数据结构中的图
数据结构中的图的遍历算法

数据结构中的图的遍历算法图是一种非常重要且广泛应用的数据结构,它由顶点和边组成,可以用来表示各种实际问题,如社交网络、路线规划等。
图的遍历算法是对图中的所有顶点进行系统访问的方法,它可以用来查找、遍历和搜索图中的元素。
本文将介绍图的遍历算法的基本概念和常用的实现方法。
一、图的遍历算法概述图的遍历算法是指按照某种规则遍历图中的所有顶点,以便于查找、遍历和搜索图中的元素。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)两种。
深度优先搜索(DFS)是一种先访问顶点的所有邻接顶点,再递归访问邻接顶点的邻接顶点的算法。
它以深度为优先级,一直向前走到不能继续为止,然后返回到前一个结点,继续向前走,直到遍历完整个图。
广度优先搜索(BFS)是一种先访问顶点的所有邻接顶点,再访问邻接顶点的邻接顶点,以此类推的算法。
它以广度为优先级,先访问离起始顶点最近的顶点,然后依次访问离起始顶点更远的顶点,直到遍历完整个图。
二、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它的基本思想是从图的某个顶点出发,沿着一条路径一直深入直到不能继续为止,然后返回到前一个结点,继续向前走。
具体实现时,可以使用递归或栈来保存需要访问的顶点。
以下是深度优先搜索的基本步骤:1. 选择一个起始顶点作为当前顶点,将其标记为已访问。
2. 访问当前顶点,并将其加入遍历结果。
3. 从当前顶点的未访问邻接顶点中选择一个作为下一个当前顶点,重复步骤2。
4. 如果当前顶点的所有邻接顶点都已访问,则返回到前一个顶点,重复步骤3。
5. 重复步骤4,直到遍历完整个图。
三、广度优先搜索(BFS)广度优先搜索是一种迭代的搜索算法,它的基本思想是从图的某个顶点出发,依次访问其所有未访问过的邻接顶点,然后再依次访问这些邻接顶点的未访问过的邻接顶点,直到遍历完整个图。
具体实现时,可以使用队列来保存需要访问的顶点。
以下是广度优先搜索的基本步骤:1. 选择一个起始顶点作为当前顶点,将其标记为已访问,并将其加入遍历结果。
数据结构第七章:图

例
a c G1
b d
vexdata firstarc adjvex next 1 4 ^ a 2 3 4 b c d 1 1 3 ^ ^ ^
19
7.3 图的遍历
深度优先遍历(DFS) 深度优先遍历
方法:从图的某一顶点 出发,访问此顶点; 方法:从图的某一顶点V0出发,访问此顶点;然后依 次从V 的未被访问的邻接点出发,深度优先遍历图, 次从 0的未被访问的邻接点出发,深度优先遍历图, 直至图中所有和V 相通的顶点都被访问到; 直至图中所有和 0相通的顶点都被访问到;若此时图 中尚有顶点未被访问, 中尚有顶点未被访问,则另选图中一个未被访问的顶 点作起点,重复上述过程, 点作起点,重复上述过程,直至图中所有顶点都被访 问为止。 问为止。
ω ij , 若(v i , v j )或 < v i , v j >∈ E(G) A[i, j ] = 0,其它
11
例
1 3
5
2
8 4 7 5 1 6 3 4 2
0 5 7 0 3
5 0 0 4 8
7 0 0 2 1
0 4 2 0 6
3 8 1 6 0
12
关联矩阵——表示顶点与边的关联关系的矩阵 表示顶点与边的关联关系的矩阵 关联矩阵
1
7.1 图的定义和术语
是由两个集合V(G)和E(G)组成的 组成的, 图(Graph)——图G是由两个集合 图 是由两个集合 和 组成的 记为G=(V,E) 记为
其中: 其中:V(G)是顶点的非空有限集 是顶点的非空有限集 E(G)是边的有限集合,边是顶点的无序对或有序对 是边的有限集合, 是边的有限集合
有向图——有向图 是由两个集合 有向图G是由两个集合 有向图 有向图 是由两个集合V(G)和E(G)组成的 和 组成的
计算机中图的名词解释

