(完整)2017年马鞍山二中高一理科实验班招生考试数学试题及答案,推荐文档

合集下载

【安徽省马鞍山二中】2017届高三上学年期期中(理科)数学年试题

【安徽省马鞍山二中】2017届高三上学年期期中(理科)数学年试题

(Ⅱ)∵ EA 平面ABCD
∴ EA CD , EA AD
又∵ AD CD
∴ CD 平面EAD
∴ CD ED
△EAD中, EA AD , EA AD 1
∴ ED 2 ,
∴ S△CDE

1 2
CD
ED
2
S△BCD

1 CD 2
AD 1 …………………………………………………………………(9 分)
3x 2, x 1, (Ⅱ)当 a 5 时, f (x) | x 5 | | 2x 2 | 5 x 2, 5 x 1,
3x 12, x 5,
可知函数 f (x) 的图象和 x 轴围成的图形是一个三角形,其中与 x 轴的两个交点分别为 A(2,0) ,B( 2 ,0) , 3
t2 t2
4 5
12 5
,……………………………………(7
分)
所以 1 1 | FA | | FB | | t1 | | t2 | , | FA | | FB | | FA | | FB | | t1 | | t2 |
因为 t1
t2

12 5
,所以 |
t1
|

|
4.【命题意图】考查双曲线的性质,简单题. 5.【命题意图】考查数学文化及解三角形,中等题. 6.【命题意图】考查程序框图,中等题. 7.【命题意图】考查三角函数的性质,中等题. 8.【命题意图】考查函数性质,中等题. 9.【命题意图】本题考查中点弦问题,中等题. 10.【命题意图】考查线性规划,中等题. 11.【命题意图】考查空间想象能力、运算能力,中等题. 12.【命题意图】考查分段函数的图象和性质,与方程的根,导数的几何意义,较难题.

