二次函数与等腰三角形存在性问题

合集下载

中考数学总复习《二次函数之等腰三角形存在性问题》专项提升训练题-附答案

中考数学总复习《二次函数之等腰三角形存在性问题》专项提升训练题-附答案

中考数学总复习《二次函数之等腰三角形存在性问题》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.2.如图,抛物线2y x bx c =-++过点(1,0)A -和(3,0)B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 为抛物线对称轴上一动点,当PCB 是以BC 为底边的等腰三角形时,求P 的坐标;(3)在(2)条件下,是否存在点M 为抛物线上的点,使得2BCM BCP S S =△△?若存在,求出点M 的横坐标;若不存在,请说明理由.3.如图,已知抛物线2y ax bx c =++经过点()3,0A -,()0,4C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MBC 的周长最小时,求M 点的坐标.(3)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(4)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C 和P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()40A ,、()30B -,两点,与y 轴交于点C .(1)求这条抛物线所对应的函数表达式.(2)如图①,点D 是x 轴下方抛物线上的动点,且不与点C 重合.设点D 的横坐标为m ,以O 、A 、C 、D 为顶点的四边形面积为S ,求S 与m 之间的函数关系式.(3)如图①,连结BC ,点M 为线段AB 上一点,点N 为线段BC 上一点,且BM CN n ==,直接写出当n 为何值时BMN 为等腰三角形.5.抛物线24y x x =-与直线y x =交于原点O 和点B ,与x 轴交于点A ,顶点为D .(1)填空:点B 的坐标为 ,点D 的坐标为 .(2)如图1,连结OD ,P 为x 轴上的动点,当以O ,D ,P 为顶点的三角形是等腰三角形时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横生标为m (05)m <<,连结MQ ,BQ 和MQ 与直线OB 交于点E .设BEQ 和BEM △的面积分别为1S 和2S ,设12S t S =己,试求t 关于m 的函数解析式并求出t 的最值6.如图,在平面直角坐标系中,二次函数2y x bx c =-+-的图象与x 轴交于点(3,0)A -和点(1,0)B ,与y 轴交于点C .(1)求这个二次函数的表达式;(2)如图①,二次函数图象的对称轴与直线AC 交于点D ,若E 是直线AC 上方抛物线上的一个动点,求ECD 面积的最大值;(3)如图①,P 是直线AC 上的一个动点,是否存在点P ,使PBC 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.7.如图1,抛物线23432363y x x =++与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE AC ∥交抛物线于点E ,交y 轴于点P .(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN AC ⊥,连GM 和NO ,求GM MN NO ++的最小值;(2)如图2,在(1)的条件下,过点F 作FH x ⊥轴于点H 交AC 于点L ,将AHL 沿着射线AC 平移到点A 与点C 重合,从而得到A H L '''(点A ,H ,L 分别对应点A ',H '和L '),再将A H L '''绕点H '逆时针旋转(0180)αα︒<<︒,旋转过程中,边A L ''所在直线交直线DE 于Q ,交y 轴于点R ,求当PQR 为等腰三角形时,直接写出PR 的长.8.如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于()4,0B ,()2,0C -两点,与y 轴交于点()0,2A -.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为腰的等腰三角形;若存在,请求出点M 的坐标,若不存在,请说明理由.9.如图,抛物线23y ax bx =++与x 轴相交于点(1,0)A -,B ,对称轴是1x =,与y 轴相交于点C .(1)求抛物线的函数表达式;(2)点P 为抛物线对称轴上一动点,当PCB 是以BC 为底边的等腰三角形时,求点P 的坐标;(3)在(2)的条件下,在第一象限内,抛物线上是否存在点M ,使得BCM BCP S S =△△?若存在,求出点M 的横坐标;若不存在,请说明理由.10.如图,抛物线2y x bx c =++的图象与x 轴交于(3,0)A -、(1,0)B 两点,与y 轴交于点C ,点P 是抛物线上位于第三象限内的一点.(1)求抛物线的解析式.(2)连接AP 、PC 和CB ,求四边形APCB 面积的最大值及此时P 点的坐标.(3)点D 为抛物线对称轴上的一点,当以点A 、C 、D 为顶点的三角形为等腰三角形时,请写出所有符合条件的点D 的坐标,并把求其中一个点D 的过程写出来.11.已知拋物线2y ax bx c =++经过点()120B ,和()06C -,,对称轴为直线2x =.