杭电离散数学期末试卷2016
离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
离散数学期末试题及答案完整版

离散数学期末试题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】326《离散数学》期末考试题(B )一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧⌝)(; (5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).三.1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v . 八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(B)参考答案一、1. {{a , b }, a , b , ?}, {{a , b }, a , b },16.2.92, 27.3.)()(x Q x P →, )()(y P y Q ⌝∧.4. 2, 4, 6, 12.5.4≤,奇数.二、1.22,2,m mn mn ., g , g . ,2,4.,不存在,不存在. 5.连通,3,10.三、1. }}{},,{},,{},{{c c b b a a B A =⋃,}}{{c B A =⋂,{)(=A P ?, {{a , b }}, {{c }}, {{a , b }, {c }}}.2.27933,3,3. 3.0)(↓∨q p .4.{-1,-2,-3,-6,1,2,3,6}. .四、证 对于任意A y x ∈,,若)()(y f x f =,则))(())((y f g x f g =,即))(())((y g f x g f =. 由于g f 是单射,因此y x =,于是f 是单射.例如取},,{},3,2,1(},,{γβα===C B b a A ,令)}2,(),1,{(b a f =,)},3(),,2(),,1{(ββα=g ,这时)},(),,{(βαb a g f = 是单射,而g 不是单射.五、解 1. R 的关系图R G 如下:2.(1)由于R b b ∉),(,所以R 不是自反的. (2)由于R a a ∈),(,所以R 不是反自反的.(3)因为R b d ∈),(,而R d b ∉),(,因此R 不是对称的. (4)因R a c c a ∈),(),,(,于是R 不是反对称的.(5)经计算知R c d a d c c b c a c c a b a a a R R ⊆=)},(),,(),,(),,(),,(),,(),,(),,{( ,进而R 是传递的.综上所述,所给R 是传递的.3.R 的关系矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111011100000111R M .六、解 命题公式))(())((p q r r q p A →→↔→→=的真值表如下:由表可知,))(())((p q r r q p A →→↔→→=的主析取范式为A 的主合取范式为)()(r q p r q p A ⌝∨⌝∨∧∨⌝∨⌝=.七、证 不妨设G 的阶数3≥n ,否则结论是显然的. 根据推论1知,63-≤n m . 若G 的任意节点v 的度数均有5)deg(≥v ,由握手定理知n v m v5)deg(2≥=∑.于是m n 52≤,进而652363-⋅≤-≤m n m . 因此30≥m ,与已知矛盾. 所以必存在节点v 使得4)deg(≤v .八、解 设满足要求的r 位数的个数有a r 种,r = 0,1,2,…,则排列计数生成函数65432121211219619431x x x x x x ++++++=,因而38!412194=⋅=a .。
离散数学期末考试试题

离散数学期末考试试题一、选择题(每题2分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 变量B. 常量C. 逻辑运算符D. 函数2. 以下哪个命题不是命题逻辑中的命题?A. p ∧ qB. p ∨ qC. ¬pD. 5 > 33. 集合{1, 2, 3}与集合{2, 3, 4}的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 4}4. 以下哪个选项不是关系的性质?A. 自反性B. 对称性C. 传递性D. 唯一性5. 函数f(x) = x^2 + 1的值域是什么?A. {x | x > 0}B. {x | x ≥ 1}C. {x | x ≠ 0}D. {x | x ≥ 0}6. 以下哪个命题的否定是真命题?A. 如果今天是星期一,那么太阳从东方升起。
B. 所有的狗都是哺乳动物。
C. 存在一个整数x,使得x^2 = -1。
D. 所有的苹果都是红色的。
