数学人教版初中一年级上册 z有理数的成方

合集下载

人教版七年级数学上册第一章1.有理数的乘方教案

人教版七年级数学上册第一章1.有理数的乘方教案

1.5.1《有理数的乘方》教案一、 教学目标(一)知识技能1、理解有理数乘方的意义, 能明确底数、指数、幂这几个概念的意义2、掌握有理数乘方的运算(二)过程与方法:通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。

(三)情感态度与价值观:1.在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性。

2.培养学生勤于思考、认真仔细和勇于探索的精神.教学重、难点:教学重点:有理数乘方的概念及运算。

教学难点:有理数乘方运算的符号法则。

二、教学设计(一)有效导入,明确目标提出问题:(1)边长为2的正方形的面积怎么计算?(2)棱长为2的正方体的体积怎么计算?(3)把一张足够大的厚度为0.1毫米的纸对折一次的厚度怎样计算?那么连续对折2次的厚度又怎样计算呢?连续对折3次,4次,...,30次又怎样计算呢? 依次引导学生完成三个问题。

导入新课。

(二)自主学习,合作探究阅读教材41页,完成以下问题:1、什么叫做乘方?什么叫做幂?2、 所代表的意义是什么?请说出 的读法。

3、什么叫做底数?什么叫做指数?n a n a学生以组为单位,展开活动,讨论交流。

教师在学生活动时,深入学生的活动中去,了解学生的讨论情况,帮助各别有困难的小组分析问题,提出思考方向。

(三)大组汇报,教师点拨1、什么是乘方?什么叫做幂?求n 个相同因数的积的运算,叫做乘方。

乘方的结果叫做幂。

对回答问题的小组进行评价,板书。

2、 所代表的意义是什么?请说出 的读法。

n 个相同的因数a 相乘,即 ,记作 ,读作“a 的n 次方”,也可读作“a 的n 次幂”。

对回答问题的小组进行评价,板书。

3、什么是底数?什么叫做指数?在 n a 中, a 叫做底数, n 叫做指数。

对回答问题的小组进行评价,板书。

教师补充提出问题:在教材,你还发现哪些其他的知识,请你提出来有同学们一起分享你的发现!教师鼓励学生发现知识,对发现知识的同学所在的小组进行评价。

七年级数学人教版上册第一单元-有理数的乘方-教案

七年级数学人教版上册第一单元-有理数的乘方-教案

七年级数学人教版上册第一单元-有理数的乘方-教案第41页教学目标1,在现实背景中,理解有理数乘方的意义。

2,能进行有理数的乘方运算,并会用计版本2七年级数学人教版上册第一单元-有理数的乘方-教案1.理解有理数乘方的意义;2.掌握有理数乘方的运算;(重点、难点)3.能利用数学知识解决实际问题,激发学生学习的兴趣,树立解决问题的信心.★目标预设知识与能力1、在现实背景中,理解有理数乘方的意义。

2、能进行有理数的乘方运算。

过程与方法变“幂”为“乘”是由转化的思想把新问题(有理数乘方)转化为旧知识(有理数的乘法)来解决。

三、情感、态度、价值观通过观察、类比、归纳得出正确的结论。

★教学重难点一、重点:在理解有理数乘方意义的基础上进行有理数的乘方运算。

二、难点:与所学知识进行衔接,处理带各种符号的乘方运算。

★教学准备一、教具:细胞分裂示意图二、预习建议:1、乘方的定义。

2、乘方的初步运算。

★预习导学1、(-2)中底数是,指数是,它表示有个(-2)相乘。

2、×××写成乘方运算的形式是3、计算(1) (-3) = (2) -3 =(3) -(-3) = (4) -( -3 ) =(5) (-1) = (6) ( -1 ) =(7) (-1) = (n为正整数)(8) 0 =★教学过程一、创设情景、谈话导入在小学里已经学过,边长为a的正方形的面积为a·a 简记作a2,读作a的平方(或a的二次方),棱长为a的正方体的体积是a·a·a,简记作a3,读作a的立方(或a的三次方)。

