北师大版八年级上册第七章 《平行线的证明》单元检测卷

合集下载

北师大版数学八年级上册《七 平行线的证明》单元测试

北师大版数学八年级上册《七 平行线的证明》单元测试

B. 100°
C. 105°
D. 110°
3.下列命题中,真命题有( )个.
BC =
①若AC:
5‒1
2
,则点是线段AB的黄金分割点;②以矩形各边的中点为顶点的
2
四边形是菱形;③若 ( ‒ 2) = 2 ‒ ,则的取值范围是 < 2;④已知点(0,3),
1
( ‒ 4,3),以原点为位似中心,把线段AB缩短为原来的4,其中点与点对应,点
C. 3个
D. 4个
8.如图,直线、被直线所截若∠1 = 55°,则∠2的度数是( )时能判定a//b.
A. 35°
B. 45°
9.如图中的条件,能判断互相平行的直线为( )
C. 125°
D. 145°
A. a//b
B. m//n
C. a//b且m//n
D. 以上均不正确
10.如图,AB//CD,BC//DE,若∠CDE = 140°,则∠的度数是( )
______ °.
22.在ΔABC中,∠ABC = 62°,∠ACB = 50°,∠ACD是ΔABC的外角∠ACD和∠ABC的平
分线交于点,则∠AEB = ______°.
三 、解答题(本大题共 5 小题,共 40 分)
23.如图,四边形ABCD中,∠ = ∠ = 90°,BE平分∠ABC,DF平分∠ADC,分别交
B. 63°
C. 55°
二 、填空题(本大题共 6 小题,共 18 分)
2
2
17.若 < ,则 < 是 ______命题.(填真或假)
18.如图,要证AB//CD,只需∠3 = ______,根据是 ______.
D. 45°

北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

八年级上册数学第七章单元测试一、选择题(每题3分,共30分)1.命题“负数没有平方根”的条件是()A.如果一个数是正数B.如果一个数没有平方根C.如果一个数是负数D.如果一个数是非负数2.如图,下列能判定AB∥CD的条件有()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个3.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°4.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′5.如图,下列选项中,不可以得到l1∥l2的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.如图,把△ABC纸片沿DE折叠,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE为()A.80°B.60°C.50°D.40°9.如图,在△ABC中,∠B=38°,∠C=54°,AD是BC边上的高,AE是∠BAC 的平分线,则∠DAE的度数为()A.8°B.10°C.12°D.14°10.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°二、填空题(每题3分,共15分)11.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A为________度.12.如图,AB∥CD,∠1=58°,FG平分∠EFD交AB于G,则∠FGB的度数为________.13.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是________.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于________.15.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC =________度.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.如图,点A、B、C、D在同一条直线上,EC∥FD,∠F=∠E,求证:AE ∥BF.将证明过程补充完整,并在括号内填写推理依据.证明:∵EC∥FD,()∴∠________=∠1.()∵∠F=∠E,(已知)∴∠________=∠________,()∴AE∥BF.()17.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=100°,DF平分∠BDE,求∠C的度数.18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.19.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.20.如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.21.如图,AD为△ABC的角平分线,DE∥AB,DE交AC于点E.若∠B=57°,∠C=65°,求∠ADE的度数.22.已知如图,点E在△ABC的边BC上,AD∥BC,∠DAE=∠BAC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠2的度数.23.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.答案一、1.C 2.C 3.C 4.D 5.C 6.B7.B8.D9.A10.C二、11.3012.151°13.51°或93°14.230°15.122.5三、16.已知;F;两直线平行,内错角相等;E;1;等量代换;内错角相等,两直线平行17.解:(1)∵DE∥AB,∴∠A=∠2.∵∠1+∠2=180°,∴∠A+∠1=180°,∴DF∥AC.(2)∵∠1=100°,∠1+∠2=180°,∴∠2=80°.∵AC∥DF,∴∠FDE=∠2=80°,∠C=∠BDF.∵DF平分∠BDE,∴∠BDF=80°,∴∠C=∠BDF=80°.18.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE.(2)∵BF⊥AC,∴∠BF A=90°.∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°-35°=55°.19.证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC=∠BCD,∴AB∥CD.20.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO,∴∠EDO=∠BOD.又∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO.21.解:∵∠B=57°,∠C=65°,∴∠BAC=180°-57°-65°=58°.∵AD为△ABC的角平分线,∴∠BAD=∠DAC=29°.∵DE∥AB,∴∠ADE=∠BAD=29°.22. (1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1.∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE.(2)解:∵∠DAE=∠BAC,∴∠BAE=∠DAC.∵AE平分∠BAC,∴∠EAC=∠BAE=∠DAC.∵AD∥BC,∴∠C=∠DAC=35°,∴∠EAC=∠DAC=35°,∴∠AEC=180°-∠EAC-∠C=110°,∴∠2=180°-∠AEC=70°.23.解:(1)135°(2)90°+12n°(3)∵BC、BD分别是∠OBA和∠NBA的平分线,∴∠ABC=12∠OBA,∠ABD=12∠NBA,∴∠ABC+∠ABD=12∠OBA+12∠NBA=12(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°.∵四边形内角和等于360°,∴∠ACB+∠ADB=360°-90°-90°=180°,由(2)知:∠ACB=90°+12n°,∴∠ADB=180°-(90°+12n°)=90°-12n°,∴∠ACB+∠ADB=180°,∠ADB=90°-12n°.(4)∠E的度数不会变,∠E=40°.求解如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA-∠AOB.∵AE、BC分别是∠OAB和∠NBA的平分线,∴∠BAE=12∠OAB,∠CBA=12∠NBA,∵∠CBA=∠E+∠BAE,∴12∠NBA=∠E+12∠OAB,∵12∠NBA=∠E+12(∠NBA-80°),即12∠NBA=∠E+12∠NBA-40°,∴∠E=40°.。

第七章 平行线的证明数学八年级上册-单元测试卷-北师大版(含答案)

第七章 平行线的证明数学八年级上册-单元测试卷-北师大版(含答案)