7. 以下哪个选项不是图论中的基本概念?A. 顶点B. 边C. 路径D. 函数8. 以下哪个选项是有限自动机的组成部分?A. 状态B. 函数C. 变量D. 集合9. 在命题逻辑中,以下哪个命题是重言式?A. (p ∨ ¬p) ∧ (¬p ∨ p)B. (p → q) ∧ (q → p)C. (p → q) → (¬q → ¬p)D. (p ∧ q) → (p ∨ q)10. 以下哪个选项是P vs NP问题的核心?A. 问题是否可解B. 问题是否可证明C. 问题是否可快速验证D. 问题是否可并行处理二、填空题(每空2分,共20分)11. 命题逻辑中的合取范式是将所有可能的________组合起来的形式。
12. 在集合论中,如果集合A的所有元素都是集合B的元素,则称A是B的________。
13. 函数f: A → B是________的,当且仅当对于B中的每一个元素y,存在唯一的x使得f(x) = y。
离散数学期末考试试题(配答案)

离散数学期末考试试题(配答案)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是___________。
2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =____;=A _____;=B A Y __ _____3. 设{}{}b a B c b a A ,,,,==;则=-)()(B A ρρ__ __________;=-)()(A B ρρ_____ ______。
二.选择题(每小题2分;共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=;A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 三.计算题(共43分)1. 求命题公式r q p ∨∧的主合取范式与主析取范式。
(6分)2. 设集合{}d c b a A ,,,=上的二元关系R 的关系矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000000011010001R M ;求)(),(),(R t R s R r 的关系矩阵;并画出R ;)(),(),(R t R s R r 的关系图。
(10分)5. 试判断),(≤z 是否为格?说明理由。
(5分)(注:什么是格?Z 是整数;格:任两个元素;有最小上界和最大下界的偏序)四.证明题(共37分)1. 用推理规则证明D D A C C B B A ⌝⇒∧⌝⌝⌝∧∨⌝→)(,)(,。
(10分)2. 设R 是实数集;b a b a f R R R f +=→⨯),(,:;ab b a g R R R g =→⨯),(,:。
求证:g f 和都是满射;但不是单射。
(10分)一;1; _ ∃x ∃y¬P(x)∨Q(y)2; {2} {4;5} {1;3;4;5}3; {{c};{a ;c};{b ;c};{a ;b ;c}} Φ_ 二;B D三;解:主合取方式:p ∧q ∨r ⇔(p ∨q ∨r)∧(p ∨¬q ∨r)∧(¬p ∨q ∨r)= ∏0.2.4主析取范式:p ∧q ∨r ⇔(p ∧q ∧r) ∨(p ∧q ∧¬r) ∨(¬p ∧q ∧r) ∨(¬p ∧¬q ∧r) ∨(p ∧¬q ∧r)= ∑1.3.5.6.7 四;1;证明:编号 公式 依据 (1) (¬B∨C )∧¬C 前提 (2) ¬B∨C ;¬C (1) (3) ¬B (2) (4) A →B (3) (5) ¬A (3)(4) (6) ¬(¬A∧D ) 前提 (7) A ∨¬D (6) (8)¬D (5)(6)2;证明:要证f 是满射;即∀y ∈R ;都存在(x1;x2)∈R ×R ;使f (x1;x2)=y ;而f (x1;x2)=x1+x2;可取x1=0;x2=y ;即证得;再证g 是满射;即∀y ∈R ;;都存在(x1;x2)∈R ×R ;使g (x1;x2)=y ;而g (x1;x2)=x1x2;可取x1=1;x2=y ;即证得;最后证f 不是单射;f (x1;x2)=f (x2;x1)取x1≠x2;即证得;同理:g (x1;x2)=g (x2;x1);取x1≠x2;即证得。
2016离散数学期末考试试题与答案

(2) 判断(A, <)是格否?分配格吗?有补格?布 尔格吗?
30
10
15
●
●
2●
●5
3
●
1
格? V 分配格? V? 有补格? x 布尔格 x
5. 已知 f : A→B, g : B→C, f是单射,g是单 射,证明g。f 是单射. 若g。f是满射,证明g是 满射.
r))
公理D
p)) 代入
公理C
(4) (5)分离
(5) (6)分离
公理A
(p (p∨p))) 代入
(10) ( (p∨p) p) (p (p∨p)) (11) (p (p∨p))
(2) (9)分离 (7) (10)分离
20. (5分) 试求公式 x ( ( ∀yX (x,y)) ( zY (z Z (x))
◆对于任意的a,b,c∊G ,若 (a,b) ∊ R , (b,c) ∊ R , ∴ a ·b-1∊H且 b ·c- 1∊H, ∴ (a ·b- 1) · (b ·c- 1)=a ·c- 1∊H , ∴ (a,c) ∊ R , 故R是传递的。
4. (6分) A= {1,2,3,5, 10, 15,30}, 司x,yEA, x<y x |y.
13. (5分) G是一个群,H,K是G正规子群. 证明 : H ∩K是G正规子群.
