二次函数与等腰三角形、直角三角形的综合
二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
专题六 二次函数与几何图形的综合

若不存在,请说明理由.
+ + = ,
【解析】(1)由题意得:ቐ
−
= ,
= ,
解得ቊ
= −,
故抛物线的表达式为y=x2-5x+4①;
(2)对于y=x2-5x+4,令y=x2-5x+4=0,解得x=1或4,令x=0,则y=4,
= − +
= −
得:ቐ
,解得ቐ = ,
=
= + +
=
∴抛物线的表达式为:y=-x2+2x+3;
(2)∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,
∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;
(3)存在.∵抛物线交正方形OBDC的边BD于点E,
设AB的中点为J,连接PJ,则J(-2,-2),
∴PJ= AB=2
,∴12+(n+2)2=(2 )2,解得n= -2或n=- -2,
∴P3(-1, -2),P4(-1,- -2),
综上所述,满足条件的点P的坐标为(-1,3)或(-1,-5)或(-1, -2)或(-1,- -2).
在Rt△BOM中,BM=tan 30°·OB= ,∴ME=BE-BM=2- ,
综上所述,ME的值为:3 -2或2- .
考点二直角三角形的存在性问题
解答二次函数中直角三角形存在性问题的方法:
(1)假设其存在,画出相应的图形.
(2)分情况讨论:当所给条件不能确定直角顶点时,应分情况讨论.分别令三角形三个
二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。
二次函数中等腰直角三角形 -回复

二次函数中等腰直角三角形 -回复
您好,关于二次函数中等腰直角三角形,我们可以通过以下步骤来解决:
1. 二次函数一般式:$y=ax^2+bx+c$。
2. 因为中位线长度为右腰,所以这个中位线对应的$x$可以用平移的方法求出:设中位线长度为$t$,则该中位线对应的$x$值为$-\frac{b}{2a}+t$。
3. 由直角三角形性质可知,斜边的平方等于直角腰的平方和,即$(\frac{t}{2})^2+(at^2+c)^2=(\frac{t}{2}+b)^2$。
4. 将第3步中的方程式化简后解出$t$,再带回第2步中的式子,求出该中位线对应的$x$值。
5. 根据对称性,可以得出第二条中位线的长度与第一条中位线相等,且对应的$x$值也相等。
6. 根据中位线长度与底边长度相等的定义,可以得出三角形的底边长度为$2\times(\frac{t}{2}+b)$。
7. 最终,我们就可以得出该等腰直角三角形的底边长、两条直角边长及其顶点的坐标。
希望以上解释能够解决您的问题,任何疑问,请随时追问。
二次函数的动点问题(等腰、直角三角形的存在性问题)

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式〔1〕、【一般式】抛物线上任意三点时,通常设解析式为,然后解三元方程组求解; 〔2〕、【顶点式】抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解;2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进展判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况 △ > 0与x 轴交点 方程有的实数根△ < 0 与x 轴交点 实数根 △ = 0与x 轴交点方程有的实数根3、抛物线上有两个点为A 〔x 1,y 〕,B 〔x 2,y 〕 (1)对称轴是直线2x 21x x +=(2)两点之间距离公式: 两点()()2211y ,x Q ,y ,x P , 那么由勾股定理可得:221221)()(y y x x PQ -+-=练一练:A 〔0,5〕和B 〔-2,3〕,那么AB =。
4、 常见考察形式1〕A 〔1,0〕,B 〔0,2〕,请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中一条线段,构造等腰三角形,用的是“两圆一线〞:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2〕A 〔-2,0〕,B 〔1,3〕,请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中一条线段,构造直角三角形,用的是“两线一圆〞:分别过线段的两个端点作线段的垂线,再以线段为直径作圆; 5、求三角形的面积:〔1〕直接用面积公式计算;〔2〕割补法;〔3〕铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽〞〔a 〕,中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高〞〔h 〕. 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。
二次函数与几何综合专题 等腰直角三角形存在性问题

III、若 是等腰直角三角形,当DM为斜边时,则: ,
即: ,解得 ,
此时: ,
故不存在M坐使 是以DM为斜边的等腰直角三角形;
综上所述:点M坐标为(0,-1).