计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。
图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。
本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。
1. 图的基本概念图由节点(Node)和边(Edge)组成。
节点表示对象或实体,边表示节点之间的连接关系。
图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。
在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。
2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。
邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。
邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。
3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。
常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。
深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。
4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。
其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。
该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。
5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。
在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。
数据结构-图

出发点,访问D,标注数字序号④;
(a)无向图 G9
(b)深度优先遍历
图的遍历
3.1图的深度优先遍历
接着到G,访问G, 标注数字序号⑤;G 相邻顶点都访问过了,顺着虚线箭头方向
回退到 D,D 相邻顶点都访问过了,顺着虚线箭头方向回退到C,C 相邻顶点也都访问过
图的基本概念
1.2图的操作定义
02
PART
图的存储结构
2.1邻接矩阵
首先介绍的是数组表示法,即用两个数组分别存储顶点的信息和顶点之间的关系。
用来存放图中 n 个顶点的数组称为顶点数组。我们可将图中顶点按任意顺序保存到顶点数组中,
这样按存放次序每个顶点就对应一个位置序号(简称位序),依次为0~n-1;接着用一个 n×n 的二维
称为有向图。例如,当V={v1,v2,v3,v4,v5},VR={<v1,v2>,
<v1,v4>,<v2,v4>,<v3,v1>,<v3,v5>,<v4,v3>,<v5,v4>},则顶点集合
V、关系集合VR 构成有向图G1=(V,VR),如图(a)所示。
图的基本概念
1.1图的定义与基本术语
无向图(Undirected Graph)。如果顶点间的关系是无
序号作为表结点的值,所以一条弧对应一个表结点。右图为有向图 G1
和无向图 G2的邻接表表示法存储示意图。
图的存储结构
2.2邻接表
对于有向网和无向网,由于表结点表示边或弧,因此需要对表结点扩充一个属性域,表
结点至少包含顶点序号、权值和下一表结点指针 3 个属性,由此构成网的邻接表。
数据结构图

所以:对于点多边少的稀疏图来说,采用邻接表 结构使得算法在时间效 率上大大提高。
16
3/12
广度优先搜索(Breadth First Search,简称BFS ) BFS类似于树的层序遍历; 用一个数组用于标志已访问与否,还需要一个工作队列。
【例】一个无向图的BFS
8
6
CD
4
7
HG
BA
邻接多重表(Adjacency Multilist)
9
边表
• 在某些应用中,有时主要考察图中边的权值以及所依附的 两个顶点,即图的结构主要由边来表示,称为边表存储结 构。
• 边表结构采用顺序存储,用2个一维数组构成,一个存储 顶点信息,一个存储边的信息。边数组的每个元素由三部 分组成:
– 边的起点下标 – 边的终点下标 – 边的权值
1
A [i][
j]
0
如果 (vi , v j ) 或 vi , v j G的边 其它
无权图的邻接矩阵表示示例
V1
V2
V0
3
V3
4 12/15
带权图的邻接矩阵的定义
A [i][ j] wij
如果 (vi , vj ) 或 vi , v j G的边 其它
带图权的图邻的接邻矩接阵矩表阵示表示示例示[例例6.9]
1
第一部分 图的定义和术语
2
图的定义
“图” G可以表示为两个集合:G =(V, E)。每条 边是一个顶点对(v, w) E ,并且 v, w V。
通常:用 |V| 表示顶点的数量(|V| ≥ 1), 用 |E| 表示边的数量(|E| ≥ 0)。
(1) 无向图(完全有向图边数与顶点数之间的 关系) (2) 有向图(完全有向图弧数与顶点数之间的 关系) (3) 简单图:没有重边和自回路的图 (4) 邻接 (5) 路径,路径长度 (6) 无环(有向)图:没有任何回路的(有向)图 (7) 度,入度,出度 (8) 无向图的顶点连通、连通图、连通分量 (9) 有向图的顶点强连通,强连通图、连通分量
数据结构图结构(动态PPT)课件

