最新初一数学中的公理定理

合集下载

初中数学公式定理概括

初中数学公式定理概括

初中数学公式定理概括初中数学是数学学科的基础,它包括了许多重要的公式和定理。

这些公式和定理在学习和解题中起着重要的作用。

下面是初中数学中一些重要的公式定理的概括。

一、等差数列公式:1.等差数列的通项公式:对于等差数列 an=a1+(n-1)d,其中a1为首项,d为公差,an为第n项。

2.等差数列的求和公式:对于等差数列 Sn=(a1+an)n/2,其中Sn为前n项和。

3.等差数列的前n项和与项数的关系:Sn=(a1+an)n/2=(a1+ a1+(n-1)d)n/24.等差数列中任意三项的关系:an=a1+(n-1)d。

二、等比数列公式:1.等比数列的通项公式:对于等比数列 an=a1*r^(n-1),其中a1为首项,r为公比,an为第n项。

2.等比数列的求和公式:对于等比数列Sn=a1(1-r^n)/(1-r),其中Sn为前n项和。

3.等比数列的前n项和与项数的关系:Sn=a1(1-r^n)/(1-r)。

4.等比数列中任意两项的关系:an=a1*r^(n-1)。

三、平方差公式:1. (a+b)^2=a^2+2ab+b^22. (a-b)^2=a^2-2ab+b^23.a^2-b^2=(a+b)(a-b)。

四、勾股定理:1.勾股定理:直角三角形的一个直角边的平方等于另外两条边的平方和。

2.勾股定理的逆定理:如果一个三角形中的一些边的平方等于另外两条边的平方和,那么这个三角形一定是直角三角形。

五、平方根与立方根:1.平方根公式:对于任意非负数a和非负数x,如果x^2=a,则x为a的平方根。

2.立方根公式:对于任意实数a和非负数x,如果x^3=a,则x为a的立方根。

六、二次函数公式:1. 一元二次方程的求根公式:对于一元二次方程ax^2+bx+c=0(其中a≠0),它的解可以通过以下公式计算:x=(-b±√(b^2-4ac))/(2a)。

2. 一元二次函数的顶点坐标:对于一元二次函数y=ax^2+bx+c,它的顶点坐标为(-b/2a, -(b^2-4ac)/4a)。

初中数学公理定理(较全).ppt

初中数学公理定理(较全).ppt

101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 5到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的 6和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹, 是和这两条平行线平行且距离相等的一条直线 109定理 不在同一直线上的三个点确定一条直线 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径垂直平分弦, 并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等
80 推论2 经过三角形一边的中点与另一边平行的直线, 必平分第 三边 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线, 所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线), 所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线) 所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

初中数学公理

初中数学公理

初中数学公理
《初中数学公理》
一、数的基本公理
1、集合公理:
(1)集合的定义:集合是任意给定的一组元素的总称。

(2)空集的定义:不包含任何元素的集合被称为空集。

(3)子集定义:若集合A中的所有元素都属于集合B,则A(即子集)称为B(即包含集)的子集。

2、等价关系公理:
若两个集合A和B,它们的元素一一对应,则称A与B是等价的,记作A≌B。

3、一元运算公理:
(1)集合的构成:集合的元素可以是任何类型的数据,可以是整数、小数、有理数、无理数、复数等。

(2)集合运算:集合之间可以进行加减乘除、幂、因式分解等一元运算。

4、基本性质:
(1)绝对值的基本性质:
a)|a|≥0;b)|a|=a或|a|=-a;c)|ab|=|a|·|b|;d)|a+b|≤|a|+|b|。

(2)最大公约数和最小公倍数的性质:
a)若a、b有公因数d,则d是a、b的最大公约数;b)a、b的
最小公倍数是a、b的乘积÷a、b的最大公约数。

5、基本法则:
(1)法则的定义:所谓法则,指的是通过具体的实例和实验,提取出的一种客观规律,并可以用数学语言表达出来,以用于解决实际问题。

(2)基本法则:
a)集合的分配律;b)量纲法则;c)分数的乘除运算法则;d)指数的乘除运算法则;e)和差的乘除运算法则;f)同余方程法则;g)惯例法则。

初一数学公理

初一数学公理

初一数学公理数学公理是指在数学中被广泛接受的基础原理。

这些公理是数学存在的基石,因为它们是无需证明的基本原理,它们是被视为真实而无法否认的真理。

让我们来看一些小学生最早学习的数学公理。

第一个公理:整数加法结合律这个公理告诉我们,如果对三个整数a,b和c进行加法,并用括号表示为(a + b) + c或a + (b + c),那么最后得到的结果将是相等的。

