碱裂解法原理

合集下载

碱裂解发制备质粒DNA原理

碱裂解发制备质粒DNA原理

碱裂解发制备质粒DNA原理碱裂解发制备质粒DNA原理试验原理:碱裂解法是较常用的提取的方法。

其优点是收获率高,适于多数的菌株,所得产物经纯化后可满足多数的DNA重组操作。

十二烷基磺酸钠进行质粒的小量制备。

十二烷基磺酸钠(SDS)是一种阴离子表面活性剂,它既能使细菌细胞裂解,又能使一些蛋白质变性(NaOH 对细胞的裂解作用强于SDS)。

用SDS处理细菌后,会导致细菌细胞破裂,释放出质粒DNA和染色体DNA,两种DNA在强碱环境都会变性。

由于质粒和主染色体的拓扑结构不同,变性时前者虽然两条链分离,却仍然缠绕在一起不分开;但后者完全变性分甚至出现断裂,因此,当加入pH4.8的酸性乙酸钾降低溶液pH值,使溶液pH值恢复较低的近中性水平时,质粒的两条小分子单链可迅速复性恢复双链结构,但是主染色体DNA则难以复性。

在离心时,大部分主染色体与细胞碎片,杂质等缠绕一起被沉淀,而可溶性的质粒DNA留在上清夜中。

再由异丙醇沉淀、乙醇洗涤,可得到纯化的质粒DNA。

碱裂解法提取的质粒DNA可直接用于酶切、pcr扩增、银染序列分析等。

各试剂的作用:1、溶液I:pH8.0 GET缓冲液(50mmol葡萄糖,10mmol/LEDTA,25mmol/L Tris-HCl);溶液I可成批配制,在10 lbf/in2(6.895x104Pa)高压下蒸气灭菌15min,贮存于4℃。

葡萄糖的作用是使悬浮后的大肠杆菌不会很快沉积到管子的底部,增加溶液的粘度,维持渗透压及防止DNA受机械剪切力作用而降解。

EDTA 是Ca2+和Mg2+等二价金属离子的螯合剂,在溶液I中加入EDTA,是要把大肠杆菌细胞中的二价金属离子都螯合掉。

从而起到抑制DNase对DNA的降解和抑制微生物生长的作用。

2、溶液Ⅱ:0.2mol/LNaOH(内含1%的SDS),这个用的时候需现配。

要新配置溶液Ⅱ是为了避免NaOH接触空气中的CO2而减弱了碱性。

NaOH是最佳溶解细胞的试剂。

SDS-碱裂解法原理

SDS-碱裂解法原理

碱裂解法质粒提取的原理碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。

下面是该法的提取原理:碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tris-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M 醋酸钾/ 2 M 醋酸。

溶液I的作用任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-Cl 溶液,是再自然不过的了。

那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

所以说溶液I中葡萄糖是可缺的。

那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。

在溶液I中加入高达10 mM 的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。

如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。

如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。

有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

溶液II的作用这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

质粒DNA的提取-碱裂解法实验原理及步骤

质粒DNA的提取-碱裂解法实验原理及步骤

实验二质粒DNA的提取-碱裂解法一、实验原理细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。

各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。

一般分离质粒DNA的方法都包括3个步骤:①培养细菌,使质粒DNA大量扩增;②收集和裂解细菌;③分离和纯化质粒DNA。

分离制备质粒DNA的方法很多,其中常用的方法有碱裂解法、煮沸法、SDS法、羟基磷灰石层析法等。

在实际操作中可以根据宿主菌株类型、质粒分子大小、碱基组成和结构等特点以及质粒DNA的用途进行选择。

本实验介绍碱裂解法提取质粒DNA。

碱裂解法提取质粒DNA是根据共价闭合环状质粒DNA和线性染色体DNA在拓扑学上的差异来分离质粒DNA。

在pH值介于12.0-12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。

当加入pH4.8乙酸钾高盐缓冲液恢复pH至中性时,因为共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA 的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们相互缠绕形成不溶性网状结构,而复性的质粒DNA恢复原来构型,保持可溶性状态。

通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去,最后用酚氯仿抽提纯化上清液中的质粒DNA。

二、仪器及试剂1.仪器及耗材:37℃恒温摇床、冷冻离心机、台式离心机、微量移液器、50 ml离心管、1.5 ml离心管管、枪头、各种规格的量筒、接种环、试剂瓶、100 l或者250 ml三角瓶、玻棒等。

