 A, B ,乙被划分为两个 相交的区域 C , D .某次测试要求队员接到落点在
的来球 向乙回球.规定 回球一次,落点在 C 在A 的来球,小明回球的落点在 C 的概率为
sin x > sin y
x2 > y2
6 直线 y = 4 x 图形的面 为 A
曲线 y = x 3 在第一象限内围成的封闭
2 2
B
4 2
C
2 D 4 志愿者进行临床
7 为研究某药品的疗效,选取若 试验,所有志愿者的舒张压数据 单位
kPa
的分组区
间为 [12,13) , [13,14) , [14,15) , [15,16) , [16,17] , 将其按从左到右的 序分别编号为第一组,第二组,......, 第五组.右图是根据试验数据制成的频率分布直方图.已知 第一组 第二组共有 20 人,第 则第 组中有疗效的人数为 A 1 B 8 C 12 D 18 8 已知函数 f ( x ) =| x − 2 | +1 , g ( x) = kx ,若 f ( x ) = g ( x) 有两个 值范围是 相等的实根,则实数 k 的取 组中没有疗效的有 6 人,
山东理科数学 一、选择题 本大题共 10 小题, 小题 5 分.在 小题给出的四个选 中,只有一 是符合题目要求 的. 1 已知 a, b ∈ R , i 是虚数单位,若 a − i A
2 + bi 互为共轭复数,则 (a + bi ) 2 = 3 + 4i

2014年高考(山东卷)理科数学

2014年高考(山东卷)理科数学

2014年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014山东,理1)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( ).A .5-4iB .5+4iC .3-4iD .3+4i 答案:D解析:由a -i 与2+b i 互为共轭复数,可得a =2,b =1. 所以(a +b i)2=(2+i)2=4+4i -1=3+4i.2.(2014山东,理2)设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ). A .[0,2] B .(1,3) C .[1,3) D .(1,4) 答案:C解析:由题意,得A ={x ||x -1|<2}={x |-1<x <3}, B ={y |y =2x ,x ∈[0,2]}={y |1≤y ≤4}, 所以A ∩B =[1,3).3.(2014山东,理3)函数()f x =的定义域为( ).A .10,2⎛⎫ ⎪⎝⎭B .(2,+∞)C .10,2⎛⎫ ⎪⎝⎭∪(2,+∞)D .10,2⎛⎤⎥⎝⎦∪[2,+∞)答案:C解析:要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1, 解得x >2或102x <<. 所以函数f (x )的定义域为10,2⎛⎫ ⎪⎝⎭∪(2,+∞).4.(2014山东,理4)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( ).A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案:A解析:因为至少有一个的反面为一个也没有,所以要做的假设是方程x 3+ax +b =0没有实根.5.(2014山东,理5)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ).A .221111x y >++ B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3 答案:D解析:由a x <a y (0<a <1),可得x >y .又因为函数f (x )=x 3在R 上递增, 所以f (x )>f (y ),即x 3>y 3.6.(2014山东,理6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ).A. B. C .2 D .4 答案:D 解析:由34y x y x =⎧⎨=⎩,,解得x =-2或x =0或x =2, 所以直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形面积应为230(4)d S x x x =⎰-2422401122220444x x ⎛⎫⎛⎫=-=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭.7.(2014山东,理7)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ).A .6B .8C .12D .18 答案:C解析:设样本容量为n ,由题意,得(0.24+0.16)×1×n =20,解得n =50. 所以第三组频数为0.36×1×50=18. 因为第三组中没有疗效的有6人,所以第三组中有疗效的人数为18-6=12.8.(2014山东,理8)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ).A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(1,2)D .(2,+∞) 答案:B解析:画出f (x )=|x -2|+1的图象如图所示.由数形结合知识,可知若方程f (x )=g (x )有两个不相等的实根,则函数g (x )与f (x )的图象应有两个不同的交点.所以函数g (x )=kx 的图象应介于直线12y x =和y =x 之间,所以k 的取值范围是1,12⎛⎫ ⎪⎝⎭. 9.(2014山东,理9)已知x ,y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值a 2+b 2的最小值为( ).A .5B .4CD .2 答案:B 解析:约束条件10,230x y x y --≤⎧⎨--≥⎩满足的可行域如图中的阴影部分所示.由图可知,目标函数z =ax +by (a >0,b >0)取最小值时,最优解为(2,1).