把这个公式进一步解释一下,就是a加上b再加上c,或者a加上(b加上c)的结果一定是相等的。

第二个公理:整数加法交换律这个公理告诉我们,如果对两个整数a和b进行加法,在哪个数字先加不会影响最后的结果。

也就是说,a + b等于b + a。

第三个公理:整数加法单位元素存在这个公理告诉我们,对于整数a,存在一个数字零,满足a + 0 = a。

第四个公理:整数加法相反元素存在这个公理告诉我们,对于每个整数a,存在一个相反数(记为-a),满足a + (-a) = 0。

第五个公理:整数加法消去律这个公理告诉我们,如果对于三个整数a,b和c,a + b等于a + c,那么我们可以推断出,b等于c。

第六个公理:整数乘法结合律这个公理告诉我们,如果对于三个整数a,b和c进行乘法,并用括号表示为(a × b) × c或a × (b × c),那么最后的结果将是相等的。

这也被称为“串联”公式,因为我们可以任意改变括号的位置,但得到的结果是相等的。

第七个公理:整数乘法交换律这个公理告诉我们,如果对于两个整数a和b进行乘法,在哪个数字先乘不会影响最后的结果。

也就是说,a × b等于b × a。

第八个公理:整数乘法单位元素存在这个公理告诉我们,对于整数a,存在一个数字1,满足a × 1 = a。

第九个公理:整数乘法分配律这个公理告诉我们,如果对于三个整数a,b和c进行乘法,(a + b) × c等于a × c + b × c。

初一数学中的公理定理

初一数学中的公理定理

1、直线公理:两点确定一条直线。

2、线段公理:两点之间,线段最短。

3、垂线公理:过一点有且只有一条直线与已知直线垂直。

4、平行公理:过直线外一点,有且只有一条直线与已知直线平行。

5、平行线判定公理:同位角相等,两直线平行。

6、平行线性质公理:两直线平行,同位角相等。

7、全等三角形性质公理:全等三角形对应边相等,对应角相等
1、三角形内角和定理:三角形内角和等于180°
• 推论 1 :直角三角形两锐角互余
• 推论 2 :三角形的一个外角等于与它不相邻的两个内角的和。

• 推论 3 :三角形的外角大于任何一个与它不相邻的内角。

2、公理:两点之间,线段最短。

• 定理:三角形两边之和大于第三边
• 推论:三角形两边之差小于第三边。

3、补角的性质:同角或等角的补角相等
4、余角的性质:同角或等角的补角相等
5、对顶角的性质:对顶角相等
6、垂线的性质:直线外一点与直线上各点的连线中,
7、平行线公理推论:如果两条直线都和第三条直线平行,那么这两条直线互相平行。

8、平行线判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简记为:。

• 定理 1。

• 定理 2
9、平行线性质公理:
• 定理 1
• 定理 2
• 推论:垂直于同一直线的两直线的互相平行。

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边【戳下方链接↓↓↓,免费领取小学初中学习资料历年真题和试听课程!还能与其他同学家长一起交流分享学习经验哦!】16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS)有三边对应相等的两个三角形全等26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27.定理1在角的平分线上的点到这个角的两边的距离相等28.定理2到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1三个角都相等的三角形是等边三角形36.推论2有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于条直线对称的两个图形是全等形43.定理2如果两个图形关于直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过其中一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。

