碱裂解法提质粒原理详解
碱裂解发制备质粒DNA原理

碱裂解发制备质粒DNA原理碱裂解发制备质粒DNA原理试验原理:碱裂解法是较常用的提取的方法。
其优点是收获率高,适于多数的菌株,所得产物经纯化后可满足多数的DNA重组操作。
十二烷基磺酸钠进行质粒的小量制备。
十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性(NaOH 对细胞的裂解作用强于SDS)。
用SDS处理细菌后,会导致细菌细胞破裂,释放出质粒DNA和染色体DNA,两种DNA在强碱环境都会变性。
由于质粒和主染色体的拓扑结构不同,变性时前者虽然两条链分离,却仍然缠绕在一起不分开;但后者完全变性分甚至出现断裂,因此,当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值恢复较低的近中性水平时,质粒的两条小分子单链可迅速复性恢复双链结构,但是主染色体DNA则难以复性。
在离心时,大部分主染色体与细胞碎片,杂质等缠绕一起被沉淀,而可溶性的质粒DNA留在上清夜中。
再由异丙醇沉淀、乙醇洗涤,可得到纯化的质粒DNA。
碱裂解法提取的质粒DNA可直接用于酶切、pcr扩增、银染序列分析等。
各试剂的作用:1、溶液I:pH8.0 GET缓冲液(50mmol葡萄糖,10mmol/LEDTA,25mmol/L Tris-HCl);溶液I可成批配制,在10 lbf/in2(6.895x104Pa)高压下蒸气灭菌15min,贮存于4℃。
葡萄糖的作用是使悬浮后的大肠杆菌不会很快沉积到管子的底部,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。
EDTA 是Ca2+和Mg2+等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉。
从而起到抑制DNase对DNA的降解和抑制微生物生长的作用。
2、溶液Ⅱ:0.2mol/LNaOH(内含1%的SDS),这个用的时候需现配。
要新配置溶液Ⅱ是为了避免NaOH接触空气中的CO2而减弱了碱性。
NaOH是最佳溶解细胞的试剂。
质粒DNA的提取-碱裂解法实验原理及步骤

实验二质粒DNA的提取-碱裂解法一、实验原理细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。
各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
一般分离质粒DNA的方法都包括3个步骤:①培养细菌,使质粒DNA大量扩增;②收集和裂解细菌;③分离和纯化质粒DNA。
分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。
在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。
本实验介绍碱裂解法提取质粒DNA。
碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。
在pH值介于12.0-12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。
当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,因为共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA 的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们相互缠绕形成不溶性网状结构,而复性的质粒DNA恢复原来构型,保持可溶性状态。
通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去,最后用酚氯仿抽提纯化上清液中的质粒DNA。
二、仪器及试剂1.仪器及耗材:37℃恒温摇床、冷冻离心机、台式离心机、微量移液器、50 ml离心管、1.5 ml离心管管、枪头、各种规格的量筒、接种环、试剂瓶、100 l或者250 ml三角瓶、玻棒等。
2.试剂及配制:LB培养液的配制:酵母浸提物 5.0 g;胰蛋白胨 10.0 g;NaCl 10.0 g;依次称量后加入800 ml去离子水后搅拌至完全溶解,用5 mol/L NaOH (约0.2 ml)调节培养液的pH值至7.0。
试验一碱裂解法抽提质粒DNA