(1)求该拋物线的解析式;(2)点D 在线段AB 上,且AD AC =,若动点P 从A 点出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 点出发沿线段CB 匀速运动,问是否存在某一时刻t ,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度,若不存在,请说明理由;(3)在(2)的条件下,在x 轴上是否存在点M ,使MPQ 为等腰三角形?若存在,请求出所有点M 的坐标,若不存在,请说明理由.12.已知抛物线与x 轴交于1030A C -(,)、(,),与y 轴交于点03B -(,).(1)求抛物线对应的函数解析式;(2)在x 轴上是否存在点P ,使PBC 为等腰三角形?若存在,求出P 点坐标;若不存在,请说明理由;(3)点M 为抛物线上一动点,在直线BC 上是否存在点Q ,使以点O 、B 、Q 、M 为顶点的四边形为平行四边形?若存在,求出Q 点的坐标;若不存在,请说明理由.13.如图,抛物线212y x mx n =-++与x 轴交于A B 、两点,与y 轴交于点C ,拋物线的对称轴交x 轴于点D ,已知()()1,0,0,2A C -.(1)求抛物线的解析式;(2)点E 是线段BC 上的一个动点(不与B C 、重合),过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标.(3)在抛物线的对称轴上是否存在点P ,使PCD 为等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由.14.如图,已知抛物线与x 轴交于1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F . ①当EF 取得最大值时,求m 的值和EF 的最大值; ①当EFC 是等腰三角形时,求点E 的坐标.15.如图1,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于点()60A ,和()10B -,,与y 轴交于点C ,连接BC ,过点A 、C 作直线AC .(1)求抛物线的函数解析式.⊥交AC于点F,过点P作(2)点P为直线AC下方抛物线上一动点,过点P作PF AC∥交x轴于点E,求AE PFPE AC+的最大值及此时点P的坐标.(3)在(2)问的条件下,将抛物线23=+-沿射线CB方向平移10个单位长度得y ax bx到新抛物线y',新抛物线y'与原抛物线交于点M;连接CP,把线段CP沿直线AC平移,记平移后的线段为C P'',当以C'、P'和M为顶点的三角形是等腰三角形时,请直接写出所有符合条件的P'点的坐标.参考答案: 1.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为42.(1)223y x x =-++(2)()1,1P(3)M 点横坐标为3172+或3172-或1或23.(1)248433y x x =--+ (2)81,3M ⎛⎫- ⎪⎝⎭ (3)252S =,3,52D ⎛⎫- ⎪⎝⎭(4)P 的坐标为:()1,0-或()1,13-或()1,13--或131,8⎛⎫- ⎪⎝⎭4.(1)211433=--y x x (2)当30m -<<时28S m =-+;当04m <<时228833S m m =-++. (3)52n =,2511n =和3011n = 5.(1)(5,5) ()2,4-(2)点P 的坐标为()()()()25,025,04,05,0-或或或(3)()21525056224t m m ⎛⎫=--+<< ⎪⎝⎭,t 的最大值为25246.(1)223y x x =--+(2)98ECD S =最大△(3)点P 的坐标为()535--,或()535+,或5122⎛⎫- ⎪⎝⎭,或()21-,.7.(1)239745+(2)17333-或8338.(1)211242y x x =-- (2)存在,12PK PD +的最大值为258 335,216P ⎛⎫- ⎪⎝⎭(3)存在,M 的坐标为()111,或()111-,或()1219-+,或()1219--,.9.(1)223y x x =-++(2)点P 的坐标为(1,1)(3)存在,点M 的横坐标为352+或35210.(1)223y x x =+-(2)点P 坐标为315,24⎛⎫-- ⎪⎝⎭ max 758ABCP S =四边形 (3)1(1,14)D - 2(1,14)D -- 3(1,173)D -- 4(1,173)D --- 5(1,1)D --;11.(1)2116164y x x =--; (2)存在5t =时线段PQ 被直线CD 垂直平分,点Q 的运动速度每秒355单位长度; (3)1(2,0)M 2(33,0)10M -+ 3(33,0)10M -- 4(15,0)M ;12.(1)2=23y x x --(2)3,0-()或(323,0)+,或(323,0)-+,或0,0() (3)存在Q 1Q :321213(,)22+- 2321213,)22(Q -+- 3)213(,22192Q --4)321(,29212Q +-+-13.(1)213222y x x =-++ (2)当2x =时,四边形CDBF 的面积最大,最大值为132,此时()2,1E (3)存在,满足条件的P 点坐标为35353325,,,4,22222216⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,14.(1)245y x x =--+(2)①当52m =-时,EF 有最大值,最大值为254;①()38-,或()45-,或()25622--,15.(1)215322y x x =-- (2)AE +PF 的最大值为:9595+;此时()3,6P - (3)点P '的坐标为:172112911,55⎛⎫--- ⎪ ⎪⎝⎭或172412911,55⎛⎫+-+ ⎪ ⎪⎝⎭或()11,13--。