第七章平行线的证明数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°2、如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°3、如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为()A.80°B.60°C.40°D.20°4、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°5、如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3=()A.180°B.360°C.540°D.无法确定6、如图,在△ABC中,∠C=78°,若沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.258°D.360°7、如图,中,的垂直平分线分别交、于点、,的垂直平分线分别交、于点、,若,则的度数是()A.10°B.20°C.30°D.40°8、如图,已知锐角∠AOB,在射线OA上取一点C,以点O为圆心、OC长为半径作,交射线OB于点D,连结CD;分别以点C、D为圆心、CD长为半径作弧,两弧交于点P,连结CP、DP;作射线OP.若∠AOP=20°,则∠ODP的度数是()A.110°B.120°C.130°D.140°9、如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是().A.30°B.45°C.36°D.20°10、如图,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()A.31°B.35°C.41°D.76°11、如图,在△ABC中,∠ABC=∠ACB,∠A=36°,P是△ABC内一点,且∠1=∠2,则∠BPC的度数为()A.72°B.108°C.126°D.144°12、如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°13、等腰三角形的一个外角是80°,则其底角是().A.100°B.100°或40°C.40°D.80°14、如图,点P是内一点,连结PB、PC,,,,则等于()A. B. C. D.15、如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上的点,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.110°B.140°C.220°D.70°二、填空题(共10题,共计30分)16、定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行,例如,取n=26,第三次“F运算”的结果是11.若n=111,则第2019次“F运算”的结果是________.17、如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=________ 度.18、如图,在平行四边形ABCD中,AD=2AB.F是AD的中点,作CE⊥AB, 垂足E在线段AB 上,连接EF、CF,则下列结论:(1)∠DCF+ ∠D=90°;(2)∠AEF+∠ECF=90°;(3) =2 ; (4)若∠B=80 ,则∠AEF=50°.其中一定成立的是________ (把所有正确结论的字号都填在横线上).19、如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,则它们的和等于________度.20、在△ABC中,∠B=45°,cosA=,则∠C的度数是________.21、观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=________.22、如图,第一个图形中有1个点,第二个图形中有4个点,第三个图形中有13个点,…,按此规律,第n个图形中有________个点.23、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为________.B. tan38°15′≈________.(结果精确到0.01)24、观察下列等式:1=12, 1+3=22, 1+3+5=32, 1+3+5+7=42,…,则1+3+5+7+…+2017=________(写成某数平方的形式即可,不必计算结果)25、如图,已知△ABC,∠C=70°,∠B=40°,AD⊥BC,AE平分∠BAC,则∠DAE=________.三、解答题(共5题,共计25分)26、如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.27、MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.28、如图,已知,,试猜想与之间有怎样的位置关系?并说明理由.请你将下列证明过程补充完整.结论:.证明:(已知),▲(▲),▲▲(两直线平行,同位角相等).又(已知),▲▲(等量代换),(▲).29、已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.求证:△ABC≌△DCE.30、如图,AB∥CD,AB=CD,点E、F在直线BD上,BE=DF,求证:AF=CE.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、B6、C7、B8、C9、B10、C11、B12、A13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

北师版八年级数学上册 第七章 平行线的证明(单元综合测试卷)

北师版八年级数学上册  第七章 平行线的证明(单元综合测试卷)