所以2a +b =2b a =,所以()222222252054a b a a a a ⎛+=+=-=+ ⎝⎭,即当a =b =a 2+b 2有最小值4. 10.(2014山东,理10)已知a >b >0,椭圆C 1的方程为22221x y a b+=,双曲线C 2的方程为22221x y a b -=,C 1与C 2的离心率之积为2,则C 2的渐近线方程为( ).A .0x =B 0y ±=C .x ±2y =0D .2x ±y =0 答案:A解析:由题意,知椭圆C 1的离心率1e a=,双曲线C 2的离心率为2e =因为12e e ⋅=,=即2222434a b a b a (-)(+)=,整理可得a =.又双曲线C的渐近线方程为bx ±ay =0,所以0bx =,即0x =.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2014山东,理11)执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为__________.答案:3解析:输入x =1,12-4+3≤0, 则x =2,n =1;返回22-8+3≤0,则x =3,n =2; 返回32-12+3≤0,则x =4,n =3;返回42-16+3>0,则输出n =3,结束.12.(2014山东,理12)在△ABC 中,已知tan AB AC A ⋅=,当π6A =时,△ABC 的面积为__________.答案:16解析:由tan AB AC A ⋅=,可得cos tan AB AC A A =.因为π6A =,所以3AB AC ⋅= 即23AB AC =.所以1sin 2ABC S AB AC A ∆=⋅12112326=⨯⨯=. 13.(2014山东,理13)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则12V V =__________.答案:14解析:由题意,知V D -ABE =V A -BDE =V 1, V P -ABC =V A -PBC =V 2.因为D ,E 分别为P B ,P C 中点, 所以14BDE PBC S S ∆∆=. 设点A 到平面PBC 的距离为d ,则12113143BDE BDE PBC PBCS d V S V S S d ∆∆∆∆⋅===⋅. 14.(2014山东,理14)若62b ax x ⎛⎫+ ⎪⎝⎭的展开式中x 3项的系数为20,则a 2+b 2的最小值为__________.答案:2解析:62b ax x ⎛⎫+ ⎪⎝⎭的展开式的通项为()626123+166=C C rr r r r r rr b T ax a b xx ---⎛⎫⋅= ⎪⎝⎭, 令12-3r =3,得r =3.由633366C C 20r r r a b a b -==,得ab =1.所以a 2+b 2≥2ab =2×1=2.15.(2014山东,理15)已知函数y =f (x )(x ∈R ).对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ).y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是()g x =f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是__________.答案:)∞解析:3x b =+,所以,()62h x x b =+h (x )>g (x )恒成立,即62x b +>整理得3x b +>恒成立.在同一坐标系内,画出直线y =3x +b及半圆y =(如图所示),当直线与半圆相2=,所以b =故b的取值范围是()+∞.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2014山东,理16)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图象过点π12⎛⎝和点2π,23⎛⎫- ⎪⎝⎭. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.分析:在第(1)问中,可先根据向量数量积坐标运算整理出f (x )的解析式,再由图象过两点,代入整理可得关于m ,n 的方程组,利用此方程组即得m ,n 的值.在第(2)问中,通过图象平移知识,可得含参数φ的g (x )的解析式,从中设出最高点,然后根据两点距离为1,可确定最高点的坐标,代入可求出g (x )确定的解析式,从而求出单调区间.解:(1)由题意知f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象过点π12⎛⎝和2π,23⎛⎫- ⎪⎝⎭,所以ππsin cos 664π4π2sin cos 33m n m n =+⎨⎪-=+⎪⎩,,即1,212,2m n =⎨⎪-=-⎪⎩解得m =n =1.(2)由(1)知()2cos2f x x x =+π2sin 26x ⎛⎫=+ ⎪⎝⎭.由题意知()π()2sin 226g x f x x ϕϕ⎛⎫=+=++ ⎪⎝⎭. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知2011x +=,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得πsin 216ϕ⎛⎫+= ⎪⎝⎭, 因为0<φ<π,所以π6ϕ=.因此()π2sin 22cos 22g x x x ⎛⎫=+= ⎪⎝⎭, 由2k π-π≤2x ≤2k π,k ∈Z ,得πππ2k x k -≤≤,k ∈Z ,所以函数y =g (x )的单调递增区间为ππ,π2k k ⎡⎤-⎢⎥⎣⎦,k ∈Z .17.(本小题满分12分)(2014山东,理17)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且1CD =,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.