结合实际问题
将数据结构图与实际问题相结合,通过分析问题的本质和 规律,选择合适的数据结构和算法进行求解。
创新应用方式
在传统的数据结构图应用基础上,探索新的应用方式和方 法,如基于数据结构图的机器学习模型、数据结构图在社 交网络分析中的应用等。
跨学科融合
将数据结构图与其他学科领域进行融合,如物理学、化学 、生物学等,通过借鉴其他学科的理论和方法,创新数据 结构图的应用场景和解决方案。
包括无向图、有向图、权 重图、邻接矩阵、邻接表 等。
图的遍历方法
深度优先搜索(DFS)和 广度优先搜索(BFS)的 原理和实现。
非线性数据结构图应用案例
树的应用案例
包括二叉搜索树、堆、哈夫曼树等在实际问题中的应用,如排序、优先队列、 编码等。
图的应用案例
包括最短路径问题(Dijkstra算法、Floyd算法)、最小生成树问题(Prim算法 、Kruskal算法)以及网络流问题等在实际问题中的应用,如交通网络规划、电 路设计等。
根据实际需求,选择适合的最小生 成树算法,如Prim算法、Kruskal算
法等。
B
C
D
可视化呈现结果
将算法的运行过程和结果以图形化的方式 呈现出来,方便用户直观地理解和掌握最 小生成树算法的原理和实现过程。
实现算法逻辑
编写代码实现最小生成树算法的逻辑,包 括节点的选择、边的添加和权重的计算等 。
拓展思考:如何创新应用数据结构图解决问题
作用
帮助理解复杂数据结构的组成和 关系,提高数据处理的效率。
常见类型及特点
01
02
03
04
线性数据结构图
元素之间一对一关系,如数组 、链表等。
树形数据结构图
数据结构-图的定义和术语

继续进行 ·3
·4
搜索。
·5
·6
·7
·3 ·1
·2
·4 从结点 5 出发的搜索序列:
5、6、2、3、1、4、7 适用的数据结构:栈
图的遍历
2、广度(宽度)优先搜索:
• 树:
A
B
C
D
EFG H
I JK
树的按层次进行访问的次序: A、B、C、D、E、F、G、H、 I、J、K、L
适用的数据结构:队列
L A
1
·1
2
12
11
·2
·11
·12
3
6
7
10
·3 ·6 ·7
·10
4
5
8
9
·4 ·5 ·8
·9
图的广度优先的访问次序:
1、2、11、12、3、6、7、10、4、5、8、9
适用的数据结构:队列
图的连通性问题
2、有向图的强连通分量的求法:续 •强连通分量的求法:
1、对有向图 G 进行深度为主的搜索,按照退 出该结点的次序给结点进行编号。最先退 出的结点的编号为 1,其它结点的编号按 次序逐次增大 1。
点1
3 已在U中
16 21 35
0 0 0
lowcost 表示最小距离
4∞ 0
adjvex 表示相应结点(在V -U中的)
5∞
0
lowcost adjvex
U1
6
5 1
25 35 4
3
6
4
2
566 图G
数组:closedge[ 6 ]
00 15 2 20 35 0 46 2 54 2
lowcost adjvex
数据结构(C++)--图