第七章平行线的证明(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.下列语句:①三角形的内角和是180°;②作一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB 到C ,使BC=AB ,其中是命题的有()A .①②B .②③C .①④D .①③2.如图,下列说法不正确的是()A .∠1和∠2互为邻补角B .∠1和∠4是内错角C .∠2和∠3是同旁内角D .∠1和∠3是同位角3.如图,点E 在AC 的延长线上,下列条件不能判定AB CD ∥的是()A .12∠=∠B .3=4∠∠C .A DCE ∠=∠D .24180A ∠+∠+∠=︒4.如图,在ABC V 中,外角105,58ACD B ∠=︒∠=︒,则A ∠的度数是()A .43︒B .47︒C .53︒D .57︒5.一条杆秤在称物时的状态如图所示,秤上的线在称东西时都平行,当1105∠=︒时,2∠的度数是()A .35︒B .75︒C .85︒D .105︒6.设a 、b 、c 为同一平面内的三条直线,下列判断不正确的是()A .若a //b ,b //c ,则a //cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ⊥b ,b ⊥c ,则a //cD .若a //b ,b ⊥c ,则a ⊥c7.一副三角尺如图放置,45A ∠=︒,30E ∠=︒,∥DE AC ,则1∠的度数为()A .95︒B .100︒C .105︒D .120︒8.如图,在ABC V 中,:1:2A B ∠∠=,D 是BC 延长线上一点,过点D 作DE AB ⊥于点E ,若75FCD ∠=︒,则D ∠=()A .40︒B .30︒C .45︒D .50︒9.如图所示,在四边形ABCD 中,B 是它的一条对角线,若12∠=∠,5516A '∠=︒,则ADC ∠=()A .12444'︒B .3444'︒C .14444︒'D .11444'︒10.如图,AB CD ∥,用含1∠,2∠,3∠的式子表示4∠,则4∠的值为()A .123∠+∠-∠B .132∠+∠-∠C .180312︒+∠-∠-∠D .231180∠+∠-∠-︒二、填空题(本大题共8小题,每小题3分,共24分)11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是.12.如图,1108∠=︒,230∠=︒,若使b c ∥,则可将直线b 绕点A 逆时针旋转度.13.如图所示,下列结论:①1∠和2∠是同旁内角;②3∠和4∠是对顶角;③2∠和5∠是内错角;④4∠和5∠是同位角.其中正确的是.(把正确结论的序号都填上)14.三角形三个内角度数的比为2:3:4,则这个三角形最大的外角是度.15.已知:如图,OAD OBC △≌△,且8025O C ∠=︒∠=︒,,则AEB ∠=度.16.平行线在生活中应用很广泛,人们为了准确地画出平行线,往往利用三角尺和直尺按照下面的方法去做:第一步:作直线AB ,并用三角尺的一条边贴住直线AB ;第二步:用直尺紧靠三角尺的另一条边;第三步:沿直尺下移三角尺;第四步:沿三角尺的边作出直线CD .这样,就得到AB CD ∥.请写出其中的道理:.17.如图,在ABC V 中,50A ∠=︒,内角ABC ∠和外角ACD ∠的平分线BE ,CE 相交于点E ,则E ∠的度数为.18.如图,在ABC V 中,5490A B ∠=︒∠=︒,,D 是AC 边上的定点,E 是CB 上的动点,沿DE 折叠CDE ,点C 落在点F 处.当EF 与ABC V 的一边平行时,DEB ∠的度数是.三、解答题(本大题共9小题,共66分)19.如图,,12,55AD BC C ⊥∠=∠∠=︒.求BAC ∠的度数.20.已知:如图12,C D ∠=∠∠=∠,证明:DF AC ∥.21.如图,在ABC V 中,AC AB >.尺规作图(保留作图痕迹,不写作法):(1)在AC 上截取AD AB =,连接BD ;(2)过D 作BC 的平行线交AB 于点E .22.按下列要求画图并填空:如图,直线AB 与CD 相交于点O ,P 是CD 上的一点.(1)过点P 画出CD 的垂线,交直线AB 于点E ;(2)过点P 画PF ⊥AB ,垂足为点F ;(3)点O 到直线PE 的距离是线段的长;(4)点P 到直线CD 的距离为.23.如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠.请说明AE GF ∥的理由.解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(______),所以BAG AGC ∠=∠(______).因为EA 平分BAG ∠,所以112BAG ∠=∠(______).因为FG 平分AGC ∠,所以122∠=______,得12∠=∠(等量代换),所以______(______).24.如图,在ABC V 中,D 为AB 上一点,E 为AC 中点,连接DE 并延长至点F ,使得EF ED =,连CF .(1)求证:CF AB∥(2)若7035A F BE AC ∠=︒∠=︒⊥,,,求BED ∠的度数.25.如图,在ABC V 中,AD 是高,AE 是角平分线.(1)若70,40B C ∠=︒∠=︒,求DAE ∠的度数.(2)若30B C ∠-∠= ,则DAE ∠=_______︒.(3)若B C α∠-∠=.则DAE ∠的度数_______(结果用含α的代数式表示).26.如图,AB CD ∥.(1)如图1,请探索A ∠,E ∠,C ∠三个角之间的数量关系,并说明理由;(2)已知24A ∠=︒.①如图2,若100F ∠=︒,求C E ∠+∠的度数;②如图3,若AEF ∠和DCF ∠的平分线交于点G ,请直接写出EGC ∠与F ∠的数量关系.27.已知:在ABC V 中,90ABC ACB ∠-∠=︒,点D 在BC 上,连接AD ,且45ADB ∠=︒(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 为BC 的中点,过点E 作AD 的垂线分别交AD 的延长线,AB 的延长线,AC 于点F ,G ,H ,求证:BG CH =;(3)如图3,在(2)的条件下,过点E 分别作EM AG ⊥于点M ,EN AC ⊥于点N ,若1401326AB AC EM EN +=+=,,求AFG 的面积.第七章平行线的证明(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.下列语句:①三角形的内角和是180°;②作一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A.①②B.②③C.①④D.①③【答案】D【解析】①三角形的内角和是180°,是命题;②作一个角等于一个已知角,不是命题;③两条直线被第三条直线所截,同位角相等,是命题;④延长线段AB到C,使BC=AB,不是命题,故选D.2.如图,下列说法不正确的是()A.∠1和∠2互为邻补角B.∠1和∠4是内错角C.∠2和∠3是同旁内角D.∠1和∠3是同位角【答案】B【分析】根据同位角、同旁内角、内错角和邻补角的概念解答即可.