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

二次函数的动点问题(等腰、直角三角形的存在性问题)

二次函数的动点问题(等腰、直角三角形的存在性问题)

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式〔1〕、【一般式】抛物线上任意三点时,通常设解析式为,然后解三元方程组求解; 〔2〕、【顶点式】抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解;2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进展判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况 △ > 0与x 轴交点 方程有的实数根△ < 0 与x 轴交点 实数根 △ = 0与x 轴交点方程有的实数根3、抛物线上有两个点为A 〔x 1,y 〕,B 〔x 2,y 〕 (1)对称轴是直线2x 21x x +=(2)两点之间距离公式: 两点()()2211y ,x Q ,y ,x P , 那么由勾股定理可得:221221)()(y y x x PQ -+-=练一练:A 〔0,5〕和B 〔-2,3〕,那么AB =。

4、 常见考察形式1〕A 〔1,0〕,B 〔0,2〕,请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中一条线段,构造等腰三角形,用的是“两圆一线〞:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2〕A 〔-2,0〕,B 〔1,3〕,请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中一条线段,构造直角三角形,用的是“两线一圆〞:分别过线段的两个端点作线段的垂线,再以线段为直径作圆; 5、求三角形的面积:〔1〕直接用面积公式计算;〔2〕割补法;〔3〕铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽〞〔a 〕,中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高〞〔h 〕. 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

二次函数中等腰三角形的存在问题

二次函数中等腰三角形的存在问题

零点是函数图像与x轴相交的点,用于解方程 和确定函数的根。
二次函数的最值是函数图像的最高点(最大 值)或最低点(最小值),在寻求极值时非 常重要。Leabharlann II. 等腰三角形的性质定义
等腰三角形是一种具有两条边相等的三角形, 拥有一些特殊的性质和几何关系。
面积
等腰三角形的面积可以通过底边的长度和高度 来计算,其中高度与等边的长度有关。
2. Johnson, L. (2019). "Exploring the Existence of Isosceles Triangles in Quadratic Functions." Geometrical Review, 30(4), 267-286.
3. Wang, Y. (2018). "Applications of Isosceles Triangles in Quadratic Function Analysis." Mathematica, 55(3), 189-205.
二次函数中等腰三角形的 存在问题
本演示将探讨二次函数中等腰三角形的存在问题。我们将介绍二次函数和等 腰三角形的基本概念,并深入研究二次函数中等腰三角形的性质及其应用。
I. 介绍
二次函数
二次函数是一个具有二次方的多项式函数,可呈现多种形态和特征。
等腰三角形
等腰三角形是一种具有两条边相等的三角形,具有一些特殊的几何性质。
周长
等腰三角形的周长可以通过两条等边的长度和 第三条边的长度来计算。
内角
等腰三角形的内角具有特定的测量值,其中包 括基角、等边角和顶角。
IV. 二次函数中等腰三角形的探讨
1
确定三角形三个顶点坐标

二次函数背景下的等腰三角形存在性问题

二次函数背景下的等腰三角形存在性问题

图9B C O y x A 二次函数背景下的等腰三角形存在性问题1.已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图1)。

(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。

(4分)(2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E 。

①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标。

(3分) ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由。

(3分)2.如图9,抛物线2812(0)y ax ax a a =-+<与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角,且恰使△OCA ∽△OBC .(1)求线段OC 的长.:(2)求该抛物线的函数关系式.:(3)在x 轴上是否存在点P ,使△BCP 为等腰三角形?若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.3.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点图11 图2 图3(02)A ,,点(10)C -,,如图所示:抛物线22y ax ax =+-经过点B .(1)求点B 的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使ACP △仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形?请直接写出相应的t 值.B AC xy(0,2) (-1,0)。

专题 二次函数与等腰三角形有关的问题(知识解读)-中考数学(全国通用)

专题 二次函数与等腰三角形有关的问题(知识解读)-中考数学(全国通用)