(3)解:∵ ,
∴ ,
以点P、C、Q为顶点的三角形是等腰直角三角形,有3种情况,
I.当 时,则 ,
∵四边形OHGQ是矩形,
∴ ,
∴ ,
设 ,其中 ,则P点坐标为(x,-x)
∵P在抛物线 上,即 ,解得: (不合题意舍去), ,
故此时P坐标为 ,
综上所述:点P在x轴上方的抛物线上,点Q在y轴正半轴上,当 是以AQ为斜边的等腰直角三角形时,符合条件的点P的坐标 或 .
易得: (AAS)
∴ , ,
∵四边形OHGQ是矩形,
∴ ,
∴ ,
设 ,则P点坐标为(x,x)
∵P在抛物线 上,即 ,解得: , (不合题意舍去),
此时点P坐标为
II、点P在y轴左侧的抛物线上时,如图:
以等腰 构造K字形,过P点作PH⊥x轴,垂足为H,过Q点作QG⊥PH,垂足为G,
易得: (AAS)
∴ , ,
(2)在y轴上是否存在点M,使得 是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
(3)直线AC下方的抛物线上有一动点P,直线AC上有一动点Q,若以点P、C、Q为顶点的三角形是等腰直角三角形,求出点Q的坐标.
(4)点P在x轴上方的抛物线上,点Q在y轴正半轴上,当 是以AQ为斜边的等腰直角三角形时,求出符合条件的点P的坐标.
(2)解:如图,设M点坐标为(0,y)
∵点A坐标为(-3,0),点D坐标为(-1,-4),
二次函数等腰三角形与直角三角形存在性问题(有答案)

等腰三角形直角三角形存在性问题典例1,如图,二次函数的图象与x轴交于点A、B两点,且A 点坐标为,与y轴交于点.(1)求出这个二次函数的解析式;(2)直接写出点B的坐标为(3)在x轴是否存在一点P,使是等腰三角形?假设存在,求出满足条件的P 点坐标;假设不存在,请说明理由;(4)在第一象限中的抛物线上是否存在一点Q,使得四边形ABQC的面积最大?假设存在,请求出Q点坐标及面积的最大值;假设不存在,请说明理由.答案详解解:(1)的图象经过,,,,所求解析式为:,答:这个二次函数的解析式是.(2)解:,故答案为:.(3)解:在中,,,,,①当时在x轴的负半轴),;②当时在x轴的正半轴),;③当时在x轴的正半轴),;④当时在x轴的正半轴),在中,设,那么解得:,;答:在x轴存在一点P,使是等腰三角形,满足条件的P点坐标是或或或.(4)解:如图,设Q点坐标为,因为点Q在上,即:Q点坐标为,连接OQ,,,,,Q点坐标为,答:在第一象限中的抛物线上存在一点Q,使得四边形ABQC的面积最大,Q点坐标是,面积的最大值是.解析:(1)因为的图象经过,,代入求出c、a的值,即可得到答案;(2)把代入求出x的值,即可得到答案;(3)在中根据勾股定理求出AC,根据等腰三角形的性质求出,①当时在x轴的负半轴),;②当时在x轴的正半轴),;③当时在x轴的正半轴),;④当时在x 轴的正半轴),,即可得出答案;(4)设Q点坐标为,因为点Q在上,得出Q点坐标为,连接OQ,根据,代入求出即可.此题主要考察对用待定系数法求二次函数的解析式,等腰三角形的判定,三角形的面积,二次函数图象上点的坐标特征,二次函数的最值等知识点的理解和掌握,综合运用这些性质进展计算是解此题的关键.题型较好,综合性强.练习:如图,抛物线与x轴交于点和点,与y 轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使为等腰三角形?假设存在,请求出符合条件的点P的坐标;假设不存在,请说明理由.答案详解解:(1)由题知:解得:所求抛物线解析式为:;(2)抛物线解析式为:,其对称轴为,设P点坐标为,当时,,,①当时,,解得,点坐标为:;②当时,,解得,点坐标为:或;③当时,由勾股定理得:,解得,点坐标为:综上所述存在符合条件的点P,其坐标为或或或;解析:(1)抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y 轴的交点,因此C的坐标为,根据M、C的坐标可求出CM的距离.然后分三种情况进展讨论:①当时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作轴于Q,如果设,那么直角三角形CPQ中,OM的长,可根据M的坐标得出,,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标一样,纵坐标为x,由此可得出P的坐标.②当时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当时,因为C的坐标为,那么直线必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;此题主要考察了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进展求解,不要漏解.典例2,练习:如图,在平面直角坐标系中,抛物线〔〕与轴相交于,两点,与轴相交于点,直线〔〕经过,两点,,,且。
二次函数中等腰三角形的存在问题

零点是函数图像与x轴相交的点,用于解方程 和确定函数的根。
二次函数的最值是函数图像的最高点(最大 值)或最低点(最小值),在寻求极值时非 常重要。Leabharlann II. 等腰三角形的性质定义
等腰三角形是一种具有两条边相等的三角形, 拥有一些特殊的性质和几何关系。
面积
等腰三角形的面积可以通过底边的长度和高度 来计算,其中高度与等边的长度有关。
2. Johnson, L. (2019). "Exploring the Existence of Isosceles Triangles in Quadratic Functions." Geometrical Review, 30(4), 267-286.