3 质粒DNA的进一步纯化
加入TE使DNA溶液为200ul,加入等体积的酚/氯仿,充 分振荡:会分三层 12000rpm,离心5分钟,吸取上清液 加入等体积的氯仿, 12000rpm,离心5分钟,取上清 加入1/10体积的3MNaAc,加2倍体积的预冷的无水乙醇, 混匀。 置于-70℃冰箱约10min以上或者-20℃冰箱30min至数个 小时
三、材料、试剂及仪器
1 材料: (1)菌种E.coliDH 10B含质粒pSK (2)菌种E.coliDH 10B含质粒pMP3 2 试剂: LB培养基( 固体和液体);氨苄青霉素 (Amp,100mg/ml);20﹪SDS;溶液Ⅰ; 溶液Ⅱ (最好现配现用);溶液Ⅲ(-20℃预冷); 4N NaOH; 3MNaAc(PH5.2);无水乙醇; TE缓冲 液(PH8.0); RNaseA(10mg/ml); 70﹪乙醇;饱 和酚/氯仿/异戊醇(25:24:1)
2.点样
1xTE或ddH2O:7μL 10ul混合液 10xloading buffer : 1ul 样品:2 ul 混合后点入点样孔中。其中最左边的两个孔点5ulMarker3和 DS2000作为分子量标准。 3.电泳
打开电源开关,调节电压至3-5v/cm即100V,可见溴酚蓝 条带由负极向正极移动,约一小时可观察
12000rpm离心15分钟(4℃),倒掉酒精,离心几秒, 用移液枪尽可能除去酒精 用0.5ml70 %酒精洗DNA沉淀一次,离心2分钟,倒掉酒 精 离心几秒,用移液枪尽可能除去酒精,风干。 加30ulTE溶解DNA沉淀(TE不加RNase)
五、实验注意事项
1 挑菌落应挑单菌落。 可用牙签挑取,也可用tip头挑取。市场上买的 牙签上有防腐剂,应用沸水煮过之后,烘干用 2 细菌培养过程应注意保持细菌的通气性: (1)培养基的体积不能占培养管的体积太多 (2)培养管的体积不用盖太紧 (3)培养管倾斜培养:可增大细菌与氧气接触 面积 (4)转速为200rmp:快一点的转速有利于保持 其的通气性
碱裂解发制备质粒DNA原理

碱裂解发制备质粒DNA原理碱裂解法是一种常用的制备质粒DNA的方法,其原理是通过使用碱性溶液将细菌细胞膜和核酸中的蛋白质进行裂解,从而分离出质粒DNA。
下面将详细介绍碱裂解法的原理和步骤。
碱裂解法的原理是利用强碱溶液(如NaOH或KOH)对细菌细胞进行裂解,同时可去除细胞膜及其上的蛋白质,使质粒DNA从细胞内部释放出来。
此外,碱性环境可以使DNA表现为单链结构,这使得DNA与其他形式的核酸(如RNA和DNA-蛋白复合物)有所区别,有助于后续的提取和纯化。
制备质粒DNA的碱裂解法的步骤如下:1.菌液培养:选取含有质粒的细菌菌株,在适宜的培养基中培养至合适的生长期。
2.收获细菌细胞:采用离心等方法将细菌细胞从菌液中收集。
通常使用蒸馏水进行细菌菌液的稀释,以确保细菌能够在蒸馏水中悬浮均匀。
3.清洗细菌细胞:使用理化方法(如洗涤剂、EDTA、乙醇等)将细菌细胞洗净。
这一步骤的目的是去除掉附着在细菌细胞表面的杂质,减少对后续步骤的影响。
4.裂解细菌细胞:将清洗后的细菌细胞悬浮在碱性溶液(如0.2MNaOH)中,使其完全裂解。
碱性溶液的作用是破坏菌细胞膜结构,去除蛋白质,并使DNA变为单链结构。
5. 中和反应:在细菌细胞裂解后,添加中和剂(如2 M Tris-HCl, pH 7.4),将溶液的pH值迅速调整到酸性,以中和碱性溶液中的氢氧根离子。
6.沉淀DNA:通过离心将细菌细胞碎片和其他残余物沉淀下来,将上清液(含有质粒DNA)收集。
7.聚集DNA:通过旋转浓缩、加入盐类或乙醇等方法,将质粒DNA聚集成颗粒状沉淀。
8. 洗涤和纯化:使用缓冲液(如低浓度Tris-HCl或盐溶液)洗涤和纯化质粒DNA,去除残余的盐和杂质。
9.确定DNA浓度和纯度:通过分光光度法或凝胶电泳等方法,测定质粒DNA的浓度和纯度,以确定提取的质粒DNA是否适合下游实验。
总之,碱裂解法通过利用强碱溶液裂解细菌细胞,去除蛋白质,使质粒DNA释放出来,并通过离心、沉淀、洗涤和纯化等步骤,得到高纯度的质粒DNA。
碱裂解法提取质粒原理和注意事项

