推荐-信号与系统第四版第四章课后答案 精品
信号与系统自测题(第4章 连续时间信号与系统的复频域分析)含答案

) 。
D
、6
−t
18
( s) s 、线性系统的系统函数 H (s) = Y = ,若其零状态响应 y(t ) = (1 − e F ( s) s + 1
D B
−t
)u (t )
,则系
统的输入信号 f (t ) = (
A
) 。
−t
、 δ (t )
、e
u (t )
C
、e
−2 t
u (t )
D
、 tu(t )
C
2
、s
ω e −2 s + ω2
12
、原函数 e
1 − t a
t f( ) a
的象函数是(
B
B
) 。
C
s 1 F( + ) 、1 a a a 注:原书答案为 D
A
、 aF (as + 1)
、 aF (as + a)
D
、 aF (as + 1 ) a
t f ( ) ↔ aF (as ) a e f (t ) ↔ F ( s + 1)
A
−s s −s s
A
s 、1 F ( )e a a
−s
b a
B
s 、1 F ( )e a a
− sb
C
s 、1 F ( )e a a
t 0
s
b a
D
s 、1 F ( )e a a
sb
、 已知信号 x(t ) 的拉普拉斯变换为 X (s) ,则信号 f (t ) = ∫ λ x(t − λ )d λ 的拉普拉斯变换 为( B ) 。 1 1 1 1 A、 X ( s ) B、 X (s) C、 X ( s) D、 X (s) s s s s 注:原书答案为 C。 f (t ) = ∫ λ x(t − λ )d λ = tu(t ) ∗ x(t )u(t ) tu(t ) ∗ x(t )u(t ) ↔ s1 X (s) 9、函数 f (t ) = ∫ δ ( x)dx 的单边拉普拉斯变换 F ( s ) 等于( D ) 。 1 1 A、 1 B、 C、 e D、 e s s
信号与系统第四章课后习题答案

其拉氏逆变换为: s3 + s 2 + 1 f (t ) = F [ ] = (-e-2t + 2e -4t )U (t ) ( s + 1)( s + 2)
-1
(8)
s+5 s ( s 2 + 2 s + 5) s+5 A B1s + B2 = = + s[( s + 1)2 + 4] s ( s + 1)2 + 4 A= s+5 gs = 1 s[( s + 1) 2 + 4)] s =0
(3) (2 cos t + sin t )U (t ) 查表得: s s + w2 w sin wtU (t ) « 2 s + w2 \ 根据拉氏变换的线性性质: 2s 1 2s + 1 (2 cos t + sin t )U (t ) « 2 + 2 = 2 s +1 s +1 s +1 cos wtU (t ) «
(9) 2d (t - t0 ) + 3d (t ) 根据时移特性:
d (t - t0 ) « e - st0
\ 2d (t - t0 ) + 3d (t ) « 2e - st0 + 3
(10) (t - 1)U (t - 1) 根据复频域微分特性: (-t ) n f (t ) « F ( n ) ( s ) 1 1 -tU (t ) « ( ) ' = - 2 s s 1 \tU (t ) « 2 s 根据时移特性: e- s (t - 1)U (t - 1) « 2 s
\ cos tU (t ) «
信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
信号与系统习题解答 (9)

0 7Ω 9Ω
ω
2Aj
2Aj /
3
2Aj /
由X
4 ()
2A 2
X1()
F{sin
10t}
得x4 (t)
F
1{X
4 ()}
4A
x1(t) sin
10t
x4(t)
(b)可取
x5(t) ( / 2A)sin 10t
则
x6 (t) x4 (t)x5 (t)
2x1(t)
sin
2
10t
2x1
10)
X 1 (
10)]
2A 2
X 1 ( )
F{sin
10t}
X1( 30)
2 Aj
…
2 Aj 3 9
-29Ω -27Ω
-33Ω -31Ω 2Aj
2 Aj 9
3
X1( 10)
2Aj /
2 Aj
3
-9Ω -7Ω
-13Ω -11Ω
0
2Aj /
X1( 10)
2Aj /
2 Aj
3
11Ω 13Ω
]
X 3() F{x1(t)x2 (t)} X1() X 2 () / 2
4 Aj 2
X1()
k 1
1 [ 2k 1
(
(2k
1)0 )
(
(2k
1)0 ]
2 Aj
k 1
1 2k
1
[
X1
(
(2k
1)0 )
X 1 (
(2k
1)0 ]
k 1
2 Aj (2k
1)
[
X
1
(
(2k
(仅供参考)信号与系统第四章习题答案

e −sT
=
−sT
2 − 4e 2
+ 2e −sT
Ts 2
(f) x(t) = sin πt[ε (t)− ε (t − π )]