分析:在第(1)问中,可考虑线面平行的判定定理,即从平面A 1ADD 1中找一条线与C 1M 平行,显然可找线AD 1,再通过证明四边形AMC 1D 1为平行四边形来达到求证目的.在第(2)问中,方法一:可以点C 为原点建立空间直角坐标系,求出平面C 1D 1M 和平面ABCD 的法向量,则两法向量夹角的余弦的绝对值即为两面夹角(锐角)的余弦值.方法二:平面C 1D 1M 即为平面ABC 1D 1,则平面C 1D 1M 与平面ABCD 所成角的棱为AB ,又已知CD 1⊥平面ABCD ,故可过C 向棱AB 作垂线,垂足为N ,连接D 1N ,则可证∠D 1NC 为二面角的平面角,进而在Rt △D 1CN 中求∠D 1NC 的余弦值即可.(1)证明:因为四边形ABCD 是等腰梯形, 且AB =2CD , 所以AB ∥DC .又由M 是AB 的中点, 因此CD ∥MA 且CD =MA . 连接AD 1,在四棱柱ABCD -A 1B 1C 1D 1中, 因为CD ∥C 1D 1,CD =C 1D 1, 可得C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形. 因此C 1M ∥D 1A ,又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1, 所以C 1M ∥平面A 1ADD 1. (2)解法一:连接AC ,MC ,由(1)知,CD ∥AM 且CD =AM ,所以四边形AMCD 为平行四边形. 可得BC =AD =MC ,由题意∠ABC =∠DAB =60°, 所以△MBC 为正三角形,因此AB =2BC =2,CA因此CA ⊥CB .以C 为坐标原点,建立如图所示空间直角坐标系C -xyz .所以)A,B (0,1,0),(1D .因此1,022M ⎛⎫⎪ ⎪⎝⎭,所以1122MD ⎛=-- ⎝,111,022D C MB ⎛⎫==- ⎪ ⎪⎝⎭.设平面C 1D 1M 的一个法向量n =(x ,y ,z ),由1110,0,D C MD ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0,y y -=+-= 可得平面C 1D 1M的一个法向量()=n .又(1CD =为平面ABCD 的一个法向量.因此111cos ,5CD CD CD ⋅==n n n所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为5.解法二:由(1)知平面D 1C 1M ∩平面ABCD =AB ,过C 向AB 引垂线交AB 于N ,连接D 1N . 由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1-AB -C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°,可得CN=.所以1ND==在Rt△D1CN中,11cosCND NCD N∠===所以平面C1D1M和平面ABCD所成的角(锐角)18.(本小题满分12分)(2014山东,理18)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为12,在D上的概率为13;对落点在B上的来球,小明回球的落点在C上的概率为15,在D上的概率为35.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.分析:第(1)问中,恰有一次落在乙上可分为两种情况,第①种,从A击球落在乙上,从B击球没落在乙上;第②种,从B击球落在乙上,从A击球没落在乙上,将①②两种情况的概率相加即为恰有一次落在乙上的概率.第(2)问中,根据事件的独立性与互斥性,可得出,①得0分情形为A,B处都不得分;②得1分情形为A处得1分B处不得分或A处不得分B 处得1分;③得2分情形为A,B两处各得1分;④得3分情形为A处得3分B处得0分或A处得0分B处得3分;⑤得4分情形为A处得3分B处得1分或A处得1分B处得3分;⑥得6分情形为A,B两处都得3分,共6种情形.列出小明得分之和ξ的分布列便可求出期望.解:(1)记A i为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则()312P A=,()113P A=,()01111236P A=--=;记B i为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则()315P B=,()135P B=,()01311555P B=--=.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)1111131132535656510=⨯+⨯+⨯+⨯=,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310. (2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=1116530⨯=, P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=1113135656⨯+⨯=, P (ξ=2)=P (A 1B 1)=131355⨯=, P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=11112255615⨯+⨯=, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=131111253530⨯+⨯=,P (ξ=6)=P (A 3B 3)=1112510⨯=.可得随机变量ξ所以数学期望()91012346306515301030E ξ=⨯+⨯+⨯+⨯+⨯+⨯=. 19.(本小题满分12分)(2014山东,理19)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令-114(1)n n n n nb a a +=-,求数列{b n }的前n 项和T n . 