西安交大创新物理实验综述报告题库

合集下载

物理实验创新题选

物理实验创新题选

例 6 、某同学用如图 8 甲所示的实验装置,做《用双缝 干涉测光的波长》的实验,他用带有游标尺的测量头 ( 如图 8 乙所示 ) 测量相邻两条亮条纹间的距离△ x. 转动 测量头的手轮,使分划板的中心刻线对齐某一条亮条 纹(将这一条纹确定为第一亮条纹)的中心,此时游标尺 上的示数情况如图 8丙所示;转动测量头的手轮,使分 划板的中心刻线对齐第 6亮条纹的中心,此时游标尺上 的示数情况如图8丁所示,则图8丙的示数 0.15 8.95 mm. 如果实 x1=_______mm ;图 8 丁的示数 x2= ______ 验中所用的双缝间的距离 d=0.20mm,双缝到屏的距离 L=60cm,则计算波长的表达式λ= d(x2–x1)/5L (用已知 量和直接测量量的 符号表示).根据以上 数据,可得实验中测 出的光的波长λ -7 5.9 × 10 = _______ m.
( 3)将测量头的分划板中心刻线与某条亮纹中心 对齐,将该亮纹定为第1条亮纹,此时手轮上的示数 如图2所示。然后同方向转动测量头,使分划板中心 刻线与第 6 条亮纹中心对齐,记下此时图 3 中手轮上 13.870 的 示 数 ________mm , 求 得 相 邻 亮 纹 的 间 距 Δx 为 _______mm 。 2.310 (4)已知双缝间距 d为2.0×10-4m,测得双缝到屏 dΔx/l ,求得所 的距离 l 为 0.700m ,由计算式 λ = ________ 6.6×102 测红光波长为__________nm 。 Δx= (13.870-2.320)/5 =11.550/5=2.310mm λ= dΔx/l= 6.6×10-7m = 6.6×102nm
(选填:偏大、偏小或不变).
例 4.已知电动玩具小车在水平面上运动过程所受阻力 与速度成正比。接通电源后小车的电动机以额定功率 运转。为测定该电动机的额定功率,首先用弹簧秤以 2.0N的水平恒力,拉动小车沿水平面运动,小车尾部 夹有纸带,运动过程中打点计时器打出的部分纸带如 图a所示;然后换掉纸带,接通小车的电动机,电动机 以额定功率工作,让小车仍在该水平面上运动,打点 计时器打出的部分纸带如图b所示。(两图中每相邻两 个计数点之间都还有打点计时器打下的4个点未画出, 电源频率为50Hz。相邻计数点间的距离已标在图上, 单位 mm 。)由以上两步操作可知:小车所受阻力大 小与速度大小的比例系数为 5Ns/m ;小车上电动机 的额定功率为 0.45W 。 A B C D E F G H 图a 解:由图a得va=0.4m/s 30 34 37 39 40 40 40 mm 由图b得 vb=0.3m/s A B C D E F G H 图b k=fa/va =F/va= 5Ns/m 23 27 29 30 30 30 30 mm fb=kvb =1.5N P= fbvb =0.45W

西安交通大学第二附属中学南校区物理机械运动实验综合测试卷(word含答案)

西安交通大学第二附属中学南校区物理机械运动实验综合测试卷(word含答案)

一、初二物理机械运动实验易错压轴题(难)1.如图甲是测平均速度的实验装置。

(1)实验的原理是___________;(2)实验中为了便于测量小车的运动时间,斜面应保持___________(选填“较小”或“较大”)坡度;(3)由实验测量可知,小车通过上半程的平均速度___________(选填“小于”“大于”或“等于”)小车通过下半程的平均速度,表明小车做的是___________(选填“匀速”或“加速”)运动;(4)实验过程中某一时刻秒表示数如图乙所示,则读数为___________s。

【来源】山东省潍坊市昌乐县2019-2020学年八年级(上)期中学业质量检测物理试题【答案】svt=较小小于加速 337.5s【解析】【分析】(1)实验的原理是svt =。