碱裂解法提取质粒原理和注意事项碱裂解法是一种用于提取质粒的常用方法,通过在碱性条件下使细菌细胞裂解,进而释放出质粒。
碱裂解法的原理是利用质粒与细菌细胞核酸的不同碱溶解性,使质粒保留在溶液中,而细菌细胞核酸被沉淀下来。
本文将详细介绍碱裂解法的原理和注意事项。
碱裂解法的原理:1.细菌细胞的预处理:首先,将含有质粒的细菌菌落接种到LB(琼脂)培养基中,经过适当时长的培养,使细菌菌落扩大到较大体积。
2.收获细菌细胞:将培养基中的细菌细胞收获下来,一般通过离心方法将菌液沉淀。
3.细菌细胞裂解:将细菌细胞沉淀后,将其重悬到高浓度的碱溶液中,使细菌细胞在碱性条件下裂解。
4.分离核酸:碱条件下,质粒DNA和线粒体DNA往往会溶于溶液中,而细菌细胞的染色体DNA不溶于溶液中,并随着碱度增加逐渐沉淀。
通过快速离心,将细菌细胞染色体DNA沉淀,而质粒DNA留在上清液中。
5.提取质粒:将上清液取出,通过乙醇沉淀方法使质粒DNA沉淀下来,通过离心收获质粒,即可得到纯化后的质粒DNA。
注意事项:1.使用无菌操作:为保证实验的准确性和重复性,实验过程中必须严格遵守无菌操作的要求。
例如,使用无菌器皿和无菌操作工具,避免细菌污染。
2.注意细菌菌落的培养条件和时长:细菌菌落的培养条件和时长会对实验结果产生影响。
培养条件应符合细菌所需的培养基成分和培养温度,时长应确保细菌菌落予以充足的生长和扩大。
3.使用高浓度的碱溶液:为充分裂解细菌细胞,需要使用高浓度的碱溶液,通常为pH12的溶液。
4.快速离心:由于细菌细胞裂解后的溶液中可能含有许多细菌细胞碎片和核酸碎片,为避免这些碎片沉淀到上清液中,需要进行快速离心,在最短时间内将质粒DNA沉淀下来。
5.质粒的纯化:通过乙醇沉淀方法提取质粒时,需要仔细控制乙醇的用量和沉淀时间,以避免损失待提取的质粒DNA。
总结:碱裂解法是提取质粒DNA的常用方法之一,其原理是利用质粒DNA与细菌细胞染色体DNA在碱性条件下的不同溶解性,通过沉淀法分离出质粒DNA。
碱裂解法提取质粒

碱裂解法抽提质粒原理碱裂解法从大肠杆菌制备质粒是分子生物学研究的常规技术,以下碱裂解法制备质粒的原理。
碱法质粒抽提用到三种溶液,溶液I:50 mM葡萄糖、25 mM Tris-Cl 、10 mM EDTA,pH 8.0;溶液II:0.2 N NaOH、1% SDS;溶液III :3 M 醋酸钾、2 M 醋酸。
1、溶液I的作用对于任何生物化学反应,首先要控制好溶液的pH,因此选用适当浓度和适当pH值的Tris-Cl溶液。
加入的葡萄糖可以使悬浮后的大肠杆菌不会快速沉积到管子底部。
EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,可以抑制DNase的活性和微生物生长。
此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率。
2、溶液II的作用NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱后几乎在瞬间就会溶解,这是由于细胞膜发生了从bilayer (双层膜)结构向micelle(微囊)结构的相变化所导致。
SDS也呈碱性,但如果只用SDS,达不到彻底溶解细胞的作用,加入SDS主要为下一步做铺垫。
这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
3、溶液III的作用SDS在高盐浓度下发生沉淀,同时SDS能与蛋白质结合,平均两个氨基酸上结合一个SDS分子,所以沉淀也将溶液中的大部分蛋白质沉淀下来。
溶液中的K+置换了SDS中的Na+而形成了不溶性的PDS,高浓度的盐使沉淀更完全。
同时,由于基因组DNA很长,容易被PDS共沉淀。
2 M的醋酸可以中和NaOH,因为长时间的碱性条件会打断DNA。
基因组DNA一旦发生断裂,小于100 kb的片断,就不容易与PDS共沉淀。
所以碱处理的时间要短,而且不得激烈振荡,否则最后得到的质粒上会有大量的基因组DNA污染。
这一步操作混合均匀后在冰上放置,可以使PDS沉淀更充分。
碱裂解法提质粒原理详解