【详解】解:A、∠1和∠2互为邻补角,正确,不符合题意;B、∠1和∠4不是内错角,错误,符合题意;C、∠2和∠3是同旁内角,正确,不符合题意;D、∠1和∠3是同位角,正确,不符合题意;故选:B.【点睛】此题考查同位角、同旁内角、内错角和邻补角,熟练掌握同位角、内错角相等,同旁内角的定义是解题的关键.3.如图,点E 在AC 的延长线上,下列条件不能判定AB CD ∥的是()A .12∠=∠B .3=4∠∠C .A DCE ∠=∠D .24180A ∠+∠+∠=︒【答案】B 【分析】根据平行线判定定理逐个判断即可得到答案.【详解】解:∵12∠=∠,∴AB CD ∥,故A 不符合题意;∵3=4∠∠,∴BD AC ∥,故B 符合题意;∵A DCE ∠=∠,∴AB CD ∥,故C 不符合题意;∵24180A ∠+∠+∠=︒,∴AB CD ∥,故D 不符合题意;故选B .【点睛】本题考查平行线的判定:内错角相等两直线平行,同位角相等两直线平行,同旁内角互补两线平行.4.如图,在ABC V 中,外角105,58ACD B ∠=︒∠=︒,则A ∠的度数是()A .43︒B .47︒C .53︒D .57︒【答案】B 【分析】此题考查了三角形外角的性质,三角形的外角等于与它不相邻的两个内角的和,据此进行解答即可.【详解】解:在ABC V 中,外角105,58ACD B ∠=︒∠=︒,∴1055847A ACD B ∠=∠-∠=︒-︒=︒,故选:B .5.一条杆秤在称物时的状态如图所示,秤上的线在称东西时都平行,当1105∠=︒时,2∠的度数是()A .35︒B .75︒C .85︒D .105︒【答案】B 【分析】本题考查平行线的知识,解题的关键根据平角的性质,求出3∠,根据平行线的性质,两直线平行,内错角相等,即可.【详解】∵13180∠+∠=︒,1105∠=︒,∴375∠=︒,∵秤上的线在称东西时都平行,即AB CD ∥,∴2375∠=∠=︒,故选:B .6.设a 、b 、c 为同一平面内的三条直线,下列判断不正确的是()A .若a //b ,b //c ,则a //cB .若a ⊥b ,b ⊥c ,则a ⊥cC .若a ⊥b ,b ⊥c ,则a //cD .若a //b ,b ⊥c ,则a ⊥c【答案】B 【详解】根据平行线的判定定理及垂直的性质逐项进行分析即可解答.【解答】解:A .根据平行于同一直线的两直线平行,即可推出a //c ,则本选项正确,不合题意,B .根据垂直于同一直线的两直线平行,即可推出a ∥c ,故本选项错误,符合题意,C .根据垂直于同一直线的两直线平行,即可推出a ∥c ,本选项正确,不合题意,D .根据平行线的性质,即可推出a ⊥c ,本选项正确,不合题意.故选:B .【点睛】本题主要考查平行线的判定定理及性质、垂直的性质等知识点,灵活运用相关的性质定理并是解答本题的关键.7.一副三角尺如图放置,45A ∠=︒,30E ∠=︒,∥DE AC ,则1∠的度数为()A .95︒B .100︒C .105︒D .120︒【答案】C 【分析】本题考查平行线的性质、邻补角,三角形的内角和定理,熟练运用平行线的性质是关键.利用平行线的性质求出245A ∠=∠=︒,根据三角形内角和求出DGB ∠,进一步求出1∠.【详解】解:如图,∵∥DE AC ,∴245A ∠=∠=︒.∵90F ∠=︒,∴180903060D ∠=︒-︒-︒=︒,∴180456075DGB ∠=︒-︒-︒=︒.∵1180DGB ∠+∠=︒,∴118075105∠=︒-︒=︒.故选:C .8.如图,在ABC V 中,:1:2A B ∠∠=,D 是BC 延长线上一点,过点D 作DE AB ⊥于点E ,若75FCD ∠=︒,则D ∠=()A .40︒B .30︒C .45︒D .50︒【答案】A 【分析】本题考查了三角形的内角和定理,外角性质,掌握三角形的外角性质是解题的关键.根据三角形的外角性质可得A B FCD ∠+∠=∠,由此解答即可.【详解】解:DE AB ∵⊥,90BED ∴∠=︒,:1:2A B ∠∠= ,75FCD ∠=︒,A B FCD ∠+∠=∠ ,∴3752B ∠=︒.50B ∴∠=︒,180B BED D ∠+∠+∠=︒ ,180509040D ∴∠=︒-︒-︒=︒.故选:A .9.如图所示,在四边形ABCD 中,B 是它的一条对角线,若12∠=∠,5516A '∠=︒,则ADC ∠=()A .12444'︒B .3444'︒C .14444︒'D .11444'︒【答案】A 【分析】本题考查了平行线的判定和性质,由12∠=∠可得AB CD ∥,即得180A ADC ∠+∠=︒,据此即可求解,掌握平行线的判定和性质是解题的关键.【详解】解:∵12∠=∠,∴AB CD ∥,∴180A ADC ∠+∠=︒,∵5516A '∠=︒,∴180551612444ADC ∠=︒-︒=︒'',故选:A .10.如图,AB CD ∥,用含1∠,2∠,3∠的式子表示4∠,则4∠的值为()A .123∠+∠-∠B .132∠+∠-∠C .180312︒+∠-∠-∠D .231180∠+∠-∠-︒【答案】D 【分析】本题考查了平行的性质,作出相应的辅助线是解题的关键.过点E 作EG AB ∥,过点F 作FH CD ∥,可得AB CD EG FH ∥∥∥,从而推出21GEF ∠=∠-∠,180EFH GEF ∠=︒-∠,43CFH EFH ∠=∠=∠-∠即可得到答案.【详解】解:过点E 作EG AB ∥,过点F 作FH CD ∥,AB CDAB CD EG FH∴∥∥∥1AEG∴∠=∠21GEF ∴∠=∠-∠EG FH∥180180(21)18021EFH GEF ∴∠=︒-∠=︒-∠-∠=︒-∠+∠33(18021)321180CFH EFH ∴∠=∠-∠=∠-︒-∠+∠=∠+∠-∠-︒FH CD∥4321180CFH ∴∠=∠=∠+∠-∠-︒故选:D .二、填空题11.将命题“两直线平行,同位角相等”写成“如果……那么……”的形式是.【答案】如果两直线平行,那么同位角相等【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:命题“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,所以写成“如果…,那么…”的形式为:“如果两直线平行,那么同位角相等”,故答案为:如果两直线平行,那么同位角相等.【点睛】本题考查了命题的叙述形式,比较简单.12.如图,1108∠=︒,230∠=︒,若使b c ∥,则可将直线b 绕点A 逆时针旋转度.【答案】42【分析】先根据邻补角进行计算得到372∠=︒,根据平行线的判定当b 与a 的夹角为72︒时,b c ∥,由此得到直线b 绕点A 逆时针旋转723042︒-︒=︒.【详解】解:如图:∵1108∠=︒,∴372∠=︒,∵230∠=︒,∴当3230∠=∠=︒时,b c ∥,∴直线b 绕点A 逆时针旋转723042︒-︒=︒.故答案为:42.【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.13.如图所示,下列结论:①1∠和2∠是同旁内角;②3∠和4∠是对顶角;③2∠和5∠是内错角;④4∠和5∠是同位角.其中正确的是.(把正确结论的序号都填上)【答案】①③【分析】根据同位角,对顶角,同旁内角,内错角的定义进行判断即可得到答案.【详解】解:①∠1和∠2是同旁内角,故此说法正确;②∠3和∠4不是对顶角,故此说法错误;③∠2和∠5是内错角,故此说法正确;④∠4和∠5不是同位角。