(2)若要计时方便,应使所用的时间长些。

(3)小车在下滑过程中做加速运动。

(4)秒表的中间的表盘代表分钟,周围的大表盘代表秒,秒表读数是两个表盘的示数之和。

【详解】(1)[1]测平均速度的实验原理是svt =。

(2)[2]斜面坡度越大,小车沿斜面向下加速运动越快,过某点的时间会越短,计时会越困难,所以为使计时方便,斜面坡度应较小。

(3)[3][4]由实验测量可知,小车通过上半程的平均速度小于小车通过下半程的平均速度,小车做的是加速运动。

(4)[5]由图可知:在秒表的中间表盘上,1min中间有两个小格,所以一个小格代表0.5min,指针在“5”和“6”之间,所以分针指示的时间为5min;偏向“6”一侧,说明大表盘的读数应读大于30s;在秒表的大表盘上,1s之间有10个小格,所以一个小格代表0.1s,指针在37.5s处,所以秒针指示的时间为37.5s,则该秒表的读数为5min+37.5s=300s+37.5s=337.5s2.如图所示是测量小车沿斜面下滑的平均速度的实验.(1)该实验目的是练习用___和_____测平均速度.(2)该实验原理是_______(3)实验时应保持斜面的倾角较小,这是为了减小测量_____(填“路程”或“时间”)时造成的误差.(4)斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越_____(填“大”或“小”);小车由静止释放,通过相同路程,斜面的倾角越大,小车运动的平均速度越_____(填“大”或“小”).(5)实验时观察到,小车沿斜面顶端下滑到斜面底端的运动是____直线运动.(选填“匀速”或“变速”)(6)实验中测得路程s1上的平均速度为v1,路程s2上的平均速度为v2,路程s3上的平均速度为v3.那么,v1、v2、v3的大小关系是_______.(选填>、<、=)【来源】2019年广东省深圳市育才第二中学中考一模物理试题【答案】刻度尺秒表v=st时间大大变速<【解析】【分析】(1)公式v=st既能用于匀速直线运动求速度,又能用于变速直线运动求平均速度;实验中要用刻度尺测量路程,用秒表测量时间.(2)若要计时方便,应使所用的时间长些.(3)斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越大.【详解】(1)平均速度是指某段时间内的路程与这段时间的比值,要测出速度,应测量出小车运动的距离和时间,所以要用到刻度尺和秒表;故实验的目的是练习用刻度尺和秒表测平均速度(2)实验原理为v=st;(3)斜面坡度越大,小车沿斜面向下加速运动越快,过某点的时间会越短,计时会越困难,所以为使计时方便,减小测量时间的误差,斜面坡度应小些;(4) 斜面倾角不变时,小车由静止释放,小车通过的路程越长,其平均速度越大;小车由静止释放,通过相同路程,斜面的倾角越大,小车运动的平均速度越大;(5)实验时观察到,小车沿斜面顶端下滑到斜面底端的速度越来越大,故是变速直线运动.(6)由于小车在下滑过程中做加速运动,所以上半段的平均速度最小,下半段的平均速度最大,全程的平均速度居中,因此v2<v3.3.在“探究纸锥下落的快慢”的活动中,小明制作了一个直径8.0cm的纸锥,某次实验用频闪照相机拍摄得到如图所示的照片,已知:频闪照相机每隔0.25s曝光一次,照片中纸锥的直径是0.8cm,照片中A到G的长度L=8.4cm。