二、精讲点拨、质疑问难一般地,如果n个相同的因数a相乘,即a·a·……·a,记作a n,读作a的n次方。

如这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,当把a看作a 的n次方的结果时,也可读作a的n次幂。

例如:在94中,底数是9,指数是4,94读作9的4次方。

人教新版初一上册数学有理数的乘方试题及答案

人教新版初一上册数学有理数的乘方试题及答案

人教新版初一上册数学有理数的乘方试题及答案一、选择题(共15小题)1.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )A.0.1008×106B.1.008×106C.1.008×105D.10.08×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.2.2014年我国的GDP总量为629180亿元,将629180亿用科学记数法表示为( )A.6.2918×105元B.6.2918×1014元C.6.2918×1013元D.6.2918×1012元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将629180亿用科学记数法表示为:6.2918×1013.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.今年五月份香港举办“保普选反暴力”大联盟大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为( )A.1.21×106B.12.1×105C.0.121×107D.1.21×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将121万用科学记数法表示为:1.21×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.4.2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为( )A.33528×107B.0.33528×1012C.3.3528×1010D.3.3528×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将335 280 000 000用科学记数法表示为:3.3528×1011.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.5.某市户籍人口1694000人,则该市户籍人口数据用科学记数法可表示为( )A.1.694×104人B.1.694×105人C.1.694×106人D.1.694×107人【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1694000用科学记数法表示为:1.694×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.6.2014年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为( )A.12.8×1010美元B.1.28×1011美元C.1.28×1012美元D.0.128×1013美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1280亿=128000000000=1.28×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.7.(2015•深圳)用科学记数法表示316000000为( )A.3.16×107B.3.16×108C.31.6×107D.31.6×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将316000000用科学记数法表示为:3.16×108.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.8.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为( )A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.9.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为( )A.0.109×105B.1.09×104C.1.09×103D.109×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10900用科学记数法表示为:1.09×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.10.据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将13 573 000用科学记数法表示为:1.3573×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.11.下列各数表示正确的是( )A.57000000=57×106B.0.0158(用四舍五入法精确到0.001)=0.015C.1.804(用四舍五入法精确到十分位)=1.8D.0.0000257=2.57×10﹣4【考点】科学记数法—表示较大的数;近似数和有效数字;科学记数法—表示较小的数.【专题】计算题.【分析】把各项中较大与较小的数字利用科学记数法表示,取其近似值得到结果,即可做出判断.【解答】解:A、57000000=5.7×107,错误;B、0.0158(用四舍五入法精确到0.001)≈0.016,错误;C、1.804(用四舍五入法精确到十分位)≈1.8,正确;D、0.0000257=2.57×10﹣5,错误,故选C.【点评】此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为( )A.14×104B.1.4×105C.1.4×106D.14×106【考点】科学记数法—表示较大的数.【专题】计算题.【分析】将140000用科学记数法表示即可.【解答】解:140000=1.4×105,故选B.【点评】此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.今年江苏省参加高考的人数约为393000人,这个数据用科学记数法可表示为( )A.393×103B.3.93×103C.3.93×105D.3.93×106【考点】科学记数法—表示较大的数.整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:393000=3.93×105,故选C.【点评】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.14.某市在一次扶贫助残活动中,共捐款5280000元,将5280000用科学记数法表示为( )A.5.28×106B.5.28×107C.52.8×106D.0.528×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5280000=5.28×106,故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.表示时关键要正确确定a的值以及n 的值.15.2015年我国大学生毕业人数将达到7 490 000人,这个数据用科学记数法表示为( )A.7.49×107B.7.49×106C.74.9×105D.0.749×107【考点】科学记数法—表示较大的数.整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7 490 000用科学记数法表示为:7.49×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.二、填空题(共15小题)16.2015年5月在郴州举行的第三届中国(湖南)国际矿物宝石博览会中,成交额高达32亿元,3200000000用科学记数法表示为 3.2×109.【考点】科学记数法—表示较大的数.【分析】用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000000=3.2×109,故答案为:3.2×109【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.1989年以来,省委省政府、西宁市委市政府相继启动实施南北山绿化工程,经过26年的绿化建设,绿化面积、森林覆盖率得到明显提高,城市生态环境得到明显改善,截止2015年两山形成森林209300亩,将209300用科学记数法表示为 2.093×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将209300用科学记数法表示为2.093×105,故答案为2.093×105.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.18.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 3.12×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3120000用科学记数法表示为3.12×106.故答案为:3.12×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.19.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为 1.0×1011美元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:100 000 000 000=1.0×1011.故答案为:1.0×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.20.据《2014年国民经济和社会发展统计公报》显示,2014年我国教育科技和文化体育事业发展较快,其中全年普通高中招生7966000人,将7966000用科学记数法表示为7.966×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7966000用科学记数法表示为7.966×106.故答案为:7.966×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.21.太阳的半径大约为696000千米,将696000用科学记数表示为6.96×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为6.96×105.故答案为:6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.22.2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元,这个数用科学记数法表示为5×1010美元.【考点】科学记数法—表示较大的数.【专题】计算题.【分析】把500亿美元化为美元,表示为科学记数法即可.【解答】解:根据题意得:500亿美元=5×1010美元,故答案为:5×1010【点评】此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.光的速度大约是300000千米/秒,将300000用科学记数法表示为3.0×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为3.0×105.故答案为:3.0×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.24.健康成年人的心脏全年流过的血液总量为2540000000毫升,将2540000000用科学记数法表示应为 2.54×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2540000000用科学记数法表示为2.54×109.故答案为:2.54×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.25.位于我国东海的台湾岛是我国第一大岛,面积约36000平方千米,数36000用科学记数法表示为 3.6×104.【考点】科学记数法—表示较大的数.【分析】首先统一单位,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示为3.6×104.故答案为:3.6×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.26.将太阳半径696000km这个数值用科学记数法表示是 6.96×105km.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696000=6.96×105,故答案为:6.96×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.27.日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为1.634×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将163400用科学记数法表示为1.634×105,故答案为:1.634×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.28.据统计,截止2014年12月28日,中国高铁运营总里程超过16000千米,稳居世界高铁里程榜首,将16000千米用科学记数法表示为 1.6×104千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.。