分析:第(1)问中可利用等差数列知识,用首项与公差表示出前n 项和,再根据S 1,S 2,S 4成等比数列求出首项,从而求得a n .求第(2)问时,可结合第(1)问中a n 的结果得出b n 的通项公式,最后对项数n 按奇数和偶数两种情况讨论并求出b n 的前n 项和T n .解:(1)因为S 1=a 1,S 2=2a 1+212⨯×2=2a 1+2, S 4=4a 1+432⨯×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n -1. (2)11144(1)(1)2121n n n n n n nb a a n n --+=-=-(-)(+)111(1)2121n n n -⎛⎫=-+ ⎪-+⎝⎭.当n 为偶数时,11111111211335232121212121n n T n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=+-++++-+=-= ⎪ ⎪ ⎪ ⎪---+++⎝⎭⎝⎭⎝⎭⎝⎭当n 为奇数时,111111112211335232121212121n n T n n n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=+-++-+++=+= ⎪ ⎪ ⎪ ⎪---+++⎝⎭⎝⎭⎝⎭⎝⎭所以22,,212,.21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数 1211=21n n n T n -⎛⎫++(-) ⎪+⎝⎭或. 20.(本小题满分13分)(2014山东,理20)设函数()2e 2=ln x f x k x x x ⎛⎫-+ ⎪⎝⎭(k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.分析:第(1)问中可先求出f (x )的导函数f ′(x ),再解不等式f ′(x )>0和f ′(x )<0,即可确定f (x )的单调区间.第(2)问中,根据第(1)问结论可知k ≤0时不适合第(2)问,故k >0,再具体讨论k 值,要使f (x )在(0,2)内有两个极值点,则f (x )在(0,2)内必须出现增减增或减增减,即导函数f ′(x )出现正负正或者负正负.据此可列出不等式,最后求得k 的取值范围.解:(1)函数y =f (x )的定义域为(0,+∞).()242e 2e 21=x x x x f x k x x x -⎛⎫'--+ ⎪⎝⎭ 323e 2e 22e ==x x x x k x x kx x x x-(-)(-)(-)-. 由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞).因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增,故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减,x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增.所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点, 当且仅当00,ln 0,200ln 2g g k g k ()>⎧⎪()<⎪⎨()>⎪⎪<<⎩,,解得2e e<2k <. 综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为2e e,2⎛⎫ ⎪⎝⎭. 21.(本小题满分14分)(2014山东,理21)已知抛物线C :y 2=2px (p >0)的焦点为F ,A为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程;(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E ,①证明直线AE 过定点,并求出定点坐标;②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 分析:在第(1)问中,可设D (t,0),然后根据抛物线定义以及|F A |=|FD |建立t 与p 的关系,再由△ADF 为正三角形求出p 的值,即得C 的方程.在第(2)问中,利用抛物线方程可确定抛物线焦点坐标,再设出A 点,利用与F 点关系求出点D ,从而确定l 的斜率.根据l 1与抛物线只有一个交点知,联立l 1与抛物线方程便只有一解.求出点E 坐标,从而求得AE 直线方程,结合方程特点,确定l 1过定点.最后利用点到直线的距离公式与基本不等式,可求出△ABE 面积的最小值.解:(1)由题意知,02p F ⎛⎫ ⎪⎝⎭, 设D (t,0)(t >0),则FD 的中点为2,04p t +⎛⎫⎪⎝⎭. 因为|F A |=|FD |, 由抛物线的定义知322p p t +=-, 解得t =3+p 或t =-3(舍去). 由234p t +=,解得p =2. 所以抛物线C 的方程为y 2=4x .(2)①由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D,0)(x D >0),因为|F A |=|FD |,则|x D -1|=x 0+1.由x D >0得x D =x 0+2,故D (x 0+2,0).故直线AB 的斜率02AB y k =-. 因为直线l 1和直线AB 平行,设直线l 1的方程为02y y x b =-+, 代入抛物线方程得200880b y y y y +-=, 由题意20064320b y y ∆=+=,得02b y =-. 设E (x E ,y E ),则04E y y =-,204E x y =. 当204y ≠时,0000220002044444E AE E y y y y y k y x x y y +-==-=---, 可得直线AE 的方程为000204()4y y y x x y =---, 由200=4y x ,整理可得0204(1)4y y x y =--,直线AE 恒过点F (1,0). 