2021年全国大学生物理实验竞赛(创新)命题类题目

2021年全国大学生物理实验竞赛(创新)命题类题目

2021年全国大学生物理实验竞赛(创新)命题类题目一、实验题目题目1:虹与霓设计与再现目的1)观测虹与霓的光学现象2)研究虹与霓特性及其影响因素3)制作虹与霓的实验研究装置要求1)设计实验方案(含原理)2)搭建研究虹与霓的实验装置3)讨论相关实验参数题目2:粘滞系数测量目的1)观测流体的粘滞现象2)研究流体粘滞特性及其影响因素3)测量流体粘滞系数要求1)设计实验方案(含原理)2)制作一个实验装置3)给出实验结果并讨论测量精度和不确定度题目3:随机目的1)搭建实验装置,展示某一个随机物理现象2)研究该随机物理现象的内在规律3)量化描述该随机物理过程要求1)设计实验方案(含原理)2)制作一个实验装置3)给出实验结果并讨论测量精度和不确定度题目4:热变形目的1)研究某一物质的热变形特性2)制作一个利用该物质热变形特性的实际应用装置要求1)设计实验方案(含原理)2)测量并描述热变形特性3)制作一个热变形应用装置并讨论相关指标题目5:磁场目的1) 搭建能够产生磁场的实验装置,并对磁场进行测量表征2) 制作一个利用磁场特性的实际应用装置或实验研究装置要求1) 设计实验方案(含原理)2) 测量并描述磁场3) 制作一个利用磁场特性的实验研究或应用装置并讨论相关指标二、考核方式(规范)1、文档含研究报告、PPT 和介绍视频等,主要包括以下内容:1)描述对题意的理解,目标定位2) 实验原理和设计方案(理论和实验模型)3) 装置的设计(含系统误差分析)4)装置的实现5) 实验数据测量与分析6) 性能指标(包括测量范围、精确度、响应时间等)7) 创新点8)结论与展望9)参考文献2、实物装置1) 规格:尺寸、重量2) 成本3) 使用条件及配套要求2021年全国大学生物理实验竞赛(创新)工作委员会2021年3月21日。

西安交大大物仿真实验

西安交大大物仿真实验

大物仿真实验报告班级:****学号:****姓名:****刚体的转动惯量一实验目的1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二实验原理1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:M = Iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg –t=ma,在t时间内下落的高度为h=at2/2。

刚体受到张力的力矩为T r和轴摩擦力力矩M f。

由转动定律可得到刚体的转动运动方程:T r - M f =Iβ。

绳与塔轮间无相对滑动时有a =rβ,上述四个方程得到:m(g - a)r - M f = 2hI/rt2 (2)M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式: mgr = 2hI/rt2 (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:M = K1/ t2 (4)式中K1 = 2hI/gr2为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/gr2求得刚体的I。