2.试剂及配制:LB培养液的配制:酵母浸提物 5.0 g;胰蛋白胨 10.0 g;NaCl 10.0 g;依次称量后加入800 ml去离子水后搅拌至完全溶解,用5 mol/L NaOH (约0.2 ml)调节培养液的pH值至7.0。

实验一-碱裂解法提取质粒DNA

实验一-碱裂解法提取质粒DNA

实验一、碱裂解法提取质粒DNA及检测一、实验目的与原理简介实验背景:质粒DNA的提取是基因工程操作中常用的基本技术。

质粒作为载体应具备下列四个特点:①有足够的容纳目的基因的幅度,并且对于携带的目的基因能够借助载体的复制和调控系统得到忠实的复制与增殖。

②在非必要的DNA克隆区有多种限制性核酸内切酶的单一识别位点,易于基因片段与载体的连接、重组与筛选。

③与宿主细胞有相同一个或多个遗传表型(如抗药性、营养缺陷型或显色表型反应等)。

④拷贝数多,易于宿主细胞的DNA分开,便于分离提纯。

分离质粒DNA的方法包括三个基本步骤:培养细胞使质粒扩增;收集和裂解细菌;分离和纯化质粒DNA.实验原理:碱裂解法质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的的.在强碱性pH时,染色体线性DNA的氢键断裂,双螺旋结构解开而变性。

质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,调节pH值至中性时,变性的质粒DNA又恢复到原来的构型,而染色体DNA不能复性纠缠形成网状结构,经过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一直沉淀下来而被除去。

实验目的:提取基因工程中运载基因的载体,掌握最常用的提取质粒DNA的方法。

二.实验试剂1,SolⅠ100ml: 1M Tris-HCL(pH8.0)2。

5ml,0.5M EDTA 2ml, DDW 91ml, 20%葡萄糖4。

5ml( 葡萄糖单独灭,灭完后加入Sol I中),高压灭菌,4°保存.2,SolⅡ100ml:(新鲜配制,常温使用)10% SDS 50ml, 2M NaOH 50ml.使用前将两种溶液混合。