sin π tε (t ) ↔
π s2 + π 2
L[sin
πtε (t
−π
)]
=
L e jπt
− 2
e− jπt j
ε (t
−π
)
∫ ∫ =
1 2j
∞ π
e
jπt e−st dt
4.3 图 4.2 所示的每一个零极点图,确定满足下述情况的收敛域。
(1) f (t) 的傅里叶变换存在
(2) f (t )e 2t 的傅里叶变换存在
(3) f (t) = 0, t > 0
(4) f (t) = 0, t < 5
【知识点窍】主要考察拉普拉斯变换的零极点分布特性。 【逻辑推理】首先由零极点写出拉普拉斯变换式,再利用反变换求取其原信号,即可求取其收
= cosϕ eω0tj + e−ω0tj − sin ϕ eω0tj − e−ω0tj
2
2j
=
cos 2
ϕ
−
sin 2
ϕ j
e
ω0 t j
+
cosϕ 2
+
sin ϕ 2j
e −ω 0tj
F(s) =
L
cosϕ 2
−
sin ϕ 2j
eω0tj
+
cos 2
ϕ
+
sin ϕ 2j
e
−ω0
t
j
ε
(t
)
∫ ∫ =
信号与系统课后习题答案第4章

两边取拉氏逆变换,同样注意到系统初始状态为零,求得该系 统的微分方程描述为
(2) 依照系统方框图与信号流图表示之间的对应关系,分 别画出两系统的信号流图表示,如题解图2.23(c)、(d)所示。
108
第4章 连续信号与系统的S域分析
4.24 线性连续系统的信号流图分别如题图 4.9(a)、(b)所示, 求系统函数H(s)。
66
第4章 连续信号与系统的S域分析
解 本题分别用时域方法计算零输入响应,S域方法计算 零状态响应,然后叠加求得全响应。
(1) 因为
67
第4章 连续信号与系统的S域分析
代入初始条件: yzi(0-)=y(0-)=1, yzi′ (0-)=y′(0-)=1,求得c1=4, c2=-3。所以
又因为
68
题图 4.9
109
第4章 连续信号与系统的S域分析
110
第4章 连续信号与系统的S域分析
111
第4章 连续信号与系统的S域分析
4.25 已知线性连续系统的系统函数如下,用直接形式信号 流图模拟系统,画出系统的方框图。
112
第4章 连续信号与系统的S域分析
解 用直接形式信号流图、方框图模拟连续系统。
题解图 4.19
87
第4章 连续信号与系统的S域分析
88
第4章 连续信号与系统的S域分析
故有单位冲激响应:
89
第4章 连续信号与系统的S域分析
令式①中
再取拉氏逆变换,求得单位阶跃响应:
90
第4章 连续信号与系统的S域分析
4.20 题图4.5所示RLC系统,us(t)=12 V, L=1 H,C=1 F, R1=3 Ω, R2=2 Ω,R3=1 Ω。t<0时电路已达稳态,t=0时开 关S闭合。求t≥0时电压u(t)的零输入响应、零状态响应和全 响应。
信号与系统第四章习题参考答案13

《信号与系统》第四章习题参考答案4-1 解 (1)111()ataL es s a s s a -⎡⎤-=-=⎣⎦++ (2)[]2221221sin 2cos 111s s L t t s s s ++=+++++ (3)()2212tL te s -⎡⎤=⎣⎦+(4)[]21sin(2)4L t s =+,由S 域平移性质,得 ()21s i n (2)14tL e t s -⎡⎤=⎣⎦++ (5)因为1!nn n L t s +⎡⎤=⎣⎦,所以 []2211212s L t s s s++=+= 由S 域平移性质,得 ()()23121ts L t e s -+⎡⎤+=⎣⎦+(6)()2211cos sL at s s a -=-⎡⎤⎣⎦+,由S 域平移性质,得 (){}()2211cos ts L at e s s aβββ-⎡⎤-=-⎣⎦+++ (7)232222L t t s s ⎡⎤+=+⎣⎦ (8)732()327tL t es δ-⎡⎤-=-⎣⎦+ (9)[]22sinh()L t s βββ=-,由S 域平移性质,得()22sinh()atL e t s a βββ-⎡⎤=⎣⎦+-(10)由于()211cos ()cos 222t t Ω=+Ω 所以 222221111c o s ()22424ss L t s s s s ⎛⎫⎡⎤Ω=+∙=+ ⎪⎣⎦+Ω+Ω⎝⎭(11)()()()11111at t L e e a a s a s s a s βββββ--⎡⎤⎛⎫-=-= ⎪⎢⎥--++++⎣⎦⎝⎭ (12)由于()221cos()1ts L e t s ωω-+⎡⎤=⎣⎦++所以 ()()()221cos()1a t a s e L et s ωω--++⎡⎤=⎣⎦++(13)因为(2)(1)(1)(1)(1)(1)t t t te u t e t e e u t ------⎡⎤-=-+-⎣⎦且()(1)(1)2(1)(1)(1)11sst t e e L t eu t L eu t s