西安交大版大学物理上学习指导作业及选择题答案参考答案

西安交大版大学物理上学习指导作业及选择题答案参考答案

西安交⼤版⼤学物理上学习指导作业及选择题答案参考答案第⼀章质点运动学第⼆章运动与⼒第三章动量与⾓动量- 1 -第四章功和能第五章刚体的转动第六章狭义相对论基础- 2 -第七章振动第⼋章波动- 3 -第九章温度和⽓体动理论第⼗章热⼒学第⼀定律- 4 -- 5 -第⼗⼀章热⼒学第⼆定律第⼀章质点运动学课后作业1、⼀质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=?==v v 2分- 6 -()x x xd 62d 020+=v v v 2分()2 213xx +=v 1分2、⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020=x 2= t 3 /3+x 0 (SI) 2分3、⼀质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是⼤于零的常量,求从0=t 开始到切向加速度与法向加速度⼤⼩相等时所经历的时间.- 7 -解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所⽰,质点P 在⽔平⾯内沿⼀半径为R =2 m 的圆轨道转动.转动的⾓速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的⼤⼩.- 8 -解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、⼀敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地⾯h =10 m 时,⼀⼩孩竖直向上抛出⼀球.球相对于电梯初速率200=v m/s .试问:(1) 从地⾯算起,球能达到的最⼤⾼度为多⼤? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地⾯的初速度=+='v v v 030 m/s 1分抛出后上升⾼度 9.4522='=gh v m/s 1分- 9 -离地⾯⾼度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升⾼度=球上升⾼度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离⽔⾯⾼h ⽶的岸上,有⼈⽤绳⼦拉船靠岸,船在离岸S 处,如图所⽰.当⼈以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的⼤⼩.解:设⼈到船之间绳的长度为l ,此时绳与⽔⾯成θ⾓,由图可知222s h l +=将上式对时间t 求导,得题1-4图tss t l ld d 2d d 2=- 10 -根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即θcos d d d d 00v v s l t l s l t s v ==-=-=船或 sv s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船- 11 -第⼆章运动与⼒课后作业1、⼀⼈在平地上拉⼀个质量为M 的⽊箱匀速前进,如图. ⽊箱与地⾯间的摩擦系数µ=0.6.设此⼈前进时,肩上绳的⽀撑点距地⾯⾼度为h =1.5 m ,不计箱⾼,问绳长l 为多长时最省⼒?解:设绳⼦与⽔平⽅向的夹⾓为θ,则l h /sin =θ.⽊箱受⼒如图所⽰,匀速前进时, 拉⼒为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =µN得θµθµs i n c o s +=MgF 2分- 12 -令0)s i n (c o s )c o s s i n (d d 2=++--=θµθθµθµθMg F ∴ 6.0tg ==µθ,637530'''?=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省⼒.2、⼀质量为60 kg 的⼈,站在质量为30 kg 的底板上,⽤绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳⼦不可伸长.欲使⼈和底板能以1 m/s 2的加速度上升,⼈对绳⼦的拉⼒T 2多⼤?⼈对底板的压⼒多⼤? (取g =10 m/s 2)N- 13 -解:⼈受⼒如图(1) 图2分a m g m N T 112=-+ 1分底板受⼒如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分3、⼀条轻绳跨过⼀轻滑轮(滑轮与轴间摩擦可忽略),在绳的⼀端挂⼀质量为m 1的物体,在另⼀侧有⼀质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地⾯的加速度各是多少?环与绳间的摩擦⼒多⼤?- 14 -解:因绳⼦质量不计,所以环受到的摩擦⼒在数值上等于绳⼦张⼒T .设m 2相对地⾯的加速度为2a ',取向上为正;m 1相对地⾯的加速度为a 1(即绳⼦的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T =-2分 212a a a -=' 2分解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分- 15 -4、⼀条质量分布均匀的绳⼦,质量为M 、长度为L ,⼀端拴在竖直转轴OO ′上,并以恒定⾓速度ω在⽔平⾯上旋转.设转动过程中绳⼦始终伸直不打弯,且忽略重⼒,求距转轴为r 处绳中的张⼒T ( r ).解:取距转轴为r 处,长为d r 的⼩段绳⼦,其质量为 ( M /L ) d r . (取元,画元的受⼒图) 2分由于绳⼦作圆周运动,所以⼩段绳⼦有径向加速度,由⽜顿定律得:T ( r )-T ( r + d r ) = ( M / L ) d r r ω2 令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 4分由于绳⼦的末端是⾃由端 T (L ) = 0 1分有r r L M T Lrr T d )/(d 2)(??-=ω∴ )2/()()(222L r L M r T -=ω 3分O- 16 -第三章动量与⾓动量课后作业1、如图,⽤传送带A 输送煤粉,料⽃⼝在A 上⽅⾼h =0.5 m 处,煤粉⾃料⽃⼝⾃由落在A 上.设料⽃⼝连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的⽔平速度匀速向右移动.求装煤的过程中,煤粉对A 的作⽤⼒的⼤⼩和⽅向.(不计相对传送带静⽌的煤粉质重)解:煤粉⾃料⽃⼝下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作⽤的?t 时间内,落于传送带上的煤粉质量为 t q m m ?=?1分设A 对煤粉的平均作⽤⼒为f,由动量定理写分量式:0-?=?v m t f x 1分)(00v m t f y ?--=? 1分- 17 -将 t q m m ?=?代⼊得 v m x q f =, 0v m y q f = ∴ 14922=+=y x f f f N 2分 f与x 轴正向夹⾓为α = arctg (f x / f y ) = 57.4° 1分由⽜顿第三定律煤粉对A 的作⽤⼒f ′= f = 149 N ,⽅向与图中f相反.2分2、质量为1 kg 的物体,它与⽔平桌⾯间的摩擦系数µ = 0.2 .现对物体施以F = 10t (SI)的⼒,(t 表⽰时刻),⼒的⽅向保持⼀定,如图所⽰.如t = 0时物体静⽌,则t = 3 s 时它的速度⼤⼩v 为多少?解:由题给条件可知物体与桌⾯间的正压⼒mg F N +?=30sin 1分物体要有加速度必须 N F µ≥?30cos 2分即 mg t µµ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ?-?=tt t N F I 0d )30cos (µ- 18 -)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的⼤⼩为 I m =v速度的⼤⼩为 8.28==mIv m/s 2分3、⼀炮弹发射后在其运⾏轨道上的最⾼点h =19.6 m 处炸裂成质量相等的两块.其中⼀块在爆炸后1秒钟落到爆炸点正下⽅的地⾯上.设此处与发射点的距离S 1=1000 m ,问另⼀块落地点与发射地点间的距离是多少?(空⽓阻⼒不计,g =9.8 m/s 2)解:因第⼀块爆炸后落在其正下⽅的地⾯上,说明它的速度⽅向是沿竖直⽅向的.利⽤ 2t g t h '+'=211v ,式中t '为第⼀块在爆炸后落到地⾯的时间.可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最⾼点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ②由①、②得 t =2 s , v x =500 m/s 2分- 19 -以2v表⽰爆炸后第⼆块的速度,则爆炸时的动量守恒关系如图所⽰.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去)故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,⽤⼀根长为l =1.25 m 的细绳悬挂在天花板上.今有⼀质量为m =10 g 的⼦弹。

