《计量经济学》上机实验答案 过程 步骤
《计量经济学》上机实验答案过程步骤

实2:我国1978-2001年的财政收入(y )和国民生产总值(x )的数据资料如表2所示:表2 我国1978-2001年财政收入和国民生产总值数据试根据资料完成下列问题:(1)给出模型t t t u x b b y ++=10的回归报告和正态性检验,并解释回归系数的经济意义; (2)求置信度为95%的回归系数的置信区间;(3)对所建立的回归方程进行检验(包括估计标准误差评价、拟合优度检验、参数的显著性检验); (4)若2002年国民生产总值为亿元,求2002年财政收入预测值及预测区间(05.0=α)。
参考答案:(1) t t x y133561.06844.324ˆ+= =)ˆ(i b s =)ˆ(ib t 941946.02=R 056.1065ˆ==σSE 30991.0=DW 9607.356=F 133561.0ˆ1=b ,说明GNP 每增加1亿元,财政收入将平均增加万元。
(2))ˆ()2(ˆ02/00b s n t b b ⋅-±=α=±⨯ )ˆ()2(ˆ12/11b s n t b b ⋅-±=α=±⨯ (3)①经济意义检验:从经济意义上看,0133561.0ˆ1〉=b ,符合经济理论中财政收入随着GNP 增加而增加,表明GNP 每增加1亿元,财政收入将平均增加万元。
②估计标准误差评价: 056.1065ˆ==σSE ,即估计标准误差为亿元,它代表我国财政收入估计值与实际值之间的平均误差为亿元。
③拟合优度检验:941946.02=R ,这说明样本回归直线的解释能力为%,它代表我国财政收入变动中,由解释变量GNP 解释的部分占%,说明模型的拟合优度较高。
④参数显著性检验:=)ˆ(1b t 〉0739.2)22(025.0=t ,说明国民生产总值对财政收入的影响是显著的。
(4)6.1035532002=x , 41.141556.103553133561.06844.324ˆ2002=⨯+=y根据此表可计算如下结果:102221027.223)47.32735()1()(⨯=⨯=-⋅=-∑n x x x tσ92220021002.5)47.327356.103553()(⨯=-=-x x ,109222/1027.21002.52411506.10650739.241.14155)()(11ˆ)2(ˆ⨯⨯++⨯⨯±=--++⋅⋅-±∑x x x x n n t yt f f σα=实验内容与数据3:表3给出某地区职工平均消费水平t y ,职工平均收入t x 1和生活费用价格指数t x 2,试根据模型t t t t u x b x b b y +++=22110作回归分析报告。
计量经济学上机实验

计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
计量经济学上机操作步骤

上机操作步骤:1、样本回归模型:data y x ls y c x2、Goldfeld-Quandt 法:Sort x (假设有60 个样本,去掉中间16个,则样本应是以下)Smpl 1 22Ls y c xRss1=Smpl 39 60Ls y c xRss2=F=rss2/rss1= >F 0.05(22,22) ≈2.05模型存在异方差。
3、White 方法检验模型:(解释变量只有x,就用no cross ,若是有x2 x3 x4等多个解释变量,就用cross )Smpl 1 60Ls y c x在方程窗口点View/residual/white ………nR 2= ,> 205.0χ(2)=5.99,或P=0.0044 (n 是样本个数,R^2是可决系数) 4、加权最小二乘法(WLS )法:ls y c xgenr w1=1/resid^2(建议采用此权重变量,也可以使用其他权重变量)ls(w=w1) y c x5、使用互相关分析命令,初步判断滞后期的长度:cross y x6、阿尔蒙法建立分布滞后模型:ls y c pdl(x,s,m) (s 代表滞后期长度,m 一般取2或者3.)7、模型的短期乘数就是x 的系数。
8、DW 检验法:DW=2,ρ=0,DW=0,一阶高度正相关,DW=4,一阶高度负相关。
dl DW ≤≤0,一阶正相关,44≤≤-DW dl ,一阶负相关。