北师大版八年级数学上册第七章 平行线的证明 单元测试卷

北师大版八年级数学上册第七章 平行线的证明 单元测试卷

北师大版八年级数学上册第七章平行线的证明单元测试卷一、选择题(每小题3分,共30分)1、下列语句中,属于定理的是(D)A.在直线AB上取一点EB.如果两个角相等,那么这两个角是对顶角C.同位角相等D.同角的补角相等2、下列结论你能肯定的是(B)A.若5个数的积为负数,则这5个数中只有一个负数B.三个连续整数的积一定能被6整除C.小明的数学成绩一向很好,因此后天的数学竞赛中他一定能获得一等奖D.对顶角相等,两直线垂直3、如图,下列能判定AB∥CD的条件有(C)①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BCD=180°.A.1个 B.2个 C.3个 D.4个4、如图,直线AD∥BC.若∠1=42°,∠BAC=78°,则∠2的度数为(C)A.42° B.50° C.60° D.68°5、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D,E分别在AB和AC上,且DE∥BC,则∠ADE的度数是(B)A.40° B.50° C.60° D.70°6、如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°.要使木条a与b平行,木条a旋转的度数至少是(B)A.10° B.20° C.50° D.70°7、如图,直线l l∥l2,直角三角板的直角顶点C在直线l1上,一锐角顶点B在直线l2上,若∠1=35°,则∠2的度数是(B)A.65° B.55° C.45° D.35°8、如图,直线AB∥CD,则下列结论正确的是(D)A.∠1=∠2 B.∠3=∠4C.∠1+∠3=180° D.∠3+∠4=180°9、如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数为(D)A.60° B.100° C.110° D.120°10、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为(B)A.50° B.70° C.75° D.80°二、填空题(每小题3分,共18分)11、如图,点E是AD延长线上一点.若添加一个条件,使BC∥AD,则可添加的条件为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(任意添加一个符合题意的条件即可)12、已知代数式-x2+40x-399,小明发现:当x=1时,代数式的值小于0,当x=2,x=3时,代数式的值均小于0,于是得出结论“对于任意的正整数x,代数式-x2+40x-399的值均小于0”.小红认为小明的说法是错误的,请你帮她举个反例:当x=20时,-x2+40x-399>0(答案不唯一).13、将一张长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是70°.14、如图,把△ABC的纸片沿DE折叠,当点A落在四边形BCED的内部时,则∠A与∠1、∠2之间有一种数量关系始终保持不变,请试着找出这个规律为2∠A=∠1+∠2.15、如图,在△ABC中,∠B=∠C,∠BAD=40°,∠ADE=∠AED,则∠CDE的度数为20°.16、如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A′处,折痕为DE.如果∠A=α,∠CEA ′=β,∠BDA ′=γ,那么α,β,γ三个角的关系是γ=2α+β.三、解答题(共72分)17、一个两位数,它的十位数字为a ,个位数字为b ,如果把它的十位数字和个位数字对调,得到一个新的两位数,那么这两个数的和能被11整除.我们可以验证一下,如23,对调后得到32,而23+32=55,55能被11整除.上述说法正确吗?解:这个说法是正确的.理由如下: 由题意,得原来的两位数可表示为(10a +b), 对调后的两位数可表示为(10b +a).所以(10a +b)+(10b +a)=11a +11b =11(a +b). 因为11(a +b)能被11整除, 所以这个说法是正确的.18、如图,∠ABC =∠ACB,BD 平分∠ABC,CE 平分∠ACB,∠DBF =∠F.试说明:EC∥DF.解:∵BD 平分∠ABC, ∴∠DBF =12∠ABC.∵CE 平分∠ACB, ∴∠ECB =12∠ACB.∵∠ABC =∠ACB,∴∠DBF =∠ECB. ∵∠DBF =∠F,∴∠ECB =∠F. ∴EC ∥DF.19、如图,∠AFD =∠1,AC ∥DE. (1)求证:DF∥BC;(2)若∠1=68°,DF 平分∠ADE,求∠B 的度数.解:(1)证明:∵AC∥DE, ∴∠C =∠1. ∵∠AFD =∠1, ∴∠C =∠AFD. ∴DF ∥BC.(2)∵DF∥BC,∴∠EDF =∠1=68°, ∵DF 平分∠ADE,∴∠ADF =∠EDF=68°, ∵DF ∥BC ,∴∠B =∠ADF=68°.19、如图,已知∠ABC=80°,∠BCD =30°,∠CDE =130°,试确定AB 与DE 的位置关系,并说明理由.解:AB∥DE.理由:过点C 作FG∥AB, ∴∠GCB =∠ABC=80°. ∵∠BCD =30°,∴∠DCG =∠GCB-∠BCD=80°-30°=50°. 又∵∠CDE=130°, ∴∠DCG +∠CDE=180°. ∴DE ∥FG.∴AB ∥DE.20、如图,在△ABC 中,AD 平分∠BAC,P 为线段AD 上的一个动点,EP ⊥AD 交直线BC 于点E.(1)若∠B=35°,∠ACB =85°,求∠E 的度数;(2)当点P 在线段AD 上运动时,求证:∠E=12(∠ACB-∠B).解:(1)∵∠B=35°, ∠ACB =85°, ∴∠BAC =60°. ∵AD 平分∠BAC, ∴∠DAB =∠DAC=30°. ∴∠ADC =∠B+∠DAB=65°. 又∵EP⊥AD,∴∠DPE =90°. ∴∠ADC +∠E=90°. ∴∠E =90°-65°=25°.(2)证明:∵∠B+∠BAC+∠ACB=180°,∴∠BAC =180°-(∠B+∠ACB). ∵AD 平分∠BAC,∴∠BAD =12∠BAC=90°-12(∠B+∠ACB).∴∠ADC =∠B+∠BAD=90°-12(∠ACB-∠B).∵EP ⊥AD ,∴∠DPE =90°. ∴∠ADC +∠E=90°. ∴∠E =90°-∠ADC, 即∠E=12(∠ACB-∠B).21、观察下列等式:第1个等式:a 1=11×3=12×(1-13);第2个等式:a 2=13×5=12×(13-15);第3个等式:a 3=15×7=12×(15-17);…请按以上规律解答下列问题: (1)列出第5个等式: a 5=19×11=12×(19-111);(2)a 1+a 2+a 3+…+a n =12(1-12n +1)(用含n 的代数式表示),并证明.证明:由题意,得a n =12(12n -1-12n +1)所以a 1+a 2+a 3+…a n=12×[(1-13)+(13-15)+…+(12n-1-12n+1)]=12(1-12n+1).22、如图,EF∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)直线CD与AB平行吗?为什么?(2)若∠CEF=68°,求∠ACB的度数.解:(1)平行.理由如下:∵EF∥AB,∠EFB=130°,∴∠ABF=180°-130°=50°.∵∠CBF=20°,∴∠CBA=∠ABF+∠CBF=70°.∵∠DCB=70°,∴∠CBA=∠DCB.∴CD∥AB.(2)∵EF∥AB,∠CEF=68°,∴∠A=68°.∵CD∥AB,∴∠ACD+∠A=180°.∴∠ACD=180°-∠A=180°-68°=112°.∵∠DCB=70°,∴∠ACB=∠ACD-∠DCB=112°-70°=42°.∴∠ACB的度数为42°.23、如图,已知∠A=90°+x°,∠B=90°-x°,∠CED=90°,4∠C-∠D=30°,射线EF∥AC.(1)判断射线EF 与BD 的位置关系,并说明理由; (2)求∠C,∠D 的度数.解:(1)EF∥BD.理由:∵∠A +∠B=90°+x °+90°-x °=180°, ∴AC ∥BD. ∵EF ∥AC , ∴EF ∥BD. (2)∵AC∥EF∥BD, ∴∠CEF =∠C,∠DEF =∠D. ∵∠CED =∠CEF+∠DEF=90°, ∴∠C +∠D=90°.联立⎩⎪⎨⎪⎧∠C+∠D=90°,4∠C -∠D=30°,解得⎩⎪⎨⎪⎧∠C=24°,∠D =66°.∴∠C 的度数是24°,∠D 的度数是66°.24、(1)如图1,BD 平分∠ABC,CD 平分∠ACB.猜想∠A 与∠D 有什么数量关系?并证明你的结论;(2)如图2,BD 平分∠CBP,CD 平分∠BCQ,(1)中的猜想还正确吗?如果不正确,请你写出正确的结论,并证明你的结论.解:(1)猜想:∠D=90°+12∠A.证明:∵∠DBC=12∠ABC,∠DCB =12∠ACB,∴∠DBC +∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A.∴∠D =180°-(∠DBC+∠DCB)=180°-(90°-12∠A)=90°+12∠A.(2)不正确.结论:∠D=90°-12∠A.证明:∵∠DBC=12∠PBC,∠DCB =12∠QCB,∴∠DBC +∠DCB=12(∠PBC+∠QCB)=12(∠A+∠ACB +∠A+∠ABC)=12(180°+∠A)=90°+12∠A.∴∠D =180°-(∠DBC+∠DCB)=180°-(90°+12∠A)=90°-12∠A.25、在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE∥AC 交AB 于点E.(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB.①若∠BAC=100°,∠C =30°,则∠AFD=115°;若∠B=40°,则∠AFD=110°; ②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)如图2,点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F ,试探究∠AFD 与∠B 之间的数量关系,并说明理由.解:(1)②∠AFD=90°+12∠B.理由如下: ∵DE ∥AC ,∴∠EDB =∠C.∵AG 平分∠BAC,DF 平分∠EDB,∴∠BAG =12∠BAC,∠FDG =12∠EDB=12∠C . ∵∠DGF =∠B+∠BAG,∴∠AFD =∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+12(∠BAC+∠C) =∠B+12(180°-∠B) =90°+12∠B. (2)∠AFD=90°-12∠B.理由如下: ∵∠EDB =∠C,∠BAG =12∠BAC,∠BDH =12∠EDB=12∠C, 又∵∠AHF=∠B+∠BDH,∴∠AFD =180°-∠BAG-∠AHF=180°-12∠BAC-∠B-∠BDH =180°-12∠BAC-∠B-12∠C =180°-∠B-12(∠BAC+∠C) =180°-∠B-12(180°-∠B)=180°-∠B-90°+12∠B =90°-12∠B.。