常见的初中数学公理

常见的初中数学公理

1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角得补角相等4、同角或等角得余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接得所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都与第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理:三角形两边得与大于第三边16、推论:三角形两边得差小于第三边17、三角形内角与定理:三角形三个内角得与等于180°18、推论1:直角三角形得两个锐角互余19、推论2:三角形得一个外角等于与它不相邻得两个内角得与20、推论3:三角形得一个外角大于任何一个与它不相邻得内角21、全等三角形得对应边、对应角相等22、边角边公理(SAS):有两边与它们得夹角对应相等得两个三角形全等23、角边角公理(ASA):有两角与它们得夹边对应相等得两个三角形全等24、推论(AAS):有两角与其中一角得对边对应相等得两个三角形全等25、边边边公理(SSS):有三边对应相等得两个三角形全等26、斜边、直角边公理(HL):有斜边与一条直角边对应相等得两个直角三角形全等27、定理1:在角得平分线上得点到这个角得两边得距离相等28、定理2:到一个角得两边得距离相同得点,在这个角得平分线上29、角得平分线就是到角得两边距离相等得所有点得集合30、等腰三角形得性质定理等腰三角形得两个底角相等(即等边对等角)31、推论1:等腰三角形顶角得平分线平分底边并且垂直于底边32、等腰三角形得顶角平分线、底边上得中线与底边上得高互相重合33、推论3:等边三角形得各角都相等,并且每一个角都等于60°34、等腰三角形得判定定理:如果一个三角形有两个角相等,那么这两个角所对得边也相等(等角对等边)35、推论1:三个角都相等得三角形就是等边三角形36、推论2:有一个角等于60°得等腰三角形就是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对得直角边等于斜边得一半38、直角三角形斜边上得中线等于斜边上得一半39、定理:线段垂直平分线上得点与这条线段两个端点得距离相等40、逆定理:与一条线段两个端点距离相等得点,在这条线段得垂直平分线上41、线段得垂直平分线可瞧作与线段两端点距离相等得所有点得集合42、定理1:关于某条直线对称得两个图形就是全等形43、定理2:如果两个图形关于某直线对称,那么对称轴就是对应点连线得垂直平分线44、定理3:两个图形关于某直线对称,如果它们得对应线段或延长线相交,那么交点在对称轴上45、逆定理:如果两个图形得对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理:直角三角形两直角边a、b得平方与、等于斜边c得平方,即a^2+b^2=c^247、勾股定理得逆定理:如果三角形得三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形就是直角三角形48、定理:四边形得内角与等于360°49、四边形得外角与等于360°50、多边形内角与定理:n边形得内角得与等于(n-2)×180°51、推论:任意多边得外角与等于360°52、平行四边形性质定理1:平行四边形得对角相等53、平行四边形性质定理2:平行四边形得对边相等54、推论:夹在两条平行线间得平行线段相等55、平行四边形性质定理3:平行四边形得对角线互相平分56、平行四边形判定定理1:两组对角分别相等得四边形就是平行四边形57、平行四边形判定定理2:两组对边分别相等得四边形就是平行四边形58、平行四边形判定定理3:对角线互相平分得四边形就是平行四边形59、平行四边形判定定理4:一组对边平行相等得四边形就是平行四边形60、矩形性质定理1:矩形得四个角都就是直角61、矩形性质定理2:矩形得对角线相等62、矩形判定定理1:有三个角就是直角得四边形就是矩形63、矩形判定定理2:对角线相等得平行四边形就是矩形64、菱形性质定理1:菱形得四条边都相等65、菱形性质定理2:菱形得对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积得一半,即S=(a×b)÷267、菱形判定定理1:四边都相等得四边形就是菱形68、菱形判定定理2:对角线互相垂直得平行四边形就是菱形69、正方形性质定理1:正方形得四个角都就是直角,四条边都相等70、正方形性质定理2:正方形得两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1:关于中心对称得两个图形就是全等得72、定理2:关于中心对称得两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理:如果两个图形得对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理:等腰梯形在同一底上得两个角相等75、等腰梯形得两条对角线相等76、等腰梯形判定定理:在同一底上得两个角相等得梯形就是等腰梯形77、对角线相等得梯形就是等腰梯形78、平行线等分线段定理:如果一组平行线在一条直线上截得得线段相等,那么在其她直线上截得得线段也相等79、推论1:经过梯形一腰得中点与底平行得直线,必平分另一腰80、推论2:经过三角形一边得中点与另一边平行得直线,必平分第三边81、三角形中位线定理:三角形得中位线平行于第三边,并且等于它得一半82、梯形中位线定理:梯形得中位线平行于两底,并且等于两底与得一半L=(a+b)÷2S=L×h83、(1)比例得基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理:三条平行线截两条直线,所得得对应线段成比例87、推论:平行于三角形一边得直线截其她两边(或两边得延长线),所得得应线段成比例88、定理:如果一条直线截三角形得两边(或两边得延长线)所得得对应线段成比例,那么这条直线平行于三角形得第三边89、平行于三角形得一边,并且与其她两边相交得直线,所截得得三角形得三边与原三角形三边对应成比例90、定理:平行于三角形一边得直线与其她两边(或两边得延长线)相交,所构成得三角形与原三角形相似91、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上得高分成得两个直角三角形与原三角形相似93、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3:三边对应成比例,两三角形相似(SSS)95、定理:如果一个直角三角形得斜边与一条直角边与另一个直角三角形得斜边与一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1:相似三角形对应高得比,对应中线得比与对应角平分线得比都等于相似比97、性质定理2:相似三角形周长得比等于相似比98、性质定理3:相似三角形面积得比等于相似比得平方99、任意锐角得正弦值等于它得余角得余弦值,任意锐角得余弦值等于它得余角得正弦值100、任意锐角得正切值等于它得余角得余切值,任意锐角得余切值等于它得余角得正切值101、圆就是定点得距离等于定长得点得集合102、圆得内部可以瞧作就是圆心得距离小于半径得点得集合103、圆得外部可以瞧作就是圆心得距离大于半径得点得集合104、同圆或等圆得半径相等105、到定点得距离等于定长得点得轨迹,就是以定点为圆心,定长为半径得圆106、与已知线段两个端点得距离相等得点得轨迹,就是着条线段得垂直平分线107、到已知角得两边距离相等得点得轨迹,就是这个角得平分线108、到两条平行线距离相等得点得轨迹,就是与这两条平行线平行且距离相等得一条直线109、定理:不在同一直线上得三点确定一个圆。