s ------⎡⎤⎡⎤--=-=⎣⎦⎣⎦++所以 ()(1)(2)2211(2)(1)(1)11s t s s e L teu t e e s s s -----⎡⎤+⎡⎤-=+=⎢⎥⎣⎦+++⎣⎦(14)()(1)tL e f t F s -⎡⎤=+⎣⎦,由尺度变换性质,得(1)ta t L e f aF as a -⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎣⎦(15)()t L f aF as a ⎡⎤⎛⎫=⎪⎢⎥⎝⎭⎣⎦,再由s 域平移性质,得 []2()()at t L e f aF a s a aF as a a -⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦(16)31cos(6)cos (3)cos(3)2t t t -=∙13cos(9)cos(3)44t t =+32213cos (3)48149s s L t s s ⎡⎤=+⎣⎦++由s 域微分性质,得()()22322222213181327cos (3)481494819d s s s s L t t ds s s s s ⎡⎤--⎛⎫⎢⎥⎡⎤=-+=+ ⎪⎣⎦⎢⎥++⎝⎭++⎣⎦(17)[]2cos(2)4sL t s =+,连续两次应用s 域微分性质,有 []()2224cos(2)4s L t t s-=+,()3232224cos(2)4s sL t t s-⎡⎤=⎣⎦+(18)111atL es s a -⎡⎤-=-⎣⎦+,由s 域积分性质,得111111(1)at sL e ds t s s a ∞-⎛⎫⎡⎤-=- ⎪⎢⎥+⎣⎦⎝⎭⎰ln()ln ln s s a s s a ⎛⎫=+-=- ⎪+⎝⎭ (19)351135tt L ee s s --⎡⎤-=-⎣⎦++,由s 域积分性质,得 33111115ln 353t t s e e s L ds t s s s --∞⎛⎫⎡⎤-+⎛⎫=-= ⎪ ⎪⎢⎥+++⎝⎭⎣⎦⎝⎭⎰(20)()22sin aL at s a =⎡⎤⎣⎦+,由s 域积分性质,得()1122211sin 1arctan 21s s at s a s L ds d t s a a a s a π∞∞⎡⎤⎛⎫⎛⎫===-⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎛⎫⎣⎦+ ⎪⎝⎭⎰⎰ 4-2 解(1)因为()()sin ()2T f t t u t u t ω⎡⎤⎛⎫=--⎪⎢⎥⎝⎭⎣⎦()sin ()sin 22T T t u t t u t ωω⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以可借助延时定理,得()()sin ()sin 22T T L f t L t u t L t u t ωω⎧⎫⎡⎤⎛⎫⎛⎫=+--⎡⎤⎡⎤⎨⎬ ⎪ ⎪⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎣⎦⎩⎭222222221sT T s ee S S S ωωωωωω--⎛⎫=+=+ ⎪+++⎝⎭(2)因为()()()sin sin cos cos sin t t t ωϕωϕωϕ+=+ 所以()222222cos sin cos sin sin s s L t s s s ωϕϕωϕϕωϕωωω++=+=⎡⎤⎣⎦+++ 4-3 解此题可巧妙运用延时性质。
信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5 系统微分方程的S域解 4.6 电路的s域求解 4.7 连续系统的表示与模拟 4.8 系统函数与系统特性
频域分析以虚指数信号ejωt为基本信号,任意信号 可分解为众多不同频率的虚指数分量之和。使响应的求 解得到简化。物理意义清楚。但也有不足: (1)有些重要信号不存在傅里叶变换,如e2tε(t); (2)对于给定初始状态的系统难于利用频域分析。
在这一章将通过把频域中的傅里叶变换推广到复频 域来解决这些问题。
本章引入复频率 s = σ+jω,以复指数函数est为基本 信号,任意信号可分解为不同复频率的复指数分量之和。 这里用于系统分析的独立变量是复频率 s ,故称为s域分 析。所采用的数学工具为拉普拉斯变换。
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换
三、单边拉氏变换
def
F(s)
f (t) est d t
0
f
(t
)
def
1
2
j
j
F
j
(
s)
e
st
d
s
(t
)
简记为F(s)=£[f(t)] f(t)=£ -1[F(s)]
或
f(t)←→ F(s)
4.1 拉普拉斯变换
四、常见函数的单边拉普拉斯变换
1.(t ) 1,
2.(t )或1
例3 双边信号求其拉普拉斯变换。