七年级数学人教版上册1有理数的乘方(一)

七年级数学人教版上册1有理数的乘方(一)

m个
3+3+3 3 3n
n个
D. m 2 3n
初中数学
课堂小结
1.有理数的乘方定义
底数 an
指数 幂
2. 思想方法 特殊到一般
初中数学
? 思考
珠穆朗玛峰是世界的最高峰,今 年5月27日珠峰高程测量登山队登 顶成功,重测它的海拔高度. 这是 我们作为中国人的骄傲,有人说 把一张足够大的厚度为0.1毫米的 纸,连续对折27次的厚度就能超 过珠穆朗玛峰. 这是真的吗?
(2)在中,底数是 -1 ,指数是 5 ,
读作“ -1的5次方”.
初中数学
例题
例1.填空:
(3)在
中 ,底数是
-
3 2
,指数是
6
.
(4)在
中 ,底数是
2 3
,指数是
4
.
初中数学
例题
例2.计算:
(1) (2)
(3)
解:(1) -64
(2) 16
(3)
初中数学
例题
例2.计算: (4)
(5)
解(: 4) -81
(5)
8 3
初中数学
想一想
与 一样吗?为什么?
-81
初中数学
例题 m个
例3. 2 2 2 ( C ) 33 3
A. 2m 3n
n个
B. 2m n3
C . 2m 3n
解析: 2 2 2 2 2m
3333
n个
aaa a
n个
n个相同因数的积的运算
初中数学
剖析概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
底数
an
指数 幂

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方有理数的乘方是数学中一个重要的概念,它在数学运算和实际问题中都有着广泛的应用。