北师大版初中数学八年级上册《第7章 平行线的证明》单元测试卷(含答案解析

北师大版初中数学八年级上册《第7章 平行线的证明》单元测试卷(含答案解析

北师大新版八年级上学期《第7章平行线的证明》单元测试卷一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠46.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3 13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为个.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)18.已知:a∥b,b∥c,则a∥c.理由是.19.已知直线a∥b,b∥c,则直线a、c的位置关系是.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是.21.如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上点E处,若∠A=32°;则∠BDC=°.22.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.23.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=.24.如图,△ABC沿直线AB向下翻折得到△ABD,若∠ABC=25°,∠ADB=110°,则∠DAC的度数是.25.如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为.26.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为.27.举反例说明命题对于“对于任意实数x,代数式x2﹣1的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).28.下列命题:①若a2=b2,则a=b;②点(﹣2,1)关于y轴的对称点为(2,1);③两组对边分别相等的四边形是平心四边形,其中真命题有(填写序号).29.重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.30.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2min;②洗菜3min;③准备面条及佐料2min;④用锅把水烧开7min;⑤用烧开的水煮面条和菜要3min.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少需要min.三.解答题(共20小题)31.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.32.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD()所以∠BGF+∠3=180°()因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=.(等式性质).所以∠BGF=.(等式性质).33.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.34.如图,已知∠1=∠2求证:a∥b.35.已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+ =180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()36.(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?解:过点E作EF∥AB ①,如图(b),则∠ABE+∠BEF=180°,()因为∠ABE+∠BED+∠EDC=360°()所以∠FED+∠EDC=°(等式的性质)所以FE∥CD ②()由①、②得AB∥CD ().(2)如图(c),当∠1、∠2、∠3满足条件时,有AB∥CD.(3)如图(d),当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.37.填空,如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠1=∠2(已知)又∠1=∠DMN ()∴∠2=∠DMN(等量代换)∴DB∥EC ()∴∠DBC+∠C=180°()∵∠C=∠D(已知)∴∠DBC+ =180°(等量代换)∴DF∥AC ()∴∠A=∠F ()38.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.39.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE=.(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)40.如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数.41.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.42.如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.43.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.44.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.45.在数学实践课上,老师在黑板上画出如下的图形(其中点B、F、C、E在同一条直线上),并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)写出所有的真命题.(用序号表示题设、结论)(2)请选择一个给予证明.46.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=,图2中:∠DEF=;(2)请观察图1、图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.47.如图,在△ABC和△DCB中,AC与BD交于点E,现有三个条件:①AB=DC;②∠A=∠D,③∠1=∠2,请你从三个条件中选出两个作为条件,另一个作为结论,组成一个真命题,并给予证明.(1)条件是;结论是(填序号);(2)证明.48.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,请你根据表中数据猜一下2号,5号,8号,9号学生哪一个进入30秒跳绳决赛.说明你的理由.49.四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.50.我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理.北师大新版八年级上学期《第7章平行线的证明》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个【分析】①根据两点之间线段最短判断.②对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.③根据平行公理进行判断.④根据垂线的性质进行判断.⑤距离是指的长度.⑥根据在同一平面内,两条不重合的直线的位置关系.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④平面内过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.【点评】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【分析】根据线段是任意两点之间的距离,它有长度,故同一平面内的两条线段可以既不平行又不相交.【解答】解:根据线段的定义得出:同一平面内的两条线段,可以既不平行又不相交,故选:C.【点评】此题主要考查了线段的定义以及线段之间的位置关系,利用线段定义得出是解题关键.3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选:B.【点评】本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离【分析】根据射线在一直线上课判断A;根据平行公理的推论课判断B;根据点到直线的距离定义可判断D;根据垂线的性质可判断C.【解答】解:A、当两射线在一直线上时就不平行,故本选项错误;B、过直线外一点有且只有一条直线平行于已知直线,故本选项错误;C、在同一平面内,过一点有且只有一条直线垂直于已知直线,故本选项正确;D、过直线外一点作直线的垂线,这点和垂足之间的线段的长是点到直线的距离,故本选项错误;故选:C.【点评】本题考查了对平行公理及推论,垂线,点到直线的距离等知识点的应用,关键是能根据定理和性质进行判断.5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠4【分析】利用两直线平行,同位角相等与垂直的定义,对选项一一分析,排除错误答案.【解答】解:A、正确,∵∠1=∠4,∴l1∥l2(同位角相等,两直线平行).B、错误,应为∠1+∠2=∠3+∠4.C、错误,应为∠1+∠2=90°或∠3+∠4=90°.D、错误,应为∠2=∠3.故选:A.【点评】本题此题综合考查了两直线平行,同位角相等的性质和垂直的定义.6.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数【分析】根据平方根的定义,结合正数有两个平方根;0的平方根是0;负数没有平方根逐一进行判定即可.【解答】解:A、因负数没有平方根,故任何数都有平方根错误;B、因0的平方根是0,故只有正数才有平方根错误;C、负数有立方根,错误;D、存在算术平方根等于本身的数,即是1和0,正确.