3. Wang, Y. (2018). "Applications of Isosceles Triangles in Quadratic Function Analysis." Mathematica, 55(3), 189-205.
二次函数中等腰三角形的 存在问题
本演示将探讨二次函数中等腰三角形的存在问题。我们将介绍二次函数和等 腰三角形的基本概念,并深入研究二次函数中等腰三角形的性质及其应用。
I. 介绍
二次函数
二次函数是一个具有二次方的多项式函数,可呈现多种形态和特征。
等腰三角形
等腰三角形是一种具有两条边相等的三角形,具有一些特殊的几何性质。
周长
等腰三角形的周长可以通过两条等边的长度和 第三条边的长度来计算。
内角
等腰三角形的内角具有特定的测量值,其中包 括基角、等边角和顶角。
IV. 二次函数中等腰三角形的探讨
1
确定三角形三个顶点坐标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的综合应用㈠一、典例精析考点一:二次函数与方程 1.(2011广东)已知抛物线212y x x c =++与x 轴有交点. (1)求c 的取值范围;(2)试确定直线y =cx +l 经过的象限,并说明理由. 解:(1)∵抛物线与x 轴没有交点 ∴⊿<0,即1-2c <0 解得c >12(2)∵c >12 ∴直线y=12x +1随x 的增大而增大,∵b=1 ∴直线y=12x +1经过第一、二、三象限2.(2011南京)已知函数y=mx 2-6x +1(m 是常数).⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值. 解:⑴当x=0时,1y =.所以不论m 为何值,函数261y mx x =-+的图象经过y 轴上的一个定点(0,1).⑵①当0m =时,函数61y x =-+的图象与x 轴只有一个交点;②当0m ≠时,若函数261y mx x =-+的图象与x 轴只有一个交点,则方程2610mx x -+=有两个相等的实数根,所以2(6)40m --=,9m =.综上,若函数261y mx x =-+的图象与x 轴只有一个交点,则m 的值为0或9. 考点二:二次函数与最大问题 3、如图,二次函数c bx x y ++-=241的图像经过点()()4,4,0,4--B A ,且与y 轴交于点C . (1)试求此二次函数的解析式;(2)试证明:CAO BAO ∠=∠(其中O 是原点);(3)若P 是线段AB 上的一个动点(不与A 、B 重合),过P 作y 轴的平行线,分别交此二次函数图像及x 轴于Q 、H 两点,试问:是否存在这样的点P ,使QH PH 2=?若存在,请求出点P 的坐标;若不存在,请说明理由。
解:(1)∵点()0,4A 与()4,4--B 在二次函数图像上,∴⎩⎨⎧+--=-++-=c b c b 444440,解得⎪⎩⎪⎨⎧==221c b ,∴二次函数解析式为221412++-=x x y . (2)过B 作x BD ⊥轴于点D ,由(1)得()2,0C , 则在AOC Rt ∆中,2142tan ===∠AO CO CAO ,又在ABD Rt ∆中,2184tan ===∠AD BD BAD , ∵BAD CAO ∠=∠tan tan ,∴BAO CAO ∠=∠. (3)由()0,4A 与()4,4--B ,可得直线AB 的解析式为221-=x y ,设()44,221,x x x P -⎪⎭⎫ ⎝⎛-,则⎪⎭⎫ ⎝⎛++-22141,2x x x Q , ∴22141,2122212++-=-=-=x x QH x x PH .∴2214122122++-=-x x x . 当4212122++-=-x x x ,解得 4,121=-=x x (舍去),∴⎪⎭⎫ ⎝⎛--25,1P . 当4212122--=-x x x ,解得 4,321=-=x x (舍去),∴⎪⎭⎫ ⎝⎛--27,3P . 综上所述,存在满足条件的点,它们是⎪⎭⎫ ⎝⎛--25,1与⎪⎭⎫⎝⎛--27,3.4.(2011安顺)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. 解:(1)b =23-解析式y =21x 2-23x -2. 顶点D (23, -825).(2)当x = 0时y = -2, ∴C (0,-2),OC = 2。
∴B (4,0) ∴OA = 1, OB = 4, AB = 5. △ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C ′,则C ′(0,2),OC ′=2,连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC + MD 的值最小。