本文将介绍有理数的乘方的定义、规则以及解答习题的方法。

一、有理数的乘方定义及性质1. 定义:对于任意的有理数a和正整数n,a的n次方记为a^n,它表示将a连乘n次的结果。

当n为0时,任何非零有理数a的0次方都等于1,即a^0 = 1。

2. 性质:a. 乘方的运算性质:对于任意的有理数a、b和正整数m、n,有以下规则:(a) a^m × a^n = a^(m + n)(b) (a^m)^n = a^(m × n)(c) a^m ÷ a^n = a^(m - n)b. 乘方的特殊性质:(a) 任何数的1次方都等于该数本身,即a^1 = a。

(b) 非零数的负次方等于该数的倒数的正次方,即a^(-m) = 1 / (a^m)。

二、有理数的乘方计算方法1. 同底数的乘方计算:当底数相同时,可以直接将指数进行运算。

例如:计算2^3 × 2^4。

解:由乘方的运算性质(a)得知,2^3 × 2^4 = 2^(3 + 4) = 2^7。

2. 乘方与乘法的关系:乘方运算可以转化为多次乘法运算。

例如:计算3^4。

解:3^4 = 3 × 3 × 3 × 3 = 81。

3. 有理数的乘方与整数指数的乘法:有理数的乘方可以转化为整数指数的乘法。

例如:计算(-5)^3。

解:(-5)^3 = (-5) × (-5) × (-5) = -125。

4. 有理数的乘方与分数指数的开方:有理数的分数指数可以转化为开方。

例如:计算4^(2/3)。

解:4^(2/3)等于将4开3次方再平方。

4开3次方得到2,再平方得到4。

三、解答习题例题:计算下列各式的值。

1. 5^2 + 3 × 4^2 - (-2)^3解:由乘方的计算方法可得,5^2 + 3 × 4^2 - (-2)^3 = 25 + 3 × 16 - (-8) = 25 + 48 + 8 = 81。

人教版七年级上册数学第1章1.5.1有理数的乘方(教案)

人教版七年级上册数学第1章1.5.1有理数的乘方(教案)
三、教学难点与重点
1.教学重点
(1)有理数乘方的定义:重点理解正整数指数、零指数、负整数指数的乘方运算。
-正整数指数乘方:a^n(a为有理数,n为正整数),如2^3=8。
-零指数乘方:负整数指数乘方:a^(-n)=1/(a^n)(a≠0,n为正整数),如2^(-3)=1/8。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调正整数指数、零指数、负整数指数乘方的概念,以及同底数乘方的运算法则。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过实际折叠纸张来观察面积的变化,演示有理数乘方的实际原理。
人教版七年级上册数学第1章1.5.1有理数的乘方(教案)
一、教学内容
人教版七年级上册数学第1章《有理数》1.5.1节“有理数的乘方”,主要包括以下内容:
1.有理数的乘方定义:理解有理数乘方的概念,掌握正整数指数、零指数、负整数指数的乘方运算。
2.有理数乘方的法则:掌握同底数乘方的运算法则,了解不同底数乘方的性质。
(2)有理数乘方的法则:重点掌握同底数乘方的运算法则。
- a^m × a^n = a^(m+n),如2^2 × 2^3 = 2^(2+3) = 2^5。