9、BG 检验法:在方程窗口点击VIEW/RESIDUIAL TEST/ SERIAL CORRELATION LM TEST10、广义差分法:ident residls y c x ar(1)11、虚拟变量模型:(从1985-1998,1996为分界线)smpl 1985 1995genr d1 = 0smpl 1996 1998genr d1 = 1data d1genr xd = x*d1smpl 1985 1998ls y c x d1 xd12、多重共线性:1、简单相关系数检验COR X1 X2 X3 X42、某一解释变量(如X1)的VIFLS X1 C X2 X3 X4 VIF=1/(1-R2)3、某一解释变量(如X1)的TOL:TOL=1/VIF=1-R24、采用逐步回归法建立最终方程13、Glejser检验 (假定h=1时)Ls y c xGenr e1=abs(resid)Ls e1 c xF= ,或P=14、Park检验Ls y c xGenr lne2=log(resid^2)Genr lnx=log(x)Ls lne2 c lnxF= , 或P=15、偏相关系数检验LS Y C XIDENT RESID16:非线性回归模型1、可线性化(重点掌握)如:LNY=a + bLNX则 LS LOG(Y) C LOG(X)以及多项式模型、指数模型、幂函数等。
计量经济学 上机实验手册簿

实验三 异方差性实验目的:在理解异方差性概念和异方差对OLS 回归结果影响的基础上,掌握进行异方差检验和处理的方法。
熟练掌握和运用Eviews 软件的图示检验、G-Q 检验、怀特(White )检验等异方差检验方法和处理异方差的方法——加权最小二乘法。
实验内容:书P116例4.1.4:中国农村居民人均消费函数中国农村居民民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支付收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,建立双对数模型:01122ln ln ln Y X X βββμ=+++其中,Y 表示农村家庭人均消费支出,X 1表示从事农业经营的纯收入,X 2表示其他来源的纯收入。
表4.1.1列出了中国内地2006年各地区农村居民家庭人均纯收入及消费支出的相关数据。
表4.1.1 中国2006年各地区农村居民家庭人均纯收入与消费支出(单位:元)注:从事农业经营的纯收入由从事第一产业的经营总收入与从事第一产业的经营支出之差计算,其他来源的纯收入由总纯收入减去从事农业经营的纯收入后得到。
资料来源:《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》。
实验步骤:一、创建文件1.建立工作文件CREATE U 1 31 【其中的“U”表示非时序数据】2.录入与编辑数据Data Y X1 X2 【意思是:同时录入Y、X1和X2的数据】3.保存文件单击主菜单栏中File→Save或Save as→输入文件名、路径→保存。
二、数据分析1.散点图①Scat X1 Y1000080006000Y4000200050010001500200025003000X1从散点图可看出,农民农业经营的纯收入与农民人均消费支出呈现一定程度的正相关。
②Scat X2 Y1000080006000Y400020000200040006000800010000X2从散点图可看出,农民其他来源纯收入与农民人均消费支出呈现较高程度的正相关。
计量经济学上机操作过程详解

上机操作步骤详解及分析假设检验部分类型一:会利用软件处理σ2已知关于μ的假设检验以及σ2未知关于μ的假设检验【例一】某车间用一台包装机包装葡萄糖。
袋装糖的净重量是一个随机变量,它服从正态分布。
当机器正常运行时,其均值为0.5KG ,标准差为0.015KG 。
某日开工后为检验及其运转是否正常,随机的抽取了它所包装的糖9袋,称得净重为(KG ):0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512问:机器运转是否正常?(假设样本方差不变) 仍然为上题,但如果方差未知的情况下呢?因为是研究型假设故0H :u=0.5 1H :u<>0.5第一步:将数据移入第二步:关闭后再次把数据打开,按如下路径打开下一个对话框第三步:根据已知的均值和标准差输入下列对话框(注意:是标准差,如果题目告诉的是方差,则还要进一步转化成为标准差)第四步:点击OK后,得到如下结果,并分析该题的方差已知,故看Z-statistic的P值,因为0.0248<a/2=0.025,故拒绝原假设,结论为:在5%的显著性水平下,该机器运转不正常若该题的方差未知,则看t-statistic的P值,结论依然是:在5%的显著性水平下,该机器运转不正常类型二:会利用软件处理来自两个正态总体均值的假设检验:等方差和异方差【例2】用两种方法(A、B)测定冰从-0.72摄氏度变为0摄氏度的比热。