西安交通大学物理实验报告

西安交通大学物理实验报告

西安交通大学物理仿真实验实验报告气垫导轨上的直线运动实验的目的:利用气垫技术精确的测定物体的平均速度、瞬时速度、加速度以当地的重力加速度,通过物体沿斜面自由下滑运动来研究匀变速运动的规律和验证牛顿第二定律。

实验原理:1 .平均速度和瞬时速度的测量做直线运动的物体在时间内的位移为,则物体在时间内的平均速度为 ts v ∆∆= (1) 当时,平均速度趋近于一个极限,即物体在该点的瞬时速度。

我们用来表示瞬时速度t s v t ∆∆=→∆0limt(2)实验上直接用上式测量某点的瞬时速度是很困难的,一般在一定误差范围内,用极短的内的平均速度代替瞬时速度。

2 .匀速直线运动若滑块受一恒力,它将做匀变速直线运动,可采用在导轨一端加一滑轮,通过滑轮旋一重物在滑块上,也可以把气垫导轨一端垫高成一斜面来实现。

采用前者可改变外力,不但可测得加速度,还可以验证牛顿第二定律。

采用后者,因在测量过程中受外界干扰较小,测量误差较小,在测量加速度的基础上,还可以测量当地的重力加速度。

匀变速运动方程如下:at v v +=0 (3)2021at t v s +=(4)as v v 2202+=(5)在斜面上物体从同一位置由静止开始下滑,若测得不同位置处的速度......,,321v v v 为相应的时间......,,321t t t ,以t 为横坐标,为v 纵坐标作图,如果图线是一条直线,证明物体作匀加速直线运动,图线的斜率为加速度a, 截距为t v 。

同样把......,,321v v v 对应处的测出,作t t s -图和s v -2图,若图线是直线,则物体作匀加速直线运动,斜率分别为a 21和a 2,截距分别为a v 和20v 。

3. 重力加速度的测定如图1所时,h 为垫块的高度,L 为斜面长,滑块沿斜面下滑的加速度为L hg g a ==θsin (6)L h a g = (7)4. 验证牛顿第二定律设运动物体的总质量为 M ,作用力为 F ,假设其他耗散力如摩擦力、空气阻力、气垫粘滞力可忽略不计,这时牛顿第二定律可表示为Ma F = (8)F 不变,改变 M, F/a应为一常量,即F增大,a同时增大;若保持MaF减小,a同时减小。

西安交通大学第二附属中学南校区物理物体的运动实验综合测试卷(word含答案)

西安交通大学第二附属中学南校区物理物体的运动实验综合测试卷(word含答案)

一、初二物理 物体的运动实验易错压轴题(难)1.探究小球在斜面上的运动规律如图甲所示,小球以初速度2.0m/s 从A 点沿着足够长的光滑斜面滑下,它在斜面上的速度v 随时间t 均匀变化。

实验数据如下表:t /s0 0.1 0.2 0.3 0.4 0.5 0.6 v /(m ⋅s -1) 2.0 2.5 3.0 3.5 4.0 4.5 5.0(1)小球在斜面上做______运动(选填“匀速”或“变速”);(2)报据表中数据,在图乙中描点并画出小球的v-t 图象______;(3)小球的运动速度v 与时间t 的关系式为v = ______;(4)如图丙所示,以速度v ₁做匀速直线运动的物体在时间t ₁内通过的路程是s ₁=v ₁t ₁,它可以用图线与时间轴所围矩形(阴影部分)的面积表示。