人教版七年级数学上《有理数的乘方》知识全解

《有理数的乘方》知识全解【课标要求】理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).能运用有理数的运算解决简单的问题.【知识结构】有理数乘方的意义及相关概念有理数乘方的符号法则有理数的混合运算【内容解析】1.有理数乘方的意义:求n个相同因数的积的运算,叫做乘方.2.底数、指数、幂:在a n中,a叫做底数,n叫做指数,a n的结果叫幂.3.a n的读法:a n读作“a的n次方”或“a的n次幂”.4.有理数乘方的书写:底数与同行中其它数字一样大小,指数写在底数的右上角,写小些.负数、分数做底数时,负数、分数要带括号.5.有理数乘方的符号法则:负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.注意:1的任何次幂都是1,(–1)的奇数次幂等于–1,(–1)的偶数次幂等于1.6.用计算器计算乘方时,指数的转换键是“∧”.7.有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减是第一级运算,乘除是第二级运算,乘方与开方是第三级运算,运算时,先算高级运算,再算低一级的运算.【重点难点】有理数乘方的意义及运算是本节课的教学重点,本小节的另一个重点是依据运算法则和运算顺序进行有理数的混合运算,教师要精选适量的练习以提升学生的运算能力.有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点.可以实施通过补充一些计算问题和提高题,帮助学生突破难点.【教法导引】1.教师教学应该以学生的认知发展水平和已有的经验为基础,根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念,力求“自主探索、动手实践、合作交流”成为学生学习的主要方式.在小学已学的正方形面积,正方体体积的基础上进一步探究棋盘、拉面、细胞分裂等实际问题,在师生的互动中生成对乘方的理解.2.在引入例1之前,创设与例题有关的问题,让学生讨论交流,教师鼓励学生积极发言,为学生提供表现的机会,使学生在这个环节中弄清底数与指数之间的相互关系,认识到“a n等于多少的问题”是可以通过转化为乘法运算来实现的,从中体会转化的思想,为引入例题的学习做好铺垫.3.教师要预设学生的易错点,应强调指出.如–32与(–3)2的区别;底数为负数或分数时的书写要明了;“–1”的幂的特征可以进行归纳;及时纠正学生在运算顺序上的错误等.4.课程标准强调“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.教师在进行本节教学时,要放手学生自己去领悟、归纳、熟练.教师放手学生操作,把课堂还给学生,如在寻找“–2,4,–8,16,–32…的规律是千万让学生自主探索.【学法建议】1.“自主探索、动手实践、合作交流”为学生学习的主要方式.2.要认真观察,仔细比较,善于发现,正确归纳.像–42与(–4)2的区别要细细领悟.3.多动手计算,不能盲目依赖计算器.4.正确理解概念.乘方是一种运算,幂是乘方的结果,底数是相乘时的因数,指数是相乘时因数的个数,指数是1就是指只有一个因数,所以一个数可以看作这个数本身的一次方.5.练习时,要紧扣运算顺序与意义、法则,出现负号时千万多加小心.在进行混合运算时,可以采取多种方法来检验自己的运算结果的正确性.对于比较复杂的运算,先笔算,再用计算器进行验证.。

初一数学上册有理数的乘方课件


若指数是奇数,结果为负
达标训练
1)、计 算
(1)(4)3 (2) (2)4
(3) 2 3
3
2) 在94中,底数是 ,指数是 ,读作
,或读作

3) 在(-2)3中,底数是 ,指数是 ,读作 ,或读作 ;
4)

3
4
中,底数是
,指数是
,读作

4
5) 在 5 中,底数是
,指数是

6) 02 =
,03 =
(1)正数的任何次幂都是正数;负数的奇次幂 是负数,负数的偶次幂是正数。
(2)底数绝对值为10的幂的特点:1后面0的个 数与指数相同。
(3)底数绝对值为0.1的幂的特点:1前面0的 个数与指数相同(包括小数点前的1个零。
例2 计算:
(1)–32;
(4)8 ÷(-2)3×(-2.5)
解:原式=-(3×3)=-9 解:原式=8 ÷(-8)×(-2.5
3 、零的任何正整数次幂都是零
一 不做运算,判断下列各运算结果的符号
(-3)13 (负) -(-2)23 (正)
(-2)24 (正) 02004 (零)
(-1.7)2003 (负) (-3.9)12 (正)
注意:“一看底数,二看指数”
当底数是正数时,结果为正;当底数是0时,结果是0; 当底数是负数时,再看指数,若指数为偶数,结果为正,
n个

a n 指数
因数的个数
底数 因数
(1次方可省略不写,2次方又叫平方,3次方又叫立方。)
巩固新知:
1、(口答)
温馨提示:幂的底数 是分数或负数时,底
数应该添上括号!
把下列相同因数的乘积