专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。

【解题思路】等腰三角形的存在性问题【方法1 几何法】“两圆一线”(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.注意:若有重合的情况,则需排除.以点C1 为例,具体求点坐标:过点A作AH⊥x轴交x轴于点H,则AH=1,又32121131311==-=∴=HC AC ,()03211,坐标为故点-C类似可求点 C 2 、C 3、C 4 .关于点 C 5 考虑另一种方法.【方法2 代数法】点-线-方程表示点:设点C 5坐标为(m ,0),又A (1,1)、B (4,3),表示线段:11-m 225+=)(AC 94-m 225+=)(BC 联立方程:914-m 1-m 22+=+)()(,623m =解得:,),坐标为(故点06232C总结:【典例分析】【考点1 等腰角形的存在性】【典例1】(2020•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A (﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在,请说明理由.【变式11】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【变式1-2】(2022•荣昌区自主招生)如图,在平面直角坐标系中,抛物线y=ax2+x+c (a≠0)与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.(1)求抛物线的解析式;(2)将抛物线y=ax2+x+c沿射线BC平移,B,C的对应点分别为M,N,当以点A,M,N为顶点的三角形是以MN为腰的等腰三角形时,请直接写出点M的坐标,并任选其中一个点的坐标,写出求解过程.【典例2】(2020•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC 交于点M,连接PC.当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【变式2-1】(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【变式2-1】(2021•大渡口区自主招生)如图,若抛物线y=x2+bx+c与x轴相交于A,B 两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.专题06 二次函数与等腰三角形有关的问题(知识解读)【专题说明】二次函数之等腰三角形存在性问题,主要指的是在平面直角坐标系下,已知一条边(或两个顶点)的等腰三角形存在,求第三个顶点的坐标的题型.主要考察学生对转化思想、方程思想、几何问题代数化的数形结合思想及分类讨论思想的灵活运用。

二次函数中等腰三角形点的存在性问题(共15张PPT)

二次函数中等腰三角形点的存在性问题(共15张PPT)

1. 如图,已知点A (-2,1),B (4,3), 则线段AB的长是________.
C
练习:如图,已知点A (-2,3),B (4,-1), 则线段AB的长是________.
y
(-2,3) A.
x o
B. (4,-1)
例题精讲
1. 如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴 交于A、B两点,与y轴交于点C,且BO=OC=3AO. (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点P, 使△PBC是等腰三角形?若存在, 请写出符合条件的P点坐标, 若不存在,请说明理由.
四.问题应用
①注意分类方式,要做到不重、不漏; ②操作分三步进行;
P1(0, 2), P2 (0, 2), P3(0, 2
3),
P4
(0,
2 3
3)
一、回顾两点间距离公式
1.两点间距离公式
平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),
则两点间距离公式
AB
(x2 x1)2 ( y2 y1)2 .
一.问题的提出
如图,点A、B为两定点,在直 线m上是否存在一点P,使得 △PAB是等腰三角形?
二.问题分析
演示
三.问题解决——几何作图法
分类: ①以P为顶点,PA=PB ②以A为顶点,AP=AB ③以B为A为圆心AB为半径 ③以B为圆心BA为半径
【方法小结】
1. 若一个三角形是等腰三角形,没有明确给出底边和腰,则需 要进行分类讨论. 2. 以线段AB为边的等腰三角形构造方法如上图所示(基本图 形). 等腰三角形的另一个顶点在线段AB的垂直平分线上,或 以点A、点B为圆心,AB长为半径的圆周上(不与线段AB共 线).(两圆一线法找点)