碱裂解法提质粒原理详解碱裂解法是一种常用的提取质粒的方法。
它利用高碱性溶液对细菌的细胞壁和膜进行破坏,释放出细胞内的质粒。
下面将详细介绍碱裂解法的原理及其步骤。
碱裂解法的原理基于细菌细胞壁和膜对碱性条件的敏感性,而质粒较为稳定,可以在高碱性溶液中存活。
在碱性条件下,细菌的细胞壁和膜会发生严重的破坏,释放细胞内的质粒。
此外,高温和刺激性离子(如氢氧根离子)也可以增加细胞壁和膜的破坏效果。
碱裂解法的步骤如下:1.首先,从含有目标质粒的培养基中取得细菌菌落,将菌落转移到含有适当抗生素的培养基中进行培养。
这是为了确保获得含有目标质粒的细菌。
2.将培养好的细菌转移到含有高盐浓度的溶液中。
高盐浓度可以破坏细菌细胞壁的结构,促进质粒的释放。
3.加入碱性溶液,通常使用0.2MNaOH或0.1MNaOH。
高碱性条件可以破坏细菌细胞膜,释放质粒。
此外,高温还可以增加细胞壁和膜的破坏效果。
4.在碱性条件下,轻轻搅拌混合物,以促进细胞壁和膜的破坏,并使质粒更易于释放。
5. 加入中和缓冲液(例如Tris-HCl),以中和溶液的pH值。
这是为了避免碱性条件对质粒产生不利影响。
6.将混合物进行离心,以分离细胞碎片和质粒。
离心过程中,较大的碎片会沉淀在离心管底部,而质粒会悬浮在上层液体中。
7.将上层液体转移到新的离心管中,并进行再次离心。
这是为了进一步净化质粒,去除可能残留的细胞碎片。
8.倒掉上清液,并用含有合适抗生素的培养基再次进行培养。
这是为了筛选出仍然带有目标质粒的细菌。
总的来说,碱裂解法通过破坏细菌的细胞壁和膜,释放出细胞内的质粒。
该方法简单、快速,并且适用于大多数质粒的提取。
然而,需要注意的是,碱裂解法也会破坏部分目标蛋白质的结构,因此在选择提取方法时需要综合考虑。
碱裂解法从大肠杆菌制备质粒详细原理

碱裂解法从大肠杆菌制备质粒碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。
每个曾经用碱法抽提过质粒朋友,希望你看本文后能有所收获。
为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。
让我们先来看看溶液I的作用。
任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
所以说溶液I中葡萄糖是可缺的。
那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10 mM 的ED TA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。
如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH 稀释制备0.4 N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从质粒提取谈起
(2009-12-22 11:18:37)
转载
标
分类:积累小常识
签:
杂
谈
从质粒提取谈起
为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM 葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M醋酸钾/ 2 M醋酸。
让我们先来看看溶液I的作用。
任何生物化学反应,首先要控制好溶液的p H,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。
那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。
因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。
所以说溶液I中葡萄糖是可缺的。
那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。
在溶液I中加入高达10 mM的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。
如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA.如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。
有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。
轮到溶液II了。
这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。
要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。
很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。
事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生
了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。
用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。
如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。
很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。
有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。
这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA 片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA 也会断裂。
基因组DNA的断裂会带来麻烦,后面我再详细说明。
每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。
最容易产生的误解是,当SDS碰到酸性后发生的沉淀。
如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。
大量沉淀的出现,显然与SDS的加入有关系。
如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。
既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。
因此高浓度的盐导致了SDS的沉淀。
但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。
这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potassium dodecylsulfate,PDS),而PDS是水不溶的,因此发生了沉淀。
如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS 中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。
大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。
这个过程不难想象,因为基因组DNA太长了,长长的DNA 自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。
那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。
基因组DNA一旦发生断裂,只要是50-100
kb大小的片断,就没有办法再被PDS共沉淀了。
所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。
很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。
NaOH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。
溶液III 加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。
不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。
这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。
酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),应此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。
至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。
回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。
这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。
高浓度的盐会水合大量的水分子,因此DNA分子之间就容易形成氢键而发生沉淀。
如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。
得到的质粒样品一般用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。
琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条
带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。
碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。
其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。
如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb的大肠杆菌基因组DNA的片断。
非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA 序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。
这里暂不深究。
想说的,终于说完了。
谢谢你的耐心。
留下一个思考题,为什么真核生物的基因组DNA不能用碱法抽提?。