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=4,b2=9,且3>2,此时不但不满足a2>b2,也不满足a>b不成立故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=2,且﹣2<3,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故B选项中a、b的值能说明命题为假命题;在C中,a2=9,b2=4,且3>﹣2,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=4,b2=9,且﹣2<3,此时不但不满足a2>b2,也不满足a>b不成立,故D选项中a、b的值不能说明命题为假命题;故选:B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个【分析】根据三角形的内角、直线的垂直、有理数进行判断即可.【解答】解:①一个三角形中至少有两个锐角,是真命题;②垂直于同一条直线的两条直线平行,是假命题;③如果两个有理数的积小于0,但这两个数的和不一定小于0,是假命题;故选:B.【点评】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,柳丁6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选:B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为0,1,3,4,5,6个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.【点评】此题主要考查了命题与定理等知识,熟练掌握相关定理是解题关键.18.已知:a∥b,b∥c,则a∥c.理由是平行于同一直线的两条直线平行.【分析】根据平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行即可求解.【解答】解:∵a∥b,a∥c(已知),∴b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为平行于同一直线的两条直线平行【点评】本题考查了平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.注意:平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.19.已知直线a∥b,b∥c,则直线a、c的位置关系是平行.【分析】根据平行于同一条直线的两条直线互相平行,可得答案.【解答】解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是∠DAB=∠D.【分析】根据平行线的判定定理进行解答即可.【解答】解:添加的条件为:∠DAB=∠D,。

北师大版八年级数学上册第七章 平行线的证明 单元测试试题(含答案)

北师大版八年级数学上册第七章  平行线的证明  单元测试试题(含答案)

北师大版八年级数学上册第七章平行线的证明单元测试题一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的度数之比为2∶3∶5,则∠B的度数为(C) A.96° B.72°C.54° D.40°2.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为(B)A.20°B.35°C.45°D.70°3.对于句子:①标准差是描述一组数据波动大小的量;②轴对称图形是等腰三角形;③平角都相等;④如果a=b,那么a=b;⑤作射线OA.其中是真命题的个数有(B) A.4个 B.3个C.2个 D.1个4.如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于(B)A.85° B.95°C.105° D.115°5.如图,∠3=∠4,则下列条件中不能推出AB∥CD的是(A)A.∠1+∠2=90°B.∠1=∠2C.∠1=∠3且∠2=∠4D.BM∥CN6.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有(D)A.1个 B.2个 C.3个 D.4个7.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线的其中一条上.若∠1=35°,则∠2的度数为(C)A.10° B.20°C.25° D.30°8.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD交于点F,∠A=60°,则∠BFC的度数为(C)A.118° B.119°C.120° D.121°9.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于(D)A.25° B.30°C.35° D.40°10.等腰三角形一腰上的高与另一腰的夹角为40°,则它的底角的度数是(D)A.50° B.65°C.25° D.65°或25°二、填空题(每小题3分,共18分)11.命题“直角三角形的两个锐角互余”的条件是一个三角形是直角三角形,结论是这个三角形的两个锐角互余.12.如图,已知AB∥CD,则∠1与∠2,∠3的关系是∠1=∠2+∠3.13.如图,直线l1∥l2,且l1,l2被直线l3所截,∠1=∠2=35°,∠P=90°,则∠3=55°.14.如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF=35°.15.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,那么有AC ∥DE ;③如果∠2=30°,那么有BC ∥AD ;④如果∠2=30°,必有∠4=∠C.其中正确的有①②④.(填序号)16.一大门的栏杆如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,则∠ABC +∠BCD =270°.三、解答题(共52分)17.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E.若∠1=64°,则∠2为多少度?解:∵AC ∥BD , ∴∠ABE =∠1=64°.又∵∠BAC =180°-∠1=180°-64°=116°,AE 平分∠BAC , ∴∠BAE =12∠BAC =58°.∴∠2=∠BAE +∠ABE =58°+64°=122°.18.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°.(1)求证:EF∥AB;(2)若∠CEF=70°,求∠ACB的度数.解:(1)证明:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°.∵∠CBF=20°,∴∠ABF=∠ABC-CBF=50°.∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°.∴EF∥AB.(2)∵EF∥AB,CD∥AB,∴EF∥CD.∵∠CEF=70°,∴∠ECD=110°.∵∠DCB=70°,∴∠ACB=∠ECD-∠DCB=110°-70°=40°19.如图,在△ABC中,∠A=56°,∠ABD=30°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.解:在△ABC 中,∵∠A =56°,∠ACB =70°, ∴∠ABC =54°. ∵∠ABD =30°,∴∠CBD =∠ABC -∠ABD =24°. ∵CE 平分∠ACB , ∴∠BCE =12∠ACB =35°.∴在△BCE 中,∠DEC =∠CBD +∠BCE =59°.20.求证:两条平行线被第三条直线所截,同位角的平分线互相平行.(写出已知、求证,并证明)解:已知:如图,AB ∥CD ,PQ 分别交直线AB ,CD 于点E ,F ,且EG 平分∠AEP ,FH 平分∠CFE.求证:EG ∥FH.证明:∵AB ∥CD(已知),∴∠AEP =∠CFE(两直线平行,同位角相等).∵EG 平分∠AEP ,FH 平分∠CFE(已知),∴∠PEG =12∠AEP ,∠EFH =错误!∠CFE(角平分线的定义).∴∠PEG =∠EFH(等量代换). ∴EG ∥FH(同位角相等,两直线平行).21.如图,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,求∠A 的度数.解:连接AA ′,则∠1=∠3+∠5,∠2=∠4+∠6. 由折叠性质得∠DAE =∠DA ′E.又∵∠DAE =∠3+∠4,∠DA ′E =∠5+∠6,∴∠1+∠2=∠3+∠5+∠4+∠6=∠DAE +∠DA ′E =2∠DAE. 又∵∠1+∠2=100°. ∴∠DAE =50°.22.如图,直线a∥b,直线c分别与a,b相交于点D,C,在直线CD上有一点P.(1)如果点P在点C,D之间运动时,问∠1,∠2,∠3之间有怎样的关系?如果点P运动,它们的关系是否发生变化?(2)如果点P不在点C,D之间运动时,∠1,∠2,∠3之间的关系是怎样的?解:(1)当点P与点C重合时,∠2=0°,a∥b,则∠3=∠1,∠3=∠1+∠2;同理,当点P与点D重合时,∠3=∠1+∠2;当点P在点C,D之间运动时(P点不与点C,D重合),过点P作PE∥a,∵a∥b,∴PE∥b.∴∠APE=∠1,∠BPE=∠2.∴∠3=∠APE+∠BPE=∠1+∠2.∴点P在点C,D之间运动时,∠1,∠2,∠3的关系不变化.(2)如果点P不在点C,D之间运动时,如图,当点P在点D上方时,过点P作PE∥a,∵a∥b,∴PE∥b.∴∠2=∠EPB,∠1=∠EPA.∴∠3=∠EPB-∠EPA=∠2-∠1.同理,当点P在点C下方时,∠3=∠1-∠2.∴当点P不在点C,D之间运动时,∠3=∠2-∠1或∠3=∠1-∠2.。