解法一:设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴, ∴∠OC ′M =∠EDM ,∠C ′O M =∠DEM ∴△C ′OM ∽△DEM . ∴ED C O EM OM '=∴825223=-m m ,∴m =4124. 解法二:设直线C ′D 的解析式为y = kx + n ,则⎪⎩⎪⎨⎧-=+=825232n k n ,解得n = 2, 1241-=k .∴21241+-=x y .∴当y = 0时, 021241=+-x , 4124=x . ∴4124=m . 5、(09江津)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点,(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.解:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩= ∴23b c =-⎧⎨=⎩∴抛物线解析式为:223y x x =--+(2)存在 理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小∵223y x x =--+ ∴C 的坐标为:(0,3) 直线BC 解析式为:3y x =+Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴12x y =-⎧⎨=⎩ ∴Q(-1,2)(3)答:存在理由如下:设P 点2(23) (30)x x x x --+-<<,∵92BPC BOC BPCO BPCO S S S S ∆∆=-=-四边形四边形 若BPCO S 四边形有最大值,则BPC S ∆就最大, ∴BPE BPCO PEOC S S S ∆+Rt 四边形直角梯形=11()22BE PE OE PE OC =⋅++ =2211(3)(23)()(233)22x x x x x x +--++---++=233927()2228x -+++ 当32x =-时,BPCO S 四边形最大值=92728+∴BPC S ∆最大=9279272828+-=当32x =-时,215234x x --+=∴点P 坐标为315( )24-,6.(2010常德)如图,已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.ABCxyOB C A (2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时, 求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.解:(1)故所求二次函数的解析式为213222y x x =+-.(2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ ,△BEF ~△BAC ,∴1,3BE BF BA BC ==得5,3BE = E 点的坐标为(23-,0).(3)AC 的解析式为122y x =--.若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)考点三:二次函数与等腰三角形、直角三角形7.(2011湘潭)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.解:(1)∴抛物线的解析式为:y=-x 2+2x+3.(2)∵y=-x 2+2x+3= 2(1)4x --+,∴该抛物线的对称轴为x=1.设Q 点坐标为(1,m ),则AQ BQ ==又AB =当AB=AQ 时,=m = ∴Q 点坐标为(1)或(1,);当AB=BQ=,解得:120,6m m ==, ∴Q 点坐标为(1,0)或(1,6);当AQ=BQ=,解得:1m =, ∴Q 点坐标为(1,1).∴抛物线的对称轴上是存在着点Q (1)、(1,)、(1,0)、(1,6)、(1,1),使△ABQ 是等腰三角形.8.(2010鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C . (1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值. (4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标. 解:(1)点C 的坐标是(4,0);(2)y = 12-x 2+32x +2. (3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC =t②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD =5t ,∴5t =,解得t =4011-.③若PQ =PC ,如图所示,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE PC ,∴12t (t ),解得t .(4)当CQ =PC 时,由(3)知t P 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =1∴直线OP 与抛物线的交点坐标为()和(.9、(2011潼南县)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A ,B 两点,抛物线的顶点为D .(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.解:(1)由已知得:A(﹣1,0),B(4,5),∵二次函数y=x2+bx+c的图象经过点A(﹣1,0),B(4,5),∴,解得:b=﹣2,c=﹣3;(2)如图:∵直线AB经过点A(﹣1,0),B(4,5),∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,);(3)①如图:顺次连接点E、B、F、D得四边形EBFD.