当204y =时,直线AE 的方程为x =1,过点F (1,0). 所以直线AE 过定点F (1,0). ②由①知直线AE 过焦点F (1,0), 所以|AE |=|AF |+|FE |=000011(+1)1+2x x x x ⎛⎫++=+ ⎪⎝⎭. 设直线AE 的方程为x =my +1, 因为点A (x 0,y 0)在直线AE 上,故001x m y -=. 设B (x 1,y 1),直线AB 的方程为000()2y y y x x -=--, 由于y 0≠0, 可得0022x y x y =-++, 代入抛物线方程得2008840y y x y +--=. 所以0108y y y +=-, 可求得1008y y y =--,1004+4x x x =+. 所以点B 到直线AE 的距离为d =4⎫==. 则△ABE的面积001142162S x x ⎫⎛⎫=⨯⋅++≥ ⎪⎝⎭, 当且仅当001x x =,即x 0=1时等号成立. 所以△ABE 的面积的最小值为16.。

2014年山东高考理科数学试题及详细解析

2014年山东高考理科数学试题及详细解析

2014年全国统一高考(山东)理科真题及详解一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,选择符合题目要求的选项。

1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D解析:a i -与2bi +互为共轭复数,()()2222,124434a b a bi i i i i∴==∴+=+=++=+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C 解析:[][][)12212132,0,21,41,3x x x x y x y A B -<∴-<-<∴-<<=∈∴∈∴⋂=Q Q3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+,(C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C解析:()22log 10x ->2log 1x ∴>或2log 1x ∴<-2x ∴> 或102x ∴<>。

4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根 (C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 5.已知实数y x ,满足)10(<<<a a a yx,则下列关系式恒成立的是(A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D 解析:,01x y a a a x y<<<∴>Q ,排除A,B ,对于C ,sin x 是周期函数,排除C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验,所有志愿者的舒张压数据(单位: kPa )的分组
区间为[12,13) ,
[13,14) ,[14,15) ,[15,16) ,[16,17] ,将其按从左到
右的顺序分别编号为第一组,第二组,......,第五组.右图 是根据试验数据制成的频率分布直方图.已知第一组与第 二组共有 20 人,第三组中没有疗效的有 6 人,则第三组中有疗效的人数为 (A)1(B)8(C)12(D)18
(21)(本小题满分 14 分)
7
已知抛物线 C : y2 2 px( p 0) 的焦点为 F , A 为 C 上异于原点的任意一点,过点 A 的直线 l 交 C 于另一点 B ,交 x 轴的正半轴于点 D ,且有| FA || FD | .当点 A 的横坐标为 3 时, ADF 为正三
角形.
(Ⅱ)令 bn
(1)n1
4n an an 1
,求数列{bn}的前 n 项和Tn
.
(20)(本小题满分 13 分)
设函数
f
(x)
ex x2
2 k(
x
ln
x)
(k
为常数, e
2.71828
是自然对数的底数).
(Ⅰ)当 k 0 时,求函数 f (x) 的单调区间;
(Ⅱ)若函数 f (x) 在 (0, 2) 内存在两个极值点,求 k 的取值范围.
(Ⅰ)求 C 的方程; (Ⅱ)若直线 l1 // l ,且 l1 和 C 有且只有一个公共点 E , (ⅰ)证明直线 AE 过定点,并求出定点坐标; (ⅱ) ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
8
9
10
11
12
13
14
15
16
V1
.
V2
(14)若 (ax2 b )4 的展开式中 x3 项的系数为 20,则 a2 b2 的 x
最小值为
.
(15)已知函数 y f (x)(x R) .对函数 y g(x)(x I ) ,定义
g(x) 关于 f (x) 的“对称函数”为 y h(x)(x I ) , y h(x) 满足:对任意 x I ,两个点 (x, h(x)) ,
(Ⅰ)求证: C1M // A1ADD1 ;
(Ⅱ)若 CD1 垂直于平面 ABCD 且 CD1 3 ,求平面 C1D1M 和平面 ABCD 所成的角(锐角)的
余弦值.
6
(18)(本小题满分 12 分) 乒乓球台面被网分成甲、乙两部分,如图,
甲上有两个不相交的区域 A, B ,乙被划分为两个不相交的区域 C, D .某次测试要求队员接到落点在
当目标函数
z
ax
by(a
0,
b
0)
在该约束条件下取
到最小值 2 5 时, a2 b2 的最小值为
(A)5(B)4(C) 5 (D)2
(10)已知 a
b
,椭圆
C1
的方程为
x2 a2
y2 b2
1,双曲线
C2
的方程为
x2 a2
y2 b2
1, C1 与 C2 的离
心率之积为
3 2
,则
C2
的渐近线方程为
(A) x 2 y 0 (B) 2x y 0 (C) x 2 y 0 (D) 2x y 0
山东理科数学 一、选择题:本大题共 10 小题,每小题 5 分.在每小题给出的四个选项中,只有一项是符合题目要求 的.