证明 : (1) (3分) a,b H K,就有a,b
因为H, K是群G的子群, 所以 ,a*b- 1 H,a*b- 1 H K是G的子群。
(2) (2分)
H, a,b K, K , 因此a*b-1
H K。故
对于 a H K, g G, 就有a H ,a K。
离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
电大离散数学本科期末复习题

离散数学(本)一、单项选择题1.设P :a 是偶数,Q :b 是偶数。
R :a + b 是偶数,则命题“若a 是偶数,b 是偶数,则a + b 也是偶数”符号化为(D . P Q →R )。
2.表达式∀x (P (x ,y )∨Q (z ))∧∃y (Q (x ,y )→∀zQ (z ))中∀x 的辖域是(P (x ,y ) Q (z ))。
3.设)(}),({},{,4321∅=∅=∅=∅=P S P S S S 则命题为假的是(42S S ∈)。
4.设G 是有n 个结点的无向完全图,则G 的边数( 1/2 n (n-1))。
5.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r=( e-v+2)。
6.若集合A ={1,{2},{1,2}},则下列表述正确的是( {1}⊂A ).7.已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为( 5 ).8.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******000011100111110则G 的边数为( 7 ). 9.设集合A ={a },则A 的幂集为({∅,{a }} ).10.下列公式中 (⌝A ∧⌝B ↔⌝(A ∨B ) )为永真式.11.若G 是一个汉密尔顿图,则G 一定是( 连通图 ).12.集合A ={1, 2, 3, 4}上的关系R ={<x ,y >|x =y 且x , y ∈A },则R 的性质为(传递的 ).13.设集合A ={1,2,3,4,5},偏序关系≤是A 上的整除关系,则偏序集<A ,≤>上的元素5是集合A 的(极大元 ).14.图G 如图一所示,以下说法正确的是 ( {(a, d ) ,(b, d )}是边割集 ) .图一15.设A (x ):x 是人,B (x ):x 是工人,则命题“有人是工人”可符号化为((∃x )(A (x )∧B (x )) ).16.若集合A ={1,2},B ={1,2,{1,2}},则下列表述正确的是(A ⊂B ,且A ∈B ).17.设有向图(a )、(b )、(c )与(d )如图一所示,则下列结论成立的是 ( (d )是强连通的 ).18.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010*******000011100100110则G 的边数为( 5 ). 19.无向简单图G 是棵树,当且仅当(G 连通且边数比结点数少1 ).20.下列公式 ((P →(⌝Q →P ))↔(⌝P →(P →Q )) )为重言式.21.若集合A ={ a ,{a },{1,2}},则下列表述正确的是({a }⊆A ).22.设图G =<V , E >,v ∈V ,则下列结论成立的是 (E v Vv 2)deg(=∑∈ ) .23.命题公式(P ∨Q )→R 的析取范式是 ((⌝P ∧⌝Q )∨R )24.下列等价公式成立的为(P →(⌝Q →P ) ⇔⌝P →(P →Q ) ).25.设A ={a , b },B ={1, 2},R 1,R 2,R 3是A 到B 的二元关系,且R 1={<a ,2>, <b ,2>},R 2={<a ,1>, <a ,2>, <b ,1>},R 3={<a ,1>, <b ,2>},则( R 2 )不是从A 到B 的函数.26.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 (无、2、无、2).27.若集合A 的元素个数为10,则其幂集的元素个数为(1024).28.如图一所示,以下说法正确的是 (e 是割点).图一29.设完全图K n 有n 个结点(n ≥2),m 条边,当( n 为奇数)时,K n 中存在欧拉回路.30.已知图G 的邻接矩阵为,则G 有( 5点,7边 ).二、填空题(每小题3分,共15分) 1.设A ,B 为任意命题公式,C 为重言式,若A ∧C ⇔B ∧C ,那么A ↔B 是重言式(重言式、矛盾式或可满足式)。
离散数学期末试卷