有理数的乘方意义和运算


n 指数
底数
如:在 (-2)5 中,底数是(
-2

指数是( 5

读作( -2的5次方 )
或-2的5次幂
活动
n 个相同的因数 a 相乘,即 a a a ...... a
{
我们把它记作 a n
n个
这种求 n个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
在 an 中, a 叫做底数, n 叫做指数。
an读作 a 的 n 次方,也可以读作 a 的 n 次幂。

a n 指数 因数的个数
底数 因数
运算 加法 减法 乘法 除法 乘方 结果 和 差 积 商 幂
1. 54 的 底 数 是 _ _ _ _ , 指 数 是 _ _ _ , 表 示 ____________,读作___________
2.(-2)5 的底数是____,指数是___,
看视频,学知识
回答下列问题: (1)怎样计算边长为7厘米的正方形的面积? (2)怎样计算棱长为5厘米的正方体的体积?
思考:下列式子怎样表示更好呢?
一般地,n个相同的因数a相乘,即
a ·a ·… ·a ,记作an,读作
n个 a的n次方.
求n个相同因数的积的运算叫做
乘方,乘方的结果叫幂.
a 幂
2.乘方的性质 (1)负数的奇次幂是负数;负数的偶次幂是正 数; (2)正数的任何次幂都是正数; (3)0的任何正整数次幂都是0。 3.乘方的有关运算 进行乘方运算应先确定符号后再计算。
4.体会特殊到一般,具体到抽象的数学方法。
课后作业
教材p69练习1.2.3题 P72习题1.2.3.7.9题
表示____________,读作: 3.(- 1 )5的底数是___ 指数是_4___ 表示____________, 读作:

人教版数学七年级上册 1.5有理数的乘方 教案

《有理数的乘方》第一课时(教案设计)一、教学目标知识技能目标:1让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;2掌握有理数乘方的符号法则及相关性质,能够正确进行有理数的乘方运算;素质能力目标:1让学生经历知识的发生与发展过程,从中感受转化的数学思想;2培养学生观察、比较、分析、归纳、概括与动手操作的能力。

二、教学重难点重点:理解有理数乘方的意义;会进行有理数乘方的运算。

难点:透彻理解乘方、幂、底数、指数这几个概念的意义及相互关系。

三、教学方法本节课学法指导上着重引导学生通过观察、比较、分析、归纳、概括来研究规律性问题,同时,鼓励学生自主探索,解决问题。

教学中借助多媒体辅助教学,投影例题和练习,采取如下教法:(1)用情景导入法让学生感受引入概念的必要性。

(2)用讲授法讲清概念的形成过程,剖析概念的实质。

(3)用讨论法激起学生对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。

(4)用练习法使学生对概念的理解更深刻、更透彻。

四、课时安排1课时五、教学过程(一)创设情境,导入新课珠穆朗玛峰是世界的最高峰,它的海拔高度是8844.43米。

把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。

你信吗?带着这个疑问开启本节课的学习合作探究要求:把一张纸进行对折、再对折……并回答下面的问题,并把答案填写在报告单上(1)对折一次有几层? 2(2)对折二次有几层?2×2(3)对折三次有几层?2×2 ×2(4)对折四次有几层?2×2 ×2 ×220个……(5)对折二十次有几层?2×2 ×2 ……×2×2 ×2(6)对折三十次呢? 2×2 ×2 ……×2×2 ×2问题:像这样的式子表示起来很复杂,那么有没有一种简单的记法呢?(二)新知探究1、通过实例,引出乘方的概念边长为2的正方形的面积是2×2, 简记作22,读作2的二次方(或2的平方); 棱长为2的正方体的体积是2×2×2,简记作23,读作2的三次方(或2的立方). 那么:类似地,2×2×2×2×2 简记作25,读作2的五次方2×2 ×2 ……×2×2 ×2 简记作230,读作2的三十次方2×2 ×2 ……×2×2 ×2 简记作2n ,读作2的n 次方若把2换成有理数aa ×a ×… ×a ×a 简记作 a n 读作a 的n 次方归纳:(1)n 个相同的因数a 相乘,即×a ×… ×a =n a ,读作a 的n 次方求几个相同因数的积的运算,叫做乘方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)在a7中,底数是_a__,指数是__4__; (3)在(-6)4中,底数是 _-6__, 指数是_4__;
((54))在在5(中32,) 5底中数,底是数__是_5____32__,_,指指数数是是____5__1___;。
1、把下列各式写成幂的形式,并说明底数和指数。
(1)6 6 6
63
(4)
2 3
3