同样,图乙中图线与时间轴所围图形的面积,也能表示这个小球在相应时间t 内通过的路程s 。

上述小球从A 点沿光滑斜面滑下,在时间t 内通过路程的表达式为s =______。

【来源】山东省青岛市市北区2019-2020学年八年级(上)期中物理试题【答案】变速 25t + 22 2.5t t +【解析】【分析】【详解】(1)[1]由表中数据可知,随时间小球的速度变大,则小球在斜面上做变速运动。

(2)[2]报据表中数据,在图乙中描点画出小球的v-t 图象如图所示:(3)[3]由图像可知,小球的运动速度与时间成一次函数关系,且小球的初速度为2m/s ,则运动速度v 与时间t 的关系式为03m/s 2m/s 250.6sv v v t t t t ∆=+=+=+∆ (4)[4]小球从A 点沿光滑斜面滑下,图线与时间轴所围图形的面积为路程,则在时间t 内通过路程的表达式为20()(225)2 2.522v v t t t s t t +++===+2.在“测量物体运动的平均速度”实验中。

(1)如图甲所示,小球从高处沿斜面由静止开始滚下,频闪照相机记录了小球在相同时间内通过的路程。

新版西安交大大物仿真实验报告1-新版-精选.pdf

新版西安交大大物仿真实验报告1-新版-精选.pdf

大学物理仿真实验---热敏电阻温度特性曲线实验实验名称:热敏电阻温度特性曲线实验一.实验简介:热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。

与一般常用的金属电阻相比,它有大得多的电阻温度系数值。

热敏电阻作为温度传感器具有用料省、成本低、体积小等优点,可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。

二.实验目的:了解热敏电阻的电阻—温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。

三.实验原理:半导体热敏电阻的电阻—温度特性热敏电阻的电阻值与温度的关系为:A,B是与半导体材料有关的常数,T为绝对温度,根据定义,电阻温度系数为:R t是在温度为t时的电阻值。

惠斯通电桥的工作原理如图所示:四个电阻R0,R1,R2,Rx组成一个四边形,即电桥的四个臂,其中Rx就是待测电阻。

在四边形的一对对角A和C之间连接电源,而在另一对对角B和D之间接入检流计G。

当B和D两点电位相等时,G中无电流通过,电桥便达到了平衡。

平衡时必有Rx = (R1/R2)·R0,(R1/R2)和R0都已知,Rx即可求出。

电桥灵敏度的定义为:式中ΔRx指的是在电桥平衡后Rx的微小改变量,Δn越大,说明电桥灵敏度越高。

实验仪器四.实验装置:直流单臂电桥、检流计、待测热敏电阻和温度计、调压器。

五.实验内容:从室温开始,每隔5°C测量一次Rt,直到85°C。

撤去电炉,使水慢慢冷却,测量降温过程中,各对应温度点的Rt。

求升温和降温时的各Rt的平均值,然后绘制出热敏电阻的Rt-t特性曲线。

求出t=50°C点的电阻温度系数。

作ln Rt ~ (1 / T)曲线,时)。

确定式(1)中常数A和B,再由(2)式求α (50°C六.实验所测数据:?不同T所对应的Rt 值????R t均值,1 / T,及ln R t的值七.数据处理:1.热敏电阻的R t-t特性曲线数据点连线作图在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=(500-0)/(0-85)=5.88 由由此计算出:α=-0.031二次拟合的曲线:在图上找到T=50所对应的点做切线,可以求得切线的斜率:K=(495-0)/(0-84)=5.89由由此计算出:α=--0.030.2.ln R t -- (1 / T)曲线仿真实验画出图线如下图所示但计算机仿真实验画出的曲线图中A的值计算有误,正确的A=0.0153.将图修正后如下:A=0.0153,B=3047.5383由此写出R t= 0.0153由此当T=50时,α=-0.030八、思考题1. 如何提高电桥的灵敏度?答:电桥的灵敏度和电源电压,检流计的灵敏度成正比,因此提高电源电压,检流计的灵敏度能提高电桥灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

创新物理实验综述报告硕4006班周阳31140080031.磁共振系列实验1.1词条解释外文名:Spin Magnetic Resonance Phenomenon磁共振指的是自旋磁共振(spin magnetic resonance)现象。