(1)已知 a, b R , i 是虚数单位,若 a i 与 2 bi 互为共轭复数,则 (a bi)2
(A) 5 4i (B) 5 4i (C) 3 4i (D) 3 4i (2)设集合 A {x || x 1| 2}, B {y | y 2x , x [0, 2]},则 A B
假设是
(A)方程 x2 ax b 0 没有实根(B)方程 x2 ax b 0 至多有一个实根
(C)方程 x2 ax b 0 至多有两个实根(D)方程 x2 ax b 0 恰好有两个实根
(5)已知实数 x, y 满足 ax a y ( 0 a 1),则下列关系式恒成立的是
(8)已知函数 f (x) | x 2 | 1, g(x) kx ,若 f (x) g(x) 有两个不相等的实根,则实数 k 的取
值范围是
1
(A) (0, 1) (B) (1 ,1) (C) (1, 2) (D) (2, )
2
2
(9)已知
x,
y
满足约束条件
x y 2x
1 y
3
0, 0,
(A)
1 x2 1
y
1 2
1
(B)
ln(
x2
1)
ln( y2
1)
(C) sin x sin y (D) x2 y2
(6)直线 y 4x 与曲线 y x3 在第一象限内围成的封
闭图形的面积为
(A) 2 2 (B) 4 2 (C)2(D)4
(7)为研究某药品的疗效,选取若干名志愿者进行临床
3
(Ⅰ)求 m, n 的值;
(Ⅱ)将 y f (x) 的图象向左平移 ( 0 )个单位后得到函数 y g(x) 的图象.若
y g(x) 的图象上各最高点到点 (0, 3) 的距离的最小值为 1,求 y g(x) 的单调增区间.
(17)(本小题满分 12 分)
如图,在四棱柱 ABCD A1B1C1D1 中,底面 ABCD 是等腰梯形, DAB 60 , AB 2CD 2 , M 是线段 AB 的中点.
(x, g(x)) 关于点 (x, f (x)) 对称.若 h(x) 是 g(x) 4 x2 关于 f (x) 3x b 的“对称函数”,且
h(x) g(x) 恒成立,则实数 b 的取值范围是
.
1.
2
3. 5. 7.
3
【考点】函数与方程,函数的图象. 9.
4
【考点】椭圆、双曲线的几何性质. 二、填空题 11.
5
5
回球互不影响.求:
(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和 的分布列与数学期望.
(19)(本小题满分 12 分)
已知等差数列{an}的公差为 2,前 n 项和为 Sn ,且 S1, S2 , S4 成等比数列.
(Ⅰ)求数列 {an } 的通项公式;
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分
(11)执行右面的程序框图,若输入的 x 的值为 1,则输出的
n 的值为
.
(12)在 ABC
中,已知AB AC来自tanA ,当
A
时,
6
ABC 的面积为
.
(13)三棱锥 P ABC 中, D , E 分别为 PB , PC 的中点,
记三棱锥 D ABE 的体积为V1 , P ABC 的体积为V2 ,则
甲上的来球后向乙回球.规定:回球一次,落点在 C 上记 3 分,在 D 上记 1 分,其它情况记 0 分.对落
点在 A 上的来球,小明回球的落点在 C 上的概率为 1 , 2
1 在 D 上的概率为 ;对落点在 B 上的来球,小明回球的
3
落点在 C 上的概率为 1 ,在 D 上的概率为 3 .假设共有两次来球且落在 A, B 上各一次,小明的两次
12. 13.
14.
2 30
【答案】
3
5
三、解答题:本大题共 6 小题,共 75 分.
(16)(本小题满分 12 分)
已知向量 a (m, cos 2x) , b (sin 2x, n) ,设函数 f (x) a b ,且 y f (x) 的图象过点
(,
3) 和点 ( 2 , 2) .
12
(A)[0, 2] (B) (1,3) (C)[1,3) (D) (1, 4)
(3)函数 f (x)
1
的定义域为
(log2 x)2 1
(A) (0, 1) (B) (2, ) (C) (0, 1) (2, ) (D) (0, 1] [2, )
2
2
2
(4)用反证法证明命题:“已知 a, b 为实数,则方程 x2 ax b 0 至少有一个实根”时,要做的
相关文档
最新文档