3,SolⅢ 500ml:KAc 147g, HAc57。

5ml,加300mlDDW搅拌,定容至500ml。

高压灭菌,4°保存。

4,70%乙醇无菌水DDW5,苯酚/氯仿/异戊醇(25:24:1)氯仿可使蛋白变性并有助于液相与有机相的分开,异戊醇则可起消除抽提过程中出现的泡沫。

碱裂解法提取质粒原理和注意事项

碱裂解法提取质粒原理和注意事项

碱裂解法提取质粒原理和注意事项碱裂解法是一种用于提取质粒的常用方法,通过在碱性条件下使细菌细胞裂解,进而释放出质粒。

碱裂解法的原理是利用质粒与细菌细胞核酸的不同碱溶解性,使质粒保留在溶液中,而细菌细胞核酸被沉淀下来。

本文将详细介绍碱裂解法的原理和注意事项。

碱裂解法的原理:1.细菌细胞的预处理:首先,将含有质粒的细菌菌落接种到LB(琼脂)培养基中,经过适当时长的培养,使细菌菌落扩大到较大体积。

2.收获细菌细胞:将培养基中的细菌细胞收获下来,一般通过离心方法将菌液沉淀。

3.细菌细胞裂解:将细菌细胞沉淀后,将其重悬到高浓度的碱溶液中,使细菌细胞在碱性条件下裂解。

4.分离核酸:碱条件下,质粒DNA和线粒体DNA往往会溶于溶液中,而细菌细胞的染色体DNA不溶于溶液中,并随着碱度增加逐渐沉淀。

通过快速离心,将细菌细胞染色体DNA沉淀,而质粒DNA留在上清液中。

5.提取质粒:将上清液取出,通过乙醇沉淀方法使质粒DNA沉淀下来,通过离心收获质粒,即可得到纯化后的质粒DNA。

注意事项:1.使用无菌操作:为保证实验的准确性和重复性,实验过程中必须严格遵守无菌操作的要求。

例如,使用无菌器皿和无菌操作工具,避免细菌污染。

2.注意细菌菌落的培养条件和时长:细菌菌落的培养条件和时长会对实验结果产生影响。

培养条件应符合细菌所需的培养基成分和培养温度,时长应确保细菌菌落予以充足的生长和扩大。

3.使用高浓度的碱溶液:为充分裂解细菌细胞,需要使用高浓度的碱溶液,通常为pH12的溶液。

4.快速离心:由于细菌细胞裂解后的溶液中可能含有许多细菌细胞碎片和核酸碎片,为避免这些碎片沉淀到上清液中,需要进行快速离心,在最短时间内将质粒DNA沉淀下来。

5.质粒的纯化:通过乙醇沉淀方法提取质粒时,需要仔细控制乙醇的用量和沉淀时间,以避免损失待提取的质粒DNA。

总结:碱裂解法是提取质粒DNA的常用方法之一,其原理是利用质粒DNA与细菌细胞染色体DNA在碱性条件下的不同溶解性,通过沉淀法分离出质粒DNA。

质粒提取的原理及步骤

质粒提取的原理及步骤

碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH 和 SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。

一、试剂准备1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。

1M Tris-HCl[t1] (pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。

在10 lbf/in2高压灭菌15min ,贮存于4℃。

溶液Ⅰ50mM 葡萄糖/ 10mM EDTA / 25mM Tris-HCl,pH=8.0葡萄糖增稠,使悬浮后的大肠杆菌不会快速沉积到管子的底部;EDTA 抑制DNase的活性。

这一步溶液中还可以加入RNase,不受EDTA影响,并且可以在后续步骤中被除去2. 溶液Ⅱ:0.2N NaOH,1% SDS。

2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。

使用前临时配置[t2]。

这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向 micelle(微囊)结构的相变化所导致。

用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。

如果只用SDS当然也能抽提得到少量质粒,因为 SDS也是碱性的,只是弱了点而已。

很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。

碱裂解法的原理

碱裂解法的原理

碱裂解法的原理碱裂解法是一种常用的化学分析方法,其原理是利用碱性溶液对样品中的化合物进行裂解,使其原子或离子形成溶液中的离子,从而实现化学分析。

碱裂解法的原理是基于化学反应的规律,即碱性溶液可以与许多化合物发生反应,将其分解成单质或离子。

这种反应通常是由于碱性溶液中含有氢氧根离子(OH-),它们可以将水分子中的氢离子(H+)取代,形成氢氧根离子(HO-),这种离子在碱性溶液中的浓度非常高,因此能够与样品中的化合物发生反应,将其转化为离子或单质。