其意义上较广,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。

此外,人们日常生活中常说的磁共振,是指磁共振成像(Magnetic Resonance Imaging,MRI),其是利用核磁共振现象制成的一类用于医学检查的成像设备。

1.2发展简史磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。

1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。

1950年在室温附近观测到固体Cr2O3的反铁磁共振。

1953年在半导体硅和锗中观测到电子和空穴的回旋共振。

1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。

随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。

1956年开始研究两种磁共振耦合的磁双共振现象。

这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。

例如顺磁固体量子放大器,各种铁氧体微波器件,核磁共振谱分析技术和核磁共振成像技术及利用磁共振方法对顺磁晶体的晶场和能级结构、半导体的能带结构和生物分子结构等的研究。

原子核和基本粒子的自旋、磁矩参数的测定也是以各种磁共振原理为基础发展起来的。

磁共振成像技术由于其无辐射、分辨率高等优点被广泛的应用于临床医学与医学研究。

一些先进的设备制造商与研究人员一起,不断优化磁共振扫描仪的性能、开发新的组件。

例如:德国西门子公司的1.5T 超导磁共振扫描仪具有神经成像组件、血管成像组件、心脏成像组件、体部成像组件、肿瘤程序组件、骨关节及儿童成像组件等。

其具有高分辨率、磁场均匀、扫描速度快、噪声相对较小、多方位成像等优点。

1.3基本原理磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。

磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。

此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。

由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。

但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。

如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω=ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。

这一现象即为磁共振。

磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g为朗德因子,μ为玻尔磁子,e和me为电子的电荷和质量。

外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。

如果等于塞曼能级裂距,啚ω=gμBB=啚γB,即ω=γB(啚=h/2π,h为普朗克常数),则自旋系统将吸收这能量从低能级状态跃迁到高能级状态(激发态),这称为磁塞曼能级间的共振跃迁。

量子描述的磁共振条件ω=γB,与唯象描述的结果相同。

当M是顺磁体中的原子(离子)磁矩时,这种磁共振就是顺磁共振。

当M是铁磁体中的磁化强度(单位体积中的磁矩)时,这种磁共振就是铁磁共振。

当M=Mi是亚铁磁体或反铁磁体中第i个磁亚点阵的磁化强度时,这种磁共振就是由 i个耦合的磁亚点阵系统产生的亚铁磁共振或反铁磁共振。

当M是物质中的核磁矩时,就是核磁共振。

这几种磁共振都是由自旋磁矩产生的,可以统一地用经典唯象的旋磁方程dM/dt=γMBsinθ[相应的矢量方程为d M/dt=γ(M×B]来描述。

回旋共振带电粒子在恒定磁场中产生的共振现象。

设电荷为q、质量为m的带电粒子在恒定磁场B中运动,其运动速度为v。

当磁场B与速度v相互垂直时,则带电粒子会受到磁场产生的洛伦兹力作用,使带电粒子以速度v绕着磁场B旋转,旋转的角频率称为回旋角频率。

如果在垂直B的平面内加上高频电场E(ω)(ω为电场的角频率),并且ω=ωc,则这带电粒子将周期性地受到电场E(ω)的加速作用。

因为这与回旋加速器的作用相似,故称回旋共振。

又因为不加高频电场时,这与抗磁性相类似,故亦称抗磁共振。

当v垂直于B时,描述这种共振运动的方程是d(mv)/dt=q(vB),若用量子力学图像描述,可以把回旋共振看作是高频电场引起带电粒子运动状态在磁场中产生的朗道能级间的跃迁,满足共振跃迁的条件是:ω=ωc。

各种固体磁共振在恒定磁场作用下的平衡状态,与在恒定磁场和高频磁场(回旋共振时为高频电场)同时作用下的平衡状态之间,一般存在着固体内部自旋(磁矩)系统(回旋共振时为载流子系统)本身及其与点阵系统间的能量转移和重新分布的过程,称为磁共振弛豫过程,简称磁弛豫。