专题一:二次函数中等腰三角形存在性问题

专题一:二次函数中等腰三角形存在性问题

专题:二次函数中等腰三角形存在性问题类型一、等腰三角形存在性问题以(,)A A A x y 、(,)B B B x y 为三角形的边,在x 轴上找一点P 使得△PAB 为等腰三角形(二定一动)一.找法:画圆和作垂直平分线①以A 为圆心,线段AB 为半径画圆,与x 轴交点即为1P 、2P 点;(AB=AP )②以B 为圆心,线段AB 为半径画圆,与x 轴交点即为3P 、4P 点;(AB=BP )③作线段AB 的垂直平分线,与x 轴交点即为5P 点;(AP=BP )二、算法:利用两点距离公式进行计算 公式:22()()A B A B AB x x y y =-+- ,设(,)p p P x y ,分三种情况:①AB=AP 时 2222()()()()A B A B A P A P x x y y x x y y -+-=-+-可得1P 、2P ,(特殊情况可能是一个点,例如2P 与B 重合)②AB=BP 时2222()()()()A B A B B P B P x x y y x x y y -+-=-+-可得3P 、4P ,(特殊情况可能是一个点,例如3P 与A 重合)③AP=BP 时2222()()()()A P A P B P B P x x y y x x y y -+-=-+-可得5P 、例题1、如图,已知二次函数2y x bx c =++的图像与x 轴交于点A 、B 两点,其中A 点坐标为(-3,0),与y 轴交于点C ,点D (-2,-3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在动点Q ,使得△BCQ 为等腰三角形?若存在,求出点Q 的坐标;若不存在,说明理由.1、(2021·云南九年级一模)如图所示,抛物线()240y ax bx a =++≠经过点()1,0A -,点()4,0B ,与y 轴交于点C ,连接AC ,BC .点M 是线段OB 上不与点O 、B 重合的点,过点M 作DM x ⊥轴,交抛物线于点D ,交BC 于点E .(1)求抛物线的表达式;(2)过点D 作DF BC ⊥,垂足为点F .设M 点的坐标为(),0M m ,请用含m 的代数式表示线段DF 的长,并求出当m 为何值时DF 有最大值,最大值是多少?(3)试探究是否存在这样的点E ,使得以A ,C ,E 为顶点的三角形是等腰三角形.若存在,请求出此时点E 的坐标;若不存在,请说明理由.2、(八中2020级初三第三次月考)如图在平面直角坐标系中,已知抛物线2(0)y ax bx c a =++≠交x 轴于A (-4,0),B (1,0),交y 轴于C (0,3)(1)求此抛物线解析式;(2)如图1,点P 为直线AC 上方抛物线上一点,过点P 作PQ ⊥x 轴于点Q ,再过点Q 作QR//AC 交y 轴于点R ,求PQ+QR 的最大值及此时点P 的坐标;(3)如图2,点E 在抛物线上,横坐标为-3,连接AE ,将线段AE 沿直线AC 平移,得到线段''A E ,连接'CE ,当△''A E C 为等腰三角形时,只写写出点'A 的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

老师
学生学管师
学科
名称
年级上课时间月日 _ _ :00-- __ :00 课题
名称
等腰三角形的存在问题
教学
重点
教学过程1.(2011•)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另
一点C(3,0).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
2.(2011•)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于
点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
3.(2011•)如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段
AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).
(1)求经过O、P、B三点的抛物线的解析式;
(2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;(3)当P移动到点()时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标.
4.(2011•市綦江县潭已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.
(1)求该抛物线的解析式:
(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由.
4.(2011•贵港)如图,已知直线y=﹣x+2与抛物线y=a (x+2)2
相交于A 、B 两点,点A 在y 轴上,M 为抛物线的顶点.
(1)请直接写出点A 的坐标及该抛物线的解析式;
C
A B y x
O P D Q
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
5.(2010•)如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,
其对称轴与x轴交于点D,连接AC.
(1)点A的坐标为_________ ,点C的坐标为_________ ;
(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐
标;若不存在,请说明理由;
(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个?
6.(2010•)如图,在直角坐标系中,A(﹣1,0),B(0,2),一动点P沿过B点且垂直于AB的
射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交于点C.
(1)求点C的坐标.
(2)求过点A、B、C三点的抛物线的解析式.
(3)若P点开始运动时,Q点也同时从C点出发,以P点相同的速度沿x轴负方向向点A运动,t 秒后,以P、Q、C为顶点的三角形是等腰三角形.(点P到点C时停止运动,点Q也同时停止运动),
求t的值.
(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.
7.(2010•)如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,
4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.
(1)求这条抛物线的解析式;
(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;
(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
8.(2011•)如图,一次函数y=﹣4x﹣4的图象与x轴、y轴分别交于A、C两点,抛物线y=x2+bx+c
的图象经过A、C两点,且与x轴交于点B.
(1)求抛物线的函数表达式;
(2)设抛物线的顶点为D,求四边形ABDC的面积;
(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN 是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.
9.(2011•)如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,
0)和B.
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;
(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.
10.(2011•东营)在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标
轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
11.(2010•潼南县)如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A
的坐标为(2,0),点C的坐标为(0,﹣1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.
12.(2010•市县)如图,抛物线y =mx 2
-( 4m +4
3
)x +3交x 轴于点A 、B (点A 在点B 的左侧),交y 轴于点C ,直线y =mx -3经过点B . (1)求抛物线的解析式;
(2)P 为线段AB 上的动点,过P 点作PD ∥BC ,交抛物线y =mx 2
-( 4m +4
3
)x +3于点D ,连接CP ,当PD 平分∠APC 时,求P 点的坐标;
(3)直线y =kx (k <0)交直线y =mx -3于点Q ,交抛物线y =mx 2
-( 4m +
4
3
)x +3于点M ,过M 点作x 轴的垂线,垂足为E ,交直线y =mx -3于点N .△QMN 能否为等腰三角形?若能,求k 的值;。

相关文档
最新文档