测得下列数据:两个样本独立且来自与方差相等的两个正态总体方法A 79.98 80.04 80.02 80.04 80.03 80.0380.04 79.97 80.05 80.03 80.02 80.00 80.02方法B 80.02 79.94 79.98 79.97 79.97 80.03 79.9579.971、两种方法是否具有显著性差异2、A方法是否比B方法测得的比热要大?解析:该题属于双样本的等方差检验,故在EXCEL背景下操作第一小问:第一步:移入数据,将原本的两行数据,分别调整为一行第二步:EXCEL的调试,“工具”——“加载宏”后选择如下选项:第三步:点击“工具”——“数据分析”——“t检验-双样本等方差检验”第四步:输入相应的数据第五步:分析相应结果解析:第一小问只需判断是否有显著性差异,也就是说只需要判断A U 与B U 是否相等,属于双侧检验,在统一用P(T<=t) 单尾分析的时候,与的是a/2比较0H :AU-B U =0 1H :A U -B U <>0如上图结果所示,P(T<=t) 单尾=0.001276<a/2=0.025,所以拒绝原假设,也就是说在5%的显著性水平下,方法A 和方法B 具有显著性差异第二小问:解析:第二小问不同于第一小问,判断的是A 与B 的大小,是研究型假设检验, 将认为研究结果是无效的说法或理论作为原假设H00H :AU<=B U 1H :A U >B U因为是单侧检验,故与a 相比,因为P(T<=t) 单尾=0.001276<a=0.05,所以拒绝原假设,结论是在5%的显著性水平下,A 方法测得的比热比B 方法的大【例3】下表给出两位文学家马克吐温的8篇小品文以及斯诺特格拉斯的10篇小品文中由3个字母组成的单字的比例 马克吐温0.225 0.262 0.217 0.240 0.2300.229 0.235 0.217 斯诺特格拉斯0.209 0.205 0.196 0.210 0.202 0.207 0.224 0.223 0.2200.201两组数据均来自正态总体,且方差相等。
计量经济学上机实验手册

计量经济学上机实验手册标准化工作室编码[XX968T-XX89628-XJ668-XT689N]实验三异方差性实验目的:在理解异方差性概念和异方差对OLS回归结果影响的基础上,掌握进行异方差检验和处理的方法。
熟练掌握和运用Eviews软件的图示检验、G-Q检验、怀特(White)检验等异方差检验方法和处理异方差的方法——加权最小二乘法。
实验内容:书P116例4.1.4:中国农村居民人均消费函数中国农村居民民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支付收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,建立双对数模型:其中,Y表示农村家庭人均消费支出,X1表示从事农业经营的纯收入,X2表示其他来源的纯收入。
表4.1.1列出了中国内地2006年各地区农村居民家庭人均纯收入及消费支出的相关数据。
注:从事农业经营的纯收入由从事第一产业的经营总收入与从事第一产业的经营支出之差计算,其他来源的纯收入由总纯收入减去从事农业经营的纯收入后得到。
资料来源:《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》。
实验步骤:一、创建文件1.建立工作文件CREATE U 1 31 【其中的“U”表示非时序数据】2.录入与编辑数据Data Y X1 X2 【意思是:同时录入Y、X1和X2的数据】3.保存文件单击主菜单栏中File→Save或Save as→输入文件名、路径→保存。
二、数据分析1.散点图①Scat X1 Y从散点图可看出,农民农业经营的纯收入与农民人均消费支出呈现一定程度的正相关。
②Scat X2 Y从散点图可看出,农民其他来源纯收入与农民人均消费支出呈现较高程度的正相关。
2.数据取对数处理Genr LY=LOG(Y)Genr LX1=LOG(X1)Genr LX2=LOG(X2)三、模型OLS参数估计与统计检验LS LY C LX1 LX2得到模型OLS参数估计和统计检验结果:Dependent Variable: LYMethod: Least SquaresSample: 1 31LX1Adjusted R-squared . dependent var. of regression Akaike infocriterionSum squared resid Schwarz criterionLog likelihood F-statistic【注意:在学术文献中一般以这种形式给出回归方程的输出结果,而不是把上面的软件输出结果直接粘贴到文章中】可决系数,调整可决系数,显示模型拟合程度较高;同时,F 检验统计量,在5%的显着性水平下通过方程总体显着性检验。
计量2之上机教程2

test (lnox=10*stratio)(ldist=stratio) lincom rooms+ldist+stratio