第七章 平行线的证明数学八年级上册-单元测试卷-北师大版(含答案)

第七章 平行线的证明数学八年级上册-单元测试卷-北师大版(含答案)

第七章平行线的证明数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如右图,在△ABC中,线段BC的垂直平分线交线段AB于点D,若AC=CD,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°2、如图,四边形的外接圆为⊙O,,,,则的度数为()A. B. C. D.3、在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个4、下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形一个外角的大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部5、如图,在△ABD中,AB的垂直平分线DE交BC于点D,∠B=30°,AD=AC,∠BAC 的度数为()A.80°B.85°C.90°D.105°6、如图,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°7、等腰三角形的一个底角是30°,则它的顶角是()A.30°B.40°C.75°D.120°8、如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=50°,那么∠1+∠2的大小为()A.130°B.180°C.230°D.260°9、如图,∠A=50°,P 是△ABC 内一点,BP 平分,CP 平分∠ACB,则∠BPC 的度数为( )A.100°B.115°C.130°D.140°10、在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是()A.50°B.40°C.130°D.120°11、在直角△ABC中,∠B是直角,∠C=22°,则∠A等于().A.22°B.68°C.78°D.112°12、等腰三角形的一个外角是80°,则其底角是().A.100°B.100°或40°C.40°D.80°13、一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形14、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°15、已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=62°,∠C=50°,则∠ADB的度数是()A.68°B.72°C.78°D.82°二、填空题(共10题,共计30分)16、在的方格纸上,有7格点已标记,分别为,,,,,,,从中找出4个点,两个点连一条线,另外两点连一条线,使两条连线平行,则所构造的平行连线可记作:________(格式如:,用图中的字母表示)17、命题“如果a>0,那么a2>0”的逆命题为________.18、如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC 绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m 的值为________.19、如图,在△ABC中D、E两点分别在BC、AC边上,若BD=CD,∠B=∠CDE,DE=2,则AB 的长度是________.20、如图,在平面直角坐标系中,点,点,其中,,点是轴负半轴上一点,点是在直线与直线之间的一点,连接、,平分,平分,交于,则与之间可满足的数量关系式为________.21、如图,在△ADC中,B是AC上一点,AD=BD=BC.若∠C=25°,则∠ADB的度数是________°.22、如图,在△ABC中,过点B作EB⊥AB,交AC于点E,BE平分∠CBD,90°+∠C=∠BDC,则∠A的度数为________.23、如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为________.24、1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为________.25、等边三角形的每个内角为________度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的证明》单元检测卷
时间:100分钟满分:100分
一.选择题(每题3分,共30分)
1.下列语句中是命题的是()
A.作线段AB=CD B.两直线平行
C.对顶角相等D.连接AB
2.如图,若∠1=∠2,则下列选项中可以判定AB∥CD的是()
A.B.
C.D.
3.如图,直线a∥b,Rt△ABC的直角顶点A落在直线a上,点B落在直线b上,若∠1=15°,∠2=25°,则∠ABC的大小为()
A.40°B.45°C.50°D.55°
4.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB交BD于点D,已知∠ACB=34°,则∠D的度数为()
A.30°B.28°C.26°D.34°
5.一副三角板如图放置,它们的直角顶点A、D分别在另一个三角板的斜边上,且EF∥BC,则∠1的度数为()
A.45°B.60°C.75°D.90°
6.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,
⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()
A.3个B.4个C.5个D.6个
7.如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()
A.110°B.120°C.130°D.140°
8.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()
A.32°B.45°C.60°D.64°。

相关文档
最新文档