碱裂解法的使用范围非常广泛,可以用于分析许多不同类型的样品,如金属、非金属、有机物、无机物等等。

其原理可以通过以下几个方面来解释:1. 碳酸盐类的裂解:碱性溶液可以将碳酸盐类物质裂解为二氧化碳和水,这种反应可以用于分析含碳酸盐的样品,如矿石、土壤等。

2. 金属氢氧化物的裂解:碱性溶液可以将金属氢氧化物分解为金属离子和氢氧根离子,这种反应可以用于分析含金属氢氧化物的样品,如金属盐、金属氢氧化物等。

3. 酸性氧化物的裂解:碱性溶液可以将酸性氧化物分解为氧化物和水,这种反应可以用于分析含酸性氧化物的样品,如硫酸、硝酸等。

4. 有机物的裂解:碱性溶液可以将有机物分解为离子或气体,这种反应可以用于分析含有机物的样品,如食品、药品等。

在进行碱裂解法分析时,需要选择合适的碱性溶液,并控制反应的温度、时间等参数,以确保反应的有效性和准确性。

此外,还需要对反应产物进行适当的处理和分离,以便进行后续的定量分析。

碱裂解法是一种常用的化学分析方法,其原理是利用碱性溶液对样品中的化合物进行裂解,将其分解为离子或单质,从而实现化学分析。

在进行分析时,需要选择合适的碱性溶液,并控制反应参数,以确保准确性和有效性。

碱裂解法原理及步骤总结

碱裂解法原理及步骤总结

碱裂解法原理及步骤总结碱裂解法是一种用碱性溶液将有机化合物切断成低分子量的碱式盐和碱相应的酸的方法。

主要适用于具有羧基、酰基、酮基或亚胺基等反应活性基团的有机化合物。

下面将对碱裂解法的原理及步骤做详细总结。

一、原理:碱裂解法通过与碱溶液反应将有机化合物的化学键切断,并生成碱式盐和碱相应的酸。

当有机化合物中存在可被碱性溶液中的碱捕获的反应活性基团时,碱裂解反应往往会发生。

碱裂解反应原理示例:RCOOH+NaOH→RCOONa+H2O二、步骤:1.准备实验物质:将待反应的有机化合物准备好,以及所需的碱性溶液、溶剂等。

2.溶解有机化合物:将有机化合物溶解于适合的溶剂中,以便与碱性溶液充分反应。

3.加入碱性溶液:将溶解好的有机化合物溶液缓慢地滴加到已经准备好的碱性溶液中,同时进行搅拌。

4.调节反应条件:根据具体的化合物和反应条件要求,可以调节反应的温度、时间、pH等参数。

5.反应完成后处理:反应结束后,可以采取不同的方法进行处理,如中和、等温或冷却结晶、萃取等操作。

6.产物分离与收集:根据需求,可将产物进行分离和收集,如过滤、蒸馏、提取等操作。

7.产物液相分析:对分离和收集的产物进行液相分析,可采用纸层析、薄层色谱等方法进行验证和鉴定。

8.产物固相分析:对于产物为固体的情况,可采用质谱、红外光谱等方法进行分析。

9.结果记录与总结:将实验结果进行记录,并进行总结和分析。

10.实验后处理:对实验设备进行清洗和消毒,将废弃物进行妥善处理。

总结:碱裂解法是通过碱性溶液将有机化合物的化学键切断,生成碱式盐和碱相应的酸的方法。

其原理是有机化合物中存在的反应活性基团与碱性溶液反应,从而发生裂解反应。

具体的步骤包括溶解有机化合物、加入碱性溶液、调节反应条件、处理反应产物、分离和收集产物、分析产物等。

碱裂解法在有机合成中具有重要的意义,常用于合成具有特定功能的有机化合物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质粒抽提经典中的经典--从质粒抽提谈起
2007-4-10 22:22:32信息来源:来源网络
质粒抽提经典中的经典--从质粒抽提谈起
生物谷网站
复旦大学生化与分子生物学实验室教授撰写
碱裂解法从大肠杆菌制备质粒,是从事分子生物学研究的实验室每天都要用的常规技术。

可以我收研究生十几年了,几乎毫无例外的是我那些给人感觉什么都知道的优秀学生却对碱法质粒抽提的原理知之甚少。

追其原因,我想大概是因为《分子克隆》里面只讲实验操作步骤,而没有对原理进行详细的论述。

这是导致我的学生误入歧途的主要原因。

后来我发现其实是整个中国的相关领域的研究生水平都差不多,甚至有很多“老师”也是这个状态。

这就不得不让人感到悲哀了。

我想这恐怕和我们的文化有点关系。

中国人崇尚读书,“学而优则仕”的观念深入人心。

经常听到的是父母对他们的独苗说,你只要专心读好书就可以了。

所以这读书的定义就是将教课书上的东西记住,考试的时候能拿高分……这就是现代科学没有在中国萌发的根本原因。

如果中国文化在这一点上不发生变化,那么科学是不能在中国真正扎根的,它只能蜕化成新的“八股学”。

生命科学是实验科学,它讲究动手。

如果实验科学只要看看书就可以了,那我想问有那位神仙看看书就会骑自行车了?或者听听体育老师的讲解就会滑冰了?
可是光动手不思考,不就成了一个工匠?一个合格的生命科学研究者,需要在这两方面完善自己。

一个杰出的科学工作者,是一个熟知科学原理并善于应用的“艺术家”。

每个曾经用碱法抽提过质粒的同学,希望你看本文后能有所思考,让中国的未来有希望。

为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖/ 25 mM Tri s-Cl / 10 mM EDTA,pH 8.0;溶液II,0.2 N NaOH / 1% SDS;溶液III,3 M醋酸钾/ 2 M 醋酸。

让我们先来看看溶液I的作用。

任何生物化学反应,首先要控制好溶液的p H,因此用适当浓度的和适当pH值的Tris-Cl溶液,是再自然不过的了。

那么50 mM葡萄糖是干什么的呢?说起来不可思议,加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。

因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言,几乎没有任何影响。

所以说溶液I中葡萄糖是可缺的。

那么EDTA呢?大家知道EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,
配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。

在溶液I中加入高达10 mM的EDTA,无非就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。

如果不加EDTA,其实也没什么大不了的,只要不磨洋工,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA.如果哪天你手上正好缺了溶液I,可不可以抽提质粒呢?实话告诉你,只要用等体积的水,或LB培养基来悬浮菌体就可以了。