/*检验 H 0 : 3 4 5 0 ,“lincom”用于检验参 数的线性组合,此时不能用“test”;线性组合=0,可省 略“=0”。*/
//用约束最小二乘估计进行检验 regress lprice lnox ldist rooms stratio scalar ee0=e(rss) //估计无约束模型 //计算无约束模型的残差平方和 //估计约束模型
stdf /*实际预测值(预测误差)的标准误
ˆi yi ) xi s 1 xi X X xi */ stdfi var( y
1
估计后检验 test e. g. test x1 test x1 x2 x3 //检验 x1 对应的系数的显著性 //检验 x1 x2 x3 对应系数的联合显著性 //检验 x1 x2 对应系数 2 3 //检验 2 2 //检验 2 2 //系数线性组合的点估计、标准误、检验与推断 //线性假设检验
ˆ ,默认值 //线性预测值,即拟合值 X
//残差
e X s 1 x X X 1 x */ stdri var i i i
stdp /*条件期望预测值(预测误差)的标准误
x ˆ x X s x X X 1 x */ stdpi var i i i i
use /data/imeus/hprice2a
regress lprice regress estat ic regress,beta ereturn list predict lpricehat, xb resid lprice lnox lnox ldist rooms ldist stratio, noconstant rooms stratio
《计量经济学》实验指导书

XX实验指导书《计量经济学》编写人:XX实验一 EViews软件的基本操作【实验目的】通过上机试验,了解EViews软件特点、工作窗口的组成、充分掌握EViews软件的基本操作、熟悉数据处理、统计分析(图形分析)【实验内容】EViews是专门用于从事数据分析、回归分析和预测的工具,使用EViews可以迅速从数据中找出统计关系,并用得到的关系去预测数据的未来值。
最小二乘估计是估计变量间线形关系中相互作用与影响的有效方法,在数据分析中有很重要的作用。
本次试验内容包括:进行EViews的一些基本操作来熟悉这个软件。
实验内容以表1-1所列出的税收收入和国内生产总值的统计资料为例进行操作。
表1-1 我国税收与GDP统计资料单位:亿元资料来源:《中国统计年鉴1999》【实验步骤】一、数据的输入、编辑与序列生成㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口。
在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。
其中, Annual——年度 Monthly——月度Semi-annual——半年 Weekly——周Quarterly——季度 Daily——日Undated or irregular——非时序数据选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日前1985和1998。
然后点击OK按钮,将在EViews软件的主显示窗口显示相应的工作文件窗口。
工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C (保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。
⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。
命令格式为:CREATE 时间频率类型起始期终止期则以上菜单方式过程可写为:CREATE A 1985 1998㈡输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X将显示一个数组窗口,此时可以按全屏幕编辑方式输入每个变量的统计资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实2:我国1978-2001年的财政收入(y )和国民生产总值(x )的数据资料如表2所示:表2 我国1978-2001年财政收入和国民生产总值数据obs x yobsxy 1978 3624.10 1132.26 1990 18598.40 2937.10 1979 4038.20 1146.38 1991 21662.50 3149.48 1980 4517.80 1159.93 1992 26651.90 3483.37 1981 4860.30 1175.79 1993 34560.50 4348.95 1982 5301.80 1212.33 1994 46670.00 5218.10 1983 5957.40 