离散数学期末试卷一、选择题(共10题,每题2分,共20分)1.下列哪个是真值?–[ ] A. $P \\vee \\sim P$–[ ] B. $P \\wedge \\sim P$–[ ] C. $P \\rightarrow \\sim P$–[ ] D. $P \\leftrightarrow \\sim P$2.下列哪个式子是永真式?–[ ] A. $(P \\rightarrow Q) \\wedge (Q \\rightarrow P)$–[ ] B. $(P \\rightarrow Q) \\vee (Q\\rightarrow P)$–[ ] C. $(P \\wedge \\sim P) \\vee (Q \\wedge \\sim Q)$–[ ] D. $(P \\rightarrow Q) \\rightarrow (Q \\rightarrow P)$3.下列集合中的哪个是无穷集合?–[ ] A. $\\{1, 2, 3\\}$–[ ] B. $\\{1, 2, 3, ...\\}$–[ ] C. $\\{\\emptyset\\}$–[ ] D. $\\{\\emptyset, \\{1\\}, \\{2\\}\\}$4.对于集合$A = \\{1, 2, 3\\}$和$B = \\{3, 4, 5\\}$,下面哪个选项是$A \\cap B$?–[ ] A. $\\{1, 2\\}$–[ ] B. $\\{2, 4\\}$–[ ] C. $\\{3\\}$–[ ] D. $\\{1, 3\\}$5.对于集合$A = \\{1, 2, 3\\}$和$B = \\{3, 4, 5\\}$,下面哪个选项是$A \\cup B$?–[ ] A. $\\{1, 2, 4, 5\\}$–[ ] B. $\\{\\emptyset\\}$–[ ] C. $\\{1, 2, 3, 4, 5\\}$–[ ] D. $\\{1, 3\\}$6.哪个选项是集合$A = \\{2, 4, 6, 8, 10\\}$的幂集?–[ ] A. $\\{2, 4, 6, 8, 10\\}$–[ ] B. $\\{2, 4, 6, 8, 10, \\{\\}\\}$–[ ] C. $\\{\\{2\\}, \\{4\\}, \\{6\\}, \\{8\\},\\{10\\}, \\{2, 4\\}, \\{2, 6\\}, \\{2, 8\\}, \\{2, 10\\}, \\{4, 6\\}, \\{4, 8\\}, \\{4, 10\\}, \\{6, 8\\}, \\{6,10\\}, \\{8, 10\\}, \\{2, 4, 6\\}, \\{2, 4, 8\\}, \\{2, 4, 10\\}, \\{2, 6, 8\\}, \\{2, 6, 10\\}, \\{2, 8, 10\\}, \\{4, 6, 8\\}, \\{4, 6, 10\\}, \\{4, 8, 10\\}, \\{6, 8, 10\\},\\{2, 4, 6, 8\\}, \\{2, 4, 6, 10\\}, \\{2, 4, 8, 10\\}, \\{2, 6, 8, 10\\}, \\{4, 6, 8, 10\\}, \\{2, 4, 6, 8, 10\\}\\}$–[ ] D. $\\{\\{\\}, \\{2\\}, \\{4\\}, \\{6\\},\\{8\\}, \\{10\\}, \\{2, 4\\}, \\{2, 6\\}, \\{2, 8\\},\\{2, 10\\}, \\{4, 6\\}, \\{4, 8\\}, \\{4, 10\\}, \\{6,8\\}, \\{6, 10\\}, \\{8, 10\\}, \\{2, 4, 6\\}, \\{2, 4,8\\}, \\{2, 4, 10\\}, \\{2, 6, 8\\}, \\{2, 6, 10\\}, \\{2, 8, 10\\}, \\{4, 6, 8\\}, \\{4, 6, 10\\}, \\{4, 8, 10\\},\\{6, 8, 10\\}, \\{2, 4, 6, 8\\}, \\{2, 4, 6, 10\\}, \\{2, 4, 8, 10\\}, \\{2, 6, 8, 10\\}, \\{4, 6, 8, 10\\}, \\{2, 4, 6, 8, 10\\}\\}$7.下列哪个命题是正确的?–[ ] A. 如果x>10,则x>5–[ ] B. 如果x>5,则x>10–[ ] C. 如果x>10,则x<5–[ ] D. 如果x<5,则x>108.哪个选项是命题$P: (P \\rightarrow Q) \\wedgeP$的否定?–[ ] A. $\\sim P \\rightarrow (\\sim Q \\vee \\sim P)$–[ ] B. $(P \\rightarrow \\sim Q) \\vee P$–[ ] C. $(P \\rightarrow Q) \\wedge \\sim P$–[ ] D. $Q \\rightarrow P$9.对于命题$P: (x > 5) \\wedge (y < 10)$,下列哪个选项是x与$Q: (x < 2) \\vee (y > 8)$的合取式?–[ ] A. $(x > 5) \\wedge (y < 10) \\vee (x < 2) \\vee (y > 8)$–[ ] B. $(x > 5) \\vee (y < 10) \\wedge (x < 2) \\vee (y > 8)$–[ ] C. $(x > 5) \\vee (y < 10) \\vee (x < 2) \\wedge (y > 8)$–[ ] D. $(x > 5) \\vee (x < 2) \\vee (y < 10) \\vee (y > 8)$10.下列哪个命题是等价的?–[ ] A. $P \\rightarrow Q$–[ ] B. $\\sim P \\vee Q$–[ ] C. $\\sim Q \\rightarrow \\sim P$–[ ] D. $P \\wedge \\sim Q$二、填空题(共5题,每题4分,共20分)1.集合$\\{x | x > 0\\}$的基数是\\\\\\。