可求出点F的坐标(,),点D的坐标为(1,﹣4)S四边形EBFD=S△BEF+S△DEF=××(4﹣)+××(﹣1)=;②如图:ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3)则有:m2﹣2m﹣2=,解得:m1=,m2=,∴P 1(,),P 2(,),ⅱ)过点F 作b ⊥EF 交抛物线于P 3,设P 3(n ,n 2﹣2n ﹣3)则有:n 2﹣2n ﹣2=﹣,解得:n 1=,n 2=(与点F 重合,舍去),∴P 3(,),综上所述:所有点P 的坐标:P 1(,),P 2(,),P 3(,)能使△EFP 组成以EF 为直角边的直角三角形. 二、能力提升1.(09深圳)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由. 解:⑴ B (1⑵设抛物线的解析式为y =ax (x+a ),代入点B (1,,得a,因此2y x +⑶如图,抛物线的对称轴是直线x =—1,当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 为y =kx +b .所以20.k k b k b b ⎧⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得, 因此直线AB为y +,当x =-1时,y =, 因此点C 的坐标为(-1.⑷如图,过P 作y 轴的平行线交AB 于D .2221()()213212PAB PAD PBD D P B A S S S y y x x x x x x ∆∆∆=+=--⎡⎤⎫=+-⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭当x =-12时,△P AB1,2P ⎛- ⎝⎭.2、(2011菏泽)如图,抛物线y=x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.解:(1)把点A (﹣1,0)的坐标代入抛物线的解析式y=x 2+bx ﹣2,整理后解得,所以抛物线的解析式为.(2分)顶点D ;(3分)(2)AB=5.AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形.(6分)(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2.连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.设抛物线的对称轴交x轴于点E,△C′OM∽△DEM.∴,∴,∴m=.(10分)点评:本题着重考查了待定系数法求二次函数解析式、直角三角形的性质及判定、轴对称性质以及相似三角形的性质,关键在于求出函数表达式,做好辅助点,找对相似三角形.3.(2010孝感)如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.解:(1)∵四边形ABCD 是矩形,∴AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°. 由折叠对称性:AF=AD=10,FE=DE.在Rt △ABF 中,6==.∴FC=4.在Rt △ECF 中,42+(8-x )2=x 2,解得x=5.∴CE=8-x=3.∵B (m ,0),∴E(m+10,3),F (m+6,0). (2)分三种情形讨论:若AO=AF ,∵AB ⊥OF ,∴OB=BF=6.∴m=6. 若OF=AF ,则m+6=10,解得m=4.若AO=OF ,在Rt △AOB 中,AO 2=OB 2+AB 2=m 2+64, ∴(m+6)2= m 2+64,解得m=73. 综合得m=6或4或73. (3)由(1)知A(m,8),E(m+10,3).依题意,得22(6)8(106)3a m m h a m m h ⎧--+=⎪⎨+--+=⎪⎩,解得1,41.a h ⎧=⎪⎨⎪=-⎩ ∴M (m+6,﹣1).设对称轴交AD 于G. ∴G (m+6,8),∴AG=6,GM=8-(﹣1)=9. ∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°, ∴∠OAB=∠MAG. 又∵∠ABO=∠MGA=90°, ∴△AOB ∽△AMG. ∴OB AB MG AG =,即896m =. ∴m=12.4.(2011邵阳)如图所示,在平面直角坐标系Oxy 中,已知点A (-94,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧),以AB 为直径的圆恰好经过....点C . (1)求∠ACB 的度数;(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式;(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.解: (1) ∵以AB 为直径的圆恰好经过....点C ∴∠ACB =090 (2) ∵△AOC ∽△ABC ∴OB AO OC ∙=2∵A (-94,0),点C (0,3),∴49=AO 3=OC∴OB 4932=∴ 4=OB ∴B(4,0).. 把 A 、B 、C 三点坐标代入得 3127312++-=x x y (3) 1)OD=OB , D 在OB 的中垂线上,过D 作DH ⊥OB,垂足是H 则H 是OB 中点。