初中数学公式定理公理大全

初中数学公式定理公理大全

初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)学过的公理:
1、直线公理:两点确定一条直线。

2、线段公理:两点之间,线段最短。

3、垂线公理:过一点有且只有一条直线与已知直线垂直。

4、平行公理:过直线外一点,有且只有一条直线与已知直线平行。

5、平行线判定公理:同位角相等,两直线平行。

6、平行线性质公理:两直线平行,同位角相等。

7、全等三角形性质公理:全等三角形对应边相等,对应角相等
(二)学过的定理及推论
1、三角形内角和定理:三角形内角和等于180°
•推论1:直角三角形两锐角互余
•推论2:三角形的一个外角等于与它不相邻的两个内角的和。

•推论3:三角形的外角大于任何一个与它不相邻的内角。

2、公理:两点之间,线段最短。

•定理:三角形两边之和大于第三边
•推论:三角形两边之差小于第三边。

3、补角的性质:同角或等角的补角相等
4、余角的性质:同角或等角的补角相等
5、对顶角的性质:对顶角相等
6、垂线的性质:直线外一点与直线上各点的连线中,垂线段最短。

7、平行线公理推论:如果两条直线都和第三条直线平行,那么这两条直线互相
平行。

8、平行线判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两
条直线平行,简记为:同位角相等,两直线平行。

•定理1:内错角相等,两直线平行。

•定理2:同旁内角互补,两直线平行
9、平行线性质公理:两直线平行,同位角相等。

•定理1:两直线平行,内错角相等。

•定理2:两直线平行,同旁内角互补。

推论:垂直于同一直线的两直线的互相平行。

澳洋医院办公楼及综合楼
网络方案
目录
第一章.概述 ................................................................................................... 错误!未定义书签。

1.1建筑群网络建设背景.................................................................... 错误!未定义书签。

1.2建网需求分析................................................................................ 错误!未定义书签。

1.2.1 一般建网需求.......................................................................... 错误!未定义书签。

1.2.2 网络安全需求分析和对策...................................................... 错误!未定义书签。

第二章.总体网络设计和网络特点................................................................ 错误!未定义书签。

2.1 网络设计的原则................................................................................ 错误!未定义书签。

2.2 网络拓扑 ........................................................................................... 错误!未定义书签。

2.3 方案说明 ........................................................................................... 错误!未定义书签。

2.4方案特色技术简介............................................................................. 错误!未定义书签。

2.4.1 路由规划.................................................................................. 错误!未定义书签。

2.4.2 IP地址规划.............................................................................. 错误!未定义书签。

2.5无线方案 ....................................................................................... 错误!未定义书签。

2.5.1无线网络优势........................................................................... 错误!未定义书签。

2.5.2无线局域网总体架构选择....................................................... 错误!未定义书签。

2.5.3供电问题................................................................................... 错误!未定义书签。

2.5.4频率规划................................................................................... 错误!未定义书签。

2.5.5频率复用................................................................................... 错误!未定义书签。

2.5.6信号覆盖范围控制................................................................... 错误!未定义书签。

2.5.7 AP防盗设计............................................................................. 错误!未定义书签。

•。

相关文档
最新文档