有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。

轮到溶液II了。

这是用新鲜的0.4 N的NaOH和2%的SDS等体积混合后使用的。

要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。

很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。

事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。

用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。

如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱了点而已。

很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。

有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。

这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合(象对待女孩子一样),不然基因组DNA也会断裂。

基因组DNA的断裂会带来麻烦,后面我再详细说明。

每个人都知道,溶液III加入后就会有大量的沉淀,但大部分人却不明白这沉淀的本质。

最容易产生的误解是,当SDS碰到酸性后发生的沉淀。

如果你这样怀疑,往1%的SDS溶液中加如2M的醋酸溶液看看就知道不是这么回事了。

大量沉淀的出现,显然与SDS的加入有关系。

如果在溶液II中不加SDS会怎样呢,也会有少量的沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。

既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,你会发现SDS在高盐浓度下是会产生沉淀的。

因此高浓度的盐导致了SDS的沉淀。

但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。

这其实是十二烷基硫酸钠(sodium dodecylsulfate)遇到钾离子后变成了十二烷基硫酸钾(potas sium dodecylsulfate,PDS),而PDS是水不溶的,因此发生了沉淀。

如此看来,溶液III加入后
的沉淀实际上是钾离子置换了SDS中的纳离子形成了不溶性的PDS,而高浓度的盐,使得沉淀更完全。

大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DN A也一起被共沉淀了。

这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。

那么2 M的醋酸又是为什么而加的呢?是为了中和NaOH,因为长时间的碱性条件会打断DNA,所以要中和之。

基因组DNA一旦发生断裂,只要是50-100 kb大小的片断,就没有办法再被PDS共沉淀了。

所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因组DNA混入,琼脂糖电泳可以观察到一条浓浓的总DNA条带。

很多人误认为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误会,因为变性的也好复性的也好,DNA分子在中性溶液中都是溶解的。

Na OH本来是为了溶解细胞而用的,DNA分子的变性其实是个副产物,与它是不是沉淀下来其实没有关系。

溶液III加入并混合均匀后在冰上放置,目的是为了PDS沉淀更充分一点。

不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了,其实还有很多蛋白质不能被沉淀,因此要用酚/氯仿/异戊醇进行抽提,然后进行酒精沉淀才能得到质量稳定的质粒DNA,不然时间一长就会因为混入的DNase而发生降解。

这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介绍。

酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层,不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚/氯仿始终在下层,方便水相的回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应),应此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除,而用酚/氯仿的混合液进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净而不必担心酶切等反应不能正常进行。

至于异戊醇的添加,其作用主要是为了让离心后上下层的界面更加清晰,也方便了水相的回收。

回收后的水相含有足够多的盐,因此只要加入2倍体积的乙醇,在室温放置几分钟后离心就可以将质粒DNA沉淀出来。

这时候如果放到-20℃,时间一长反而会导致大量盐的沉淀,这点不同于普通的DNA酒精沉淀回收,所以不要过分小心了。

高浓度的盐会水合大量的水分子,因此D NA分子之间就容易形成氢键而发生沉淀。

如果感觉发生了盐的沉淀,就用70%的乙醇多洗几次,每次在室温放置一个小时以上,并用tip将沉淀打碎,就能得到好的样品。

得到的质粒样品一般
用含RNase(50 ug/ml)的TE缓冲液进行溶解,不然大量未降解的RNA会干扰电泳结果的。

琼脂糖电泳进行鉴定质粒DNA时,多数情况下你能看到三条带,但千万不要认为你看到的是超螺旋、线性和开环这三条带。

碱法抽提得到质粒样品中不含线性DNA,不信的话你用EcoRI来线性化质粒后再进行琼脂糖电泳,就会看到线性质粒DNA的位置与这三条带的位置不一样。

其实这三条带以电泳速度的快慢而排序,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质粒连在了一起)。

如果你不小心在溶液II加入后过度振荡,会有第四条带,这条带泳动得较慢,远离这三条带,是20-100kb的大肠杆菌基因组DNA的片断。

非常偶然的是,有时候抽提到的质粒会有7-10条带,这是由于特殊的DNA序列导致了不同程度的超螺旋(超螺旋的圈数不同)所致。

这里暂不深究。

想说的,终于说完了。

谢谢你的耐心。

留下一个思考题,为什么真核生物的基因组DNA不能用碱法抽提?。

相关文档
最新文档