1366.95 1995 57494.90 6242.20 1984 7206.70 1642.86 1996 66850.50 7407.99 19858989.102004.82 1997 73142.708651.14 1986 10201.40 2122.01 1998 76967.209875.951987 11954.50 2199.35 1999 80579.40 11444.08 1988 14922.30 2357.24 2000 88254.00 13395.23 1989 16917.80 2664.90 2001 95727.90 16386.04试根据资料完成下列问题:(1)给出模型t t t u x b b y ++=10的回归报告和正态性检验,并解释回归系数的经济意义;(2)求置信度为95%的回归系数的置信区间;(3)对所建立的回归方程进行检验(包括估计标准误差评价、拟合优度检验、参数的显著性检验); (4)若2002年国民生产总值为103553.60亿元,求2002年财政收入预测值及预测区间(05.0=α)。
参考答案:(1) t t x y133561.06844.324ˆ+= =)ˆ(i b s (317.5155) (0.007069) =)ˆ(ib t (1.022578) (18.89340)941946.02=R 056.1065ˆ==σSE 30991.0=DW 9607.356=F 133561.0ˆ1=b ,说明GNP 每增加1亿元,财政收入将平均增加1335.61万元。
(2))ˆ()2(ˆ02/00b s n t b b ⋅-±=α=324.6844±2.0739⨯317.5155=(-333.8466 983.1442) )ˆ()2(ˆ12/11b s n t b b ⋅-±=α=0.133561±2.0739⨯0.007069=(0.118901 0.148221) (3)①经济意义检验:从经济意义上看,0133561.0ˆ1〉=b ,符合经济理论中财政收入随着GNP 增加而增加,表明GNP 每增加1亿元,财政收入将平均增加1335.61万元。
②估计标准误差评价: 056.1065ˆ==σSE ,即估计标准误差为1065.056亿元,它代表我国财政收入估计值与实际值之间的平均误差为1065.056亿元。
③拟合优度检验:941946.02=R ,这说明样本回归直线的解释能力为94.2%,它代表我国财政收入变动中,由解释变量GNP 解释的部分占94.2%,说明模型的拟合优度较高。
④参数显著性检验:=)ˆ(1b t 18.8934〉0739.2)22(025.0=t ,说明国民生产总值对财政收入的影响是显著的。
(4)6.1035532002=x , 41.141556.103553133561.06844.324ˆ2002=⨯+=y根据此表可计算如下结果:102221027.223)47.32735()1()(⨯=⨯=-⋅=-∑n x x x tσ92220021002.5)47.327356.103553()(⨯=-=-x x ,109222/1027.21002.52411506.10650739.241.14155)()(11ˆ)2(ˆ⨯⨯++⨯⨯±=--++⋅⋅-±∑x x x x n n t yt f f σα=(11672.2 16638.62)实验内容与数据3:表3给出某地区职工平均消费水平t y ,职工平均收入t x 1和生活费用价格指数t x 2,试根据模型t t t t u x b x b b y +++=22110作回归分析报告。
表3 某地区职工收入、消费和生活费用价格指数 年份t y t x 1 t x 2 年份 t y t x 1 t x 21985 20.10 30.00 1.00 1991 42.10 65.20 0.90 1986 22.30 35.00 1.02 1992 48.80 70.00 0.95 1987 30.50 41.20 1.20 1993 50.50 80.00 1.10 1988 28.20 51.30 1.20 1994 60.10 92.100.951989 32.00 55.20 1.50 1995 70.00 102.00 1.02 1990 40.10 61.40 1.05 1996 75.00 120.30 1.05参考答案:(1) t t t x x y21963759.8634817.045741.10ˆ-+= =)ˆ(i b s (6.685015) (0.031574) (5.384905) =)ˆ(ib t (1.564306) (20.10578) (-1.664608) 980321.02=R 975948.02=R 5572.208ˆ==σSE 1705.224=F (2) ①经济意义检验:从经济意义上看,16348.0ˆ01〈=〈b ,符合经济理论中绝对收入假说边际消费倾向在0与l 之间,表明职工平均收入每增加100元,职工消费水平平均增加63.48元。