f3 (t)
f1 (t)
f2 (t)
e t , e t ,
求其拉普拉斯变换。
t0 t 0
解 其双边拉普拉斯变换 Fb(s)=Fb1(s)+Fb2(s)
jω
仅当>时,其收敛域为
<Re[s]<的一个带状区域,
如图所示。
α
0
βσ
4.1 拉普拉斯变换
例4 求下列信号的双边拉氏变换。
则 F(j)=1/( j+2)
4.1 拉普拉斯变换
(2)0 =0,即F(s)的收敛边界为j轴,
F(j) lim F(s) 0
相应t]的= 傅里叶逆变换 为
f(t) e-t=
1
2
Fb (
j) e j
td
f (t) 1
2
Fb (
j) e( j)t d
令s = + j,
d =ds/j,有
4.1 拉普拉斯变换
Fb (s)
f (t)est d t
f (t)
1
2
j
j
F j b
(
s)
e
st
d
s
双边拉普拉斯变 换对
s
1
3
s
1
2
Re[s]= < – 3 –3<<–2
可见,象函数相同,但收敛域不同。双边拉氏变换必 须标出收敛域。
4.1 拉普拉斯变换
通常遇到的信号都有初始时刻,不妨设其初始时刻为坐标 原点。这样,t<0时,f(t)=0。从而拉氏变换式写为
F (s) f (t) est d t 0
称为单边拉氏变换。简称拉氏变换。其收敛域一定是 Re[s]> ,可以省略。本课程主要讨论单边拉氏变换。
有些函数不满足绝对可积条件,求解傅里叶变换困难。
为此,可用一衰减因子e-t(为实常数)乘信号f(t) ,适当 选取的值,使乘积信号f(t) e-t当t∞时信号幅度趋近于
0 ,从而使f(t) e-t的傅里叶变换存在。
Fb(+j)= ℱ[ f(t) e-
f (t) e t e j t d t f (t) e( j)t d t
Fb(s)称为f(t)的双边拉氏变换(或象函数), f(t)称为Fb(s) 的双边拉氏逆变换(或原函数)。
拉氏逆变换的物理意义
f
பைடு நூலகம்
(t)
1 2
j
j F (s)est ds
j
F ( )etdf 2 F (s) et cos[t (s)]df 0
利用拉氏变换,可将f(t)分解成众多复指数信号Aest或形如Aet cos[t (s)]
第四章 连续系统的s域分析
第四章 连续系统的s域分析
4.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换 二、收敛域 三、(单边)拉普拉斯变换
4.2 拉普拉斯变换的性质 4.3 拉普拉斯变换逆变换 4.4 复频域分析
一、微分方程的变换解 二、系统函数 三、系统的s域框图 四、电路的s域模型 点击目录 ,进入相关章节
0
(s )
0
(s
1 [1 lime( )te j
) t
t]
不s1定,, 无界,
Re[s] =
可见,对于因果信号,仅当
jω 0α
Re[s]=>时,其拉氏变换存
在。 收敛域如图所示。
收敛边
界
σ 收敛域
4.1 拉普拉斯变换
例2 反因果信号f2(t)= et(-t) ,求其拉普拉斯变换。
解
F2b (s)
0 e t e st d t e (s )t
(s )
0
1
[1 lim e e ( )t j
(s ) t
t]
无界 , Re[s] .
不定
,
jω
1
(s
)
,
可见,对于反因果信号,仅当
Re[s]=<时,其拉氏变换存在。
0
βσ
收敛域如图所示。
4.1 拉普拉斯变换
Re[s]>0
F (j) f (t) e j t d t
要讨论其关系,f(t)必须为因果信号。
根据收敛坐标0的值可分为以下三种情况:
(1)0<0,即F(s)的收敛域包含j轴,则f(t)的傅里叶
变换存在,并且
F(j)=F(s) s=j
如f(t)=e-2t(t) ←→F(s)=1/(s+2) , >-2;
f1(t)= e-3t (t) + e-2t (t) f2(t)= – e -3t (–t) – e-2t (–t) f3(t)= e -3t (t) – e-2t (– t)
解
f1 (t)
F1 (s)
s
1
3
s
1
2
Re[s]= > – 2
f2 (t)
F2 (s)
s
1
3
s
1
2
f3 (t)
F3 (s)
信号的线形组合。
二、收敛域
只有选择适当的值才能使积分收敛,信号f(t)的
4.1 拉普拉斯变换
双边拉普拉斯变换存在。
使 f(t)拉氏变换存在的取值范围称为Fb(s)的收敛域。
下面举例说明Fb(s)收敛域的问题。
例1 因果信号f1(t)= et (t) ,求其拉普拉斯变换。
解 F1b (s)
et est d t e(s )t
1
s
,
0
3. (t ) s,
4.指数信号e s0t
1
s s0
4.1 拉普拉斯变换
令s0
e t
1
s
,
e t
1
s
,
令s0 j
e j t
, 1
s j
0
e j t
, 1
s j
0
令s0 0
(t)
1
s
,
0
4.1 拉普拉斯变换
五、单边拉氏变换与傅里叶变换的关系
F (s) f (t) est d t 0