一、图的概念 二、图的应用 三、图的基本术语 四、图的存储结构
难点
1
一、图的概念
(Graph) Graph)
定义:图是由顶点集合(vertex)及边的集合 定义:图是由顶点集合 及边的集合 组成的一种数据结构: 组成的一种数据结构: Graph= Graph=( V, R ) 其中: 某个数据对象} 其中: V = { x | x ∈ 某个数据对象} 是顶点的有穷非空集合; 是顶点的有穷非空集合; R = {(u, v) | u, v ∈ V } {(u 是顶点之间关系的有穷集合, 是顶点之间关系的有穷集合,也叫做 (edge)集合 集合。 边(edge)集合。
1, 如果 < i , j >∈ E 或者 (i , j ) ∈ E Matrix[i ][ j ] = 0, 否则
1 7 3 4 2 8 3 1 6 5 5 4 2
最小(生成 树 最小 生成)树 生成 也称为 最小(支撑 树 最小 支撑)树 支撑
5
二、图的应用举例
例2: 最短路问题(SPP-Shortest Path Problem) : 最短路问题( ) 一名货柜车司机奉命在最短的时间内将一车货物从 甲地运往乙地。从甲地到乙地的公路网纵横交错, 甲地运往乙地。从甲地到乙地的公路网纵横交错, 因此有多种行车路线,这名司机应选择哪条线路呢? 因此有多种行车路线,这名司机应选择哪条线路呢? 假设货柜车的运行速度是恒定的, 假设货柜车的运行速度是恒定的,那么这一问题相 当于需要找到一条从甲地到乙地的最短路。 当于需要找到一条从甲地到乙地的最短路。 5 A 7 C 4 B 6 4 F 5 3 E 1
5 (开始) A 开始) 7 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构中的图
在计算机科学和数据结构中,图是一种非常重要的数据结构。
作为有向或无向边的节点集合,它们被广泛应用于计算机网络、
计算机游戏、地理信息系统等领域。
在本文中,我们将介绍图的
基本知识和一些相关的算法和应用。
一、什么是图
图是一种由节点和边构成的数据结构。
一个节点也被称为顶点,边则是连接顶点之间的线。
有向图中的边有方向,无向图中则没有。
节点和边一起形成了图,它们可以用各种不同的方式来表示。
在计算机科学中,图的定义通常是通过一个邻接列表或邻接矩
阵来表示的。
邻接列表是每个顶点所有相邻的顶点的集合,而邻
接矩阵则是一个矩阵,其中每个元素表示两个顶点之间是否存在边。
二、图的分类
根据边的方向以及图中各个节点之间的关系,图可以分为以下几种类型。
1. 无向图:每条边都没有方向,也就是说,从一个顶点到另一个顶点的路径可以沿着任意方向进行。
2. 有向图:每条边都有方向,从一个顶点到另一个顶点的路径必须遵循一定的方向。
3. 带权图:每条边都有一个权值,它表示连接两个顶点的开销或距离。
这种图通常用于表示距离、时间等连续量。
4. 完全图:在完全图中,每对不同的顶点之间都有一条边,无反向边。
5. 二分图:顶点可以分成两个独立的集合,这两个集合之间的边都是从一个集合到另一个集合的。
三、访问图
在使用图时,我们通常需要遍历它以访问它的各个节点和边。
这可以通过以下几种方法来实现。
1. 深度优先搜索(DFS)
深度优先搜索(DFS)是一种用于遍历图的算法。
它从某个顶
点开始,递归地访问它的下一个邻居,直到没有未访问的邻居为止。
然后它返回上一个顶点并从那里开始迭代访问未被访问过的
邻居。
这个过程一直持续到整个图被访问完毕。
2. 广度优先搜索(BFS)
广度优先搜索(BFS)是另一种用于遍历图的算法。
它从某个
顶点开始,并先访问所有与该顶点相邻的顶点,然后再访问与这
些相邻顶点相邻的所有顶点。
这个过程持续到整个图被遍历完毕。
3. 迪克斯特拉算法
迪克斯特拉算法是一种用于图的带权路径最短距离算法。
它从
一个顶点开始,并标记该顶点的距离为0。
然后,它遍历与顶点相
邻的所有顶点,并计算它们到起始点的距离。
这个过程持续到所有顶点都被访问过,且它们之间的距离已被确定。
四、应用
由于图是一种通用的数据结构,因此它们在计算机科学中被广泛应用。
以下是一些最常见的应用程序示例。
1. 社交网络分析
社交网络分析是使用图形的结构和拓扑关系研究社交网络的过程。
这种分析可以帮助我们理解人际关系的发展和沟通过程。
此外,它还可以用于预测个人之间的关系,为营销和广告活动提供更好的方向。
2. 地理信息系统
地理信息系统是一种使用图形和地理数据的计算机系统。
这种系统可以将路线和地图数据绘制到地图上,并计算和显示路径和距离。
地理信息系统还可以用于城市规划和天气预测等方面。
3. 数据库和搜索引擎
数据库和搜索引擎使用图论来处理和存储联系和路径信息。
这
些信息涉及数据之间的连接和相对位置、访问模式和数据关系等
信息。
通过使用图,数据可以以一种更可视化和直观的方式呈现
到用户面前。
总之,图论是计算机科学领域中最重要的数据结构之一。
使用
图论算法和工具,我们可以轻松地分析和处理大量信息。
正如我
们所看到的,它的应用远不止于计算机科学,可以用于社交网络、地理信息系统和数据库等领域,这使它成为现代多领域应用的一
个必不可少的工具。