在自旋磁共振的情形,磁弛豫包括自旋(磁矩)系统内的自旋-自旋(S-S)弛豫和自旋系统与点阵系统间的自旋-点阵(S-L)弛豫。

从一种平衡态到另一种平衡态的弛豫过程所经历的时间称为弛豫时间,它是能量转移速率或损耗速率的量度。

共振线宽表示能级宽度,弛豫时间表示该能态寿命。

磁共振线宽与磁弛豫过程(时间)有密切的联系,按照测不准原理,能级宽度与能态寿命的乘积为常数,即共振线宽与弛豫时间(能量转移速度)成反比。

因此,磁共振是研究磁弛豫过程和磁损耗机制的一种重要方法。

1.4试验方法通常,当外加恒定磁场Be在0.1~1.0T(材料的内磁场BBe)时,各种与电子有关的磁共振频率都在微波频段,而核磁共振频率则在射频频段。

这是因为原子核质量与电子质量之比至少1836倍的缘故。

虽然观测这两类磁共振分别应用微波技术和无线电射频技术,但其实验装置的组成与测量原理却是类似的。

磁共振实验装置由微波(或射频)源、共振系统、磁场系统和检测系统组成,如图3。

微波(或射频)源产生一定角频率ω(或频率扫描)的电磁振荡,送到装有样品的共振系统(共振腔或共振线圈),共振系统中的高频磁场bω[回旋共振时为电场E(ω)]与磁场系统产生的恒定磁场B 垂直,当保持源的频率不变而改变恒定磁场强度(磁场扫描),或保持恒定磁场强度不变而改变源的频率(频率扫描),达到共振条件ω=γH 时,检测系统便可测得样品对高频电磁能量的吸收Pa与磁场B(或频率ω)的关系,即共振吸收曲线,如图4a。

在共振信号微弱(例如核磁共振或顺磁共振)的情况下,可以采用调制技术,测量共振吸收微分曲线,以提高检测灵敏度。

磁共振的重要参数是发生最大共振吸收的共振磁场Bo、共振线宽(相应于最大共振吸收一半的磁场间隔)ΔB、共振吸收强度(最大吸收P或共振曲线面积)和共振曲线形状(包括对称性和精细结构等)。

当共振曲线为洛伦兹线型时,共振微分曲线的极值间隔ΔBpp与共振线宽ΔB具有简单的关系:。

在采用频率扫描代替磁场扫描时,相应的共振曲线和参数中的磁场B都换为角频率ω,如共振频率ωo,共振线宽Δω等。

在特殊情况下,还可以采用脉冲源、傅里叶变换、多次累积等技术来提高灵敏度或分辨率等。

2.超声波2.1词条解释外文名:ultrasonic (waves)超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。

在医学、军事、工业、农业上有很多的应用。

超声波因其频率下限大于人的听觉上限而得名。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹(Hz)。

我们人类耳朵能听到的声波频率为20Hz-20000Hz。

因此,我们把频率高于20000赫兹的声波称为“超声波”。

通常用于医学诊断的超声波频率为1兆赫兹-30兆赫兹。

理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在中国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度,这就是超声波加湿器的原理。

如咽喉炎、气管炎等疾病,很难利用血流使药物到达患病的部位,利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效。

利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎,从而减缓病痛,达到治愈的目的。

超声波在医学方面应用非常广泛,可以对物品进行杀菌消毒。

2.2产生原理声波是物体机械振动状态(或能量)的传播形式。

超声波是指振动频率大于20000Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的一般上限(20000Hz),人们将这种听不见的声波叫做超声波。

由于其频率高,因而具有许多特点:首先是功率大,其能量比一般声波大得多,因而可以用来切削、焊接、钻孔等。

再者由于它频率高,波长短,衍射不严重,具有良好的定向性,工业与医学上常用超声波进行超声探测。

[1] 超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,1兆Hz=10^6Hz,即每秒振动100万次,可闻波的频率在16-20000HZ 之间)。

超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律没有本质上的区别。

但是超声波的波长很短,只有几厘米,甚至千分之几毫米。

与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的波长很短,通常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,该特性就越显著。

功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。

声波功率就是表示声波做功快慢的物理量。

在相同强度下,声波的频率越高,它所具有的功率就越大。

由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。

空化作用──当超声波在介质的传播过程中,存在一个正负压强的交变周期,在正压相位时,超声波对介质分子挤压,改变介质原来的密度,使其增大;在负压相位时,使介质分子稀疏,进一步离散,介质的密度减小,当用足够大振幅的超声波作用于液体介质时,介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡。

相关文档
最新文档