(1) (-4)3 =(-4)×(-4)×(-4)=-64;
(2) (-2)4 =(-2)×(-2)×(-2)×(-2)=16;
(3) 07 =0×0×0×0 × 0×0×0=0;
(4)
2 3
3
2 3
2 3
2 3
8 27
计算下列各题:
(1) 53 =125 (2) 4 2 =16 (3) (-3)4 =81
如果把足够长的厚0.1毫米的纸折叠30 次后有10万多米高,有12个珠穆朗玛峰 高。
分析: 0.1毫米×230=0.1毫米×1073741824
=107374.1824米 8844.43 ×12=106133.16
这下你该
相信了吧!
反思
这节课你学会了一种什么运算? 你有何体会?
“乘方”精神:虽然是简简 单单的重复,但结果却是惊 人的。做人也要这样,脚踏 实地,步一个脚印,成功 也会令你惊喜的。
(5)(1)7=-1(6)(1)2007 =-1
1、确定下列幂的正负
+
-
+
+
-
2.判断:(对的画“√”,错的画“×”.) (1) 32 = 3×2 = 6;( ×) 32 = 3×3=9
(2) (-2)3 = (-3)2; ( ×) (-2)3=-8;(-3)2=9
(3) -32 = (-3)2;(×) -32 =-9; (-3)2=9
必做题:教科书第42页练习第1、2题;第47页习题 1.5第1~3题.
22 4
(4) ( ) =
3
9
(5)
(-
1
31
) =-
2
8
想一想:
观察例1和左边各式的计 算结果,你能发现乘方 运算的符号有什么规律?
乘方运算的符号规律 正数的任何次幂都是正数 负数的偶次幂是正数,奇 次幂是负数 0的任何正整数次幂都是0
试一试
1 1 (1) 3 =1 (2) 2008 =1
(3)(1)8 =1(4)(1)2008 =1
手工拉面是我国的传统面食.制作时,拉面师 傅将一团和好的面,揉搓成1根长条后,手握两端 用力拉长,然后将长条对折,再拉长,再对折,每次 对折称为一扣,如此反复操作,连续扣六七次后便 成了许多细细的面条.假如拉扣了6次,你能算出 共有多少根面条吗?

第一次 拉扣后
第二次 拉扣后
第三次 拉扣后
26 64
a a a 记作 a3
a a a
动动脑
问题一:2 × 2× 2× 2 × 2
简记为
25
问题二:a× a× a × a × a × a × a简记为
a7
问题三: a×a×a×……×a 简记为
n个a
an
底数
aan
指数
(乘方的结果叫做幂)


写出下列各幂的底数与指数:
(1)在64中,底数是__6_,指数是__4__;
(2)(6) (6) (6) (6)3
(3) 2 2 2 2 ( 2)4
2、(
1 2
3333
3
)5写成几个相同因数相乘的形式
分组研讨
3 2 和(-3)2
(2)2和 22 33
表示的意义一样吗?结果相等吗?
例1 说出下列乘方的底数、指数且计算:
(1) (-4)3; (2) (-2)4;
解: (3) 07;
猜一猜
珠穆朗玛峰是世界的最高峰,
它的海拔高度是8844.43米。把一张
足够大的厚度为0.1毫米的纸,
连续对折30次的厚度能超过珠穆
朗玛峰。这是真的吗?
这张纸对折30次后能超过珠穆朗玛峰吗?
退出 返回 上一张下一张
边长为a的正方形的面积如何表示?
a a 记作 a2
a
a
棱长为a的正方体的体积如何表示?
(4) 24 ( 2)( 2)( 2)( 2);(×)
-24=-2×2×2×2=-16
(5)(2)2 22 . ( ×)
33
3.计算
(1)(1)7 8 (2) (1)10 (3) 3
(4)(5)3
(5) 0.13
(6) ( 1 )4 2
(7)(10)4 (8)(10)5
(9) (3)2 (10) 34
相关文档
最新文档