0964.8ˆ2〈-=b ,符合经济意义,表明职工消费水平随着生活费用价格指数的提高而下降,生活费用价格指数每提高1单位时,职工消费水平将下降-8.964个单位。
②估计标准误差评价: 5572.208ˆ==σSE ,即估计标准误差为208.5572单位,它代表职工平均消费水平估计值与实际值之间的平均误差为208.5572单位。
③拟合优度检验:975948.02=R ,这说明样本回归直线的解释能力为97.6%,它代表职工平均消费水平变动中,由解释变量职工平均收入解释的部分占97.6%,说明模型的拟合优度较高。
④F 检验:1705.224=F 26.4)1212,2()1,(=--=--〉ααF k n k F ,表明总体回归方程显著,即职工平均收入和生活费用价格指数对职工消费水平的影响在整体上是显著的。
⑤t 检验:=)ˆ(1b t 20.10578〉262.2)9(025.0=t ,说明职工平均收入对职工消费水平的影响是显著的;〈=664608.1)ˆ(2b t 262.2)9(025.0=t ,说明生活费用价格指数对职工消费水平的影响是不显著的。
实验内容与数据4:某地区统计了机电行业的销售额y (万元)和汽车产量1x (万辆)以及建筑业产值2x (千万元)的数据如表4所示。
试按照下面要求建立该地区机电行业的销售额和汽车产量以及建筑业产值之间的回归方程,并进行检验(显著性水平05.0=α)。
表4 某地区机电行业的销售额、汽车产量与建筑业产值数据1991 513.6 4.258 35.09 1992 606.9 5.591 36.42 1993 629.0 6.675 36.58 1994 602.7 5.543 37.14 1995 656.7 6.933 41.30 1996 998.5 7.638 45.62 1997877.67.75247.38(1)根据上面的数据建立对数模型:t t t t u x b x b b y +++=22110ln ln ln (1)(2)所估计的回归系数是否显著?用p 值回答这个问题。
(3)解释回归系数的意义。
(4)根据上面的数据建立线性回归模型:t t t t u x b x b b y +++=22110 (2)(5)比较模型(1)、(2)的2R 值。
(6)如果模型(1)、(2)的结论不同,你将选择哪一个回归模型?为什么? 参考答案: (1)回归结果t t t x x y21ln 56847.0ln 387929.0734902.3ˆ++= =)ˆ(i b s (0.212765) (0.137842) (0.055677) =)ˆ(ib t (17.5541) (2.814299) (10.21006)934467.02=R925105.02=R097431.0ˆ==σSE 81632.99=F(2) t 检验:=)ˆ(1b t 2.814299〉145.2)14(025.0=t ,05.00138.01〈=p ,说明汽车产量对机电行业销售额的影响是显著的;=)ˆ(2b t 10.21006〉145.2)14(025.0=t ,05.00000.02〈=p ,说明建筑业产值对机电行业销售额的影响是显著的。
F 检验:81632.99=F 74.3)1217,2()1,(=--=--〉ααF k n k F ,05.00000.0〈=p 表明总体回归方程显著,即汽车产量、建筑业产值对机电行业销售额的影响在整体上是显著的。
(3)387929.0ˆ1=b ,说明汽车产量每增加1%,机电行业的销售额将平均增加0.39%;56847.0ˆ2=b ,说明建筑业产值每增加1%,机电行业的销售额将平均增加0.57%。
(4)回归结果t t t x x y2193339.1170558.4545496.57ˆ++-= =)ˆ(i b s (81.02202) (15.66885) (1.516553) =)ˆ(ib t (-0.709128) (2.916971) (7.868761) 903899.02=R 89017.02=R 08261.64ˆ==σSE 83991.65=F(5) 模型(1)的934467.02=R 、925105.02=R ,模型(2)的903899.02=R 、89017.02=R 。
因此,模型(1)的拟合优度大于模型(2)的拟合优度。
(6)从两个模型的参数估计标准误差、S.E 、t 、F 、2R 统计量可以看出,模型(1)优于模型(2),应选择模型(1)。
实验内容与数据5:表5给出了一个钢厂在不同年度的钢产量。
找出表示产量和年度之间关系的方程:bxae y =,并预测2002年的产量。