【安徽省马鞍山二中】2017届高三上学期期中(理科)数学试卷-答案

【安徽省马鞍山二中】2017届高三上学期期中(理科)数学试卷-答案

安徽省马鞍山二中2017 届高三上学期期中(理科)数学试卷答 案1~5. BDCAB 6~10.CBDDD 11~12. AB13. 1 146 . 1315. 65 16. 1p :1x17.解:对于命题a 3 x0 知, a, x,0 , a 1由 13对于命题 q : ax 2 x a 0 在 R 上恒成立①若 a 0 ,则 - x0 在 R 上恒成立,明显不行能,舍去.②若 aa 0,解得: a10 ,则1 4a2 2命题 p 和 q 有且仅有一个正确,p 真 q 假或许 p 假 q 真,而由 p 真 q假,可得 a1 1;由 p假 q真,可得 a2综上可得,所求a 的取值范围为,11,2 18.解:(Ⅰ)a bc .cosA 2cosB3cosCsinA sinBsinC ,cosA2cosB3cosC即 tanA11 2tanA , tanC 3tanA ,tanBtanC ,tanB23tanAtan BC2tan A 3tan A ,1 tan B tan CtanA2tan A3tan A 2,1 6tan 2A ,整理求得tan A 1, tanA 1当 tanA 1时, tan B2 ,则 A , B 均为钝角,与 A B C π矛盾,故舍去,π tanA 1, A.4(Ⅱ)tanA 1,tanB 2tanA ,tanC 3tanA ,tanB 2,tanC 3 ,sinB2,sin C 3 ,5 10 cosB1,cosC1510sinAsinBCsin B CsinBcosC2 1 13 1cosBsinC1051025ab,sinAsinBb sinB a 2 10,sinA5 aSABC1absinC1 a ?2 10 ?a3 3a 2 3 ,225105a 2 5, a5 .19 1 )证明:如图 1取 BD 中点 M ,连结 AM ,ME . .(ABAD2,AM BDDB2,DC 1, BC5 ,DB 2 DC 2BC 2 ,△BCD 是 BC 为斜边的直角三角形, BD DC ,E 是 BC 的中点,ME 为 △ BCD 的中位线1ME ∥ CD ,MECD ,1 MEBD , ME,2AME 是二面角 A BD C 的平面角,AME 60AMBD ,MEBD 且 AM 、ME 是平面 AME 内两订交于 M 的直线,BD 平面 AEMAE 平面 AEM ,BDAE ABAD2,DB 2 ,△ ABD 为等腰直角三角形, AM1BD 1,2AE 2AM 2 ME 2 2AM ME cos AME3 ,4AE3 ,4AE 2ME21 AM2,AEME M ,BDME ,BD平面 BDC ,ME面BDC ,AE平面 BDC(2)解:如图 2, M 为原点 MB 为 x 轴, ME 为 y 轴,成立空间直角坐标系M xyz ,1B 1,0,0 , E1 1 31,1,0则由( )及已知条件可知0, ,0,A0,,, D 1,0,0 ,C22 2DA1,1 ,3,DC0,1,1 , AE0,0,3 ,2 22设平面 ACD 的法向量为 nx,y,z1 3则 x+ 2 y 2 z 0 ,n3,0, 2 ,y设直线 AE 与平面 ADC 所成角为,则sin3 2 73772直线 AE 与平面 ADC 所成角的正弦值为2 7 720.解:( 1)当 x 0 时, sgn x 1 ,解方程 x 2 3x 11 ,得 x 3( x 0 不合题意舍去) ;当 x 0 时, sgn x 0 , 0 不是方程 x 2 3x 1 0 的解;当 x 0 时, sgn x1,解方程 x 23x1 1 ,得 x2 或 x 2 (均不合题意舍去) .综上所述, x3是方程 x23x 1sgn x 的根.x22x, x2(2)因为函数f x x22x, 0x2,x22x, x0x23x, x2则原方程转变为:a x2x, 0x 2.x23x, x0数形联合可知:①当 a- 2 时,原方程有1个实根;②当 a- 2时,原方程有2个实根;③当 2a0 时,原方程有 3 个实根;④当 a0 时,原方程有 4 个实根;⑤当 0a 15 个实根;时,原方程有4⑥当 a 14 个实根;时,原方程有4⑦当1a9时,原方程有 3 个实根;44⑧当 a 92个实根;时,原方程有4⑨当 a 91个实根.时,原方程有4故当 a2,0 1 , 9时,对于 x 的方程 f x x a 有3个互异的实根.4421.解:(Ⅰ)设等比数列a n的公比为q,对于随意的n N 有 S n, S n 2, S n 1成等差,2 a1a1 q a1q 2a1 a1a1q .整理得: 2 1q q2a12q.a10 , 2 2q 2q2 2 q .2q2q 0 ,又 q0 ,q 1 .2又 a1a4 a1 1 q37 ,16把 q 1代入后可得 a1 1 .22所以, a n a1q 11n 1n11;222nb n nn a1n(Ⅱ)n,n 2,b,n2a n1n2T n 1 21 2 22 3 23n 2n.2T n 1 22 2 23 3 24n 1 2n n 2n 1.2 22232n 212nn 2n 1T n n 2n +1 =12T n2-2n 1n 2n 1n 1 2n 1 2 .12若 n2m T n n 1 对于n 2 恒成立,1则 n2m n 1 2n 1 2n 1 对于n 2 恒成立,12m n12n 1 1对于 n 2 恒成立,也就是n 1mn 1对于 n 2 恒成立,2n 1 1令 f n n 1 ,2n 11f n1f nn n12n 2n 112n 2 1 2n 112n 2 1 2n 10 1f n为减函数,f n f221 1 .2317m 1.7所以, n12m T n n 1 对于 n 2 恒成立的实数m 的范围是1 ,.722.解:(Ⅰ)f x ln x bx a ,xf x bx x a ,x2在 x1时获得极值,f1b 1 a0∴a- b 1(Ⅱ) a2,b1,f x ln x x 2,xf x 121x2x2x2x1x0 ,x x2x2x2f x在0,1 上单一递减,在1,上单一递加,f x在0,内有独一极小值,也就是f x在 0,内的最小值,f x min f13(Ⅲ)由(Ⅱ)知f xmin f1 3 且f x在0,1上单一递减.n1,n1f n ln n 2 n1n f13n nn1n11lnn21, n n+1 lnn,00 n 2n 1 n(n n1)nn 1n 1n 11n 2e安徽省马鞍山二中2017 届高三上学期期中(理科)数学试卷解析1.【考点】会合的包括关系判断及应用.【剖析】依据会合的定义和会合间的并集定义,推出P 会合的状况,求出M ∪ N,而后判断选项.【解答】解:∵ P={ x| f ( x) g( x) =0} ,∴P有三种可能即:P x f x0} ,或P x g x0P x f x0或g x0={|() =={ |()= }或={ |() =()= },∵M={x f x0,N={x|g x)0 |() = }(= } ,∵M∪N x f x0或g(x0} ,={ |() =)=∴P? (M∪N),应选 B.2.【考点】复合命题的真假.【剖析】此题考察的知识点是复合命题的真假判断,解决的方法是先判断构成复合命题的简单命题的真假,再依据真值表进行判断.x x【解答】解:∵命题p: ?x∈(﹣∞, 0),3 < 4 ,x x∵对于 x∈(﹣∞, 0), 3 < 4∴命题 P 是假命题又∵命题q: tanx> x, x∈( 0,)∴命题 q 是真命题依据复合命题真假判断,(¬ p)∧ q 是真命题,故 D 正确p∧ q, p∨(¬ q)、 p∧(¬ q)是假命题,故 A 、 B、 C 错误应选 D3.【考点】必需条件、充足条件与充要条件的判断.【剖析】在R 上的单一连续函数f( x)在区间( 0,2)上存在零点,则 f (0) f( 3)< 0,反之不行立,即可判断出结论.【解答】解:∵在 R 上的单一连续函数 f ( x)在区间( 0, 2)上存在零点,则f( 0) f ( 3)< 0,23),反之不行立,零点可能∈ [ ,所以定义在 R 上的单一连续函数 f ( x)在区间( 0, 2)上存在零点的一个必需不充足条件是f( 0) f ( 3)<0.应选: C.4.【考点】复数代数形式的乘除运算.【剖析】直接利用复数代数形式的乘除运算化简复数z,求出,代入z?计算得答案.【解答】解:∵ z===,∴.则z.? =应选: A.5.【考点】等比数列的性质.【剖析】依据a7=a6+2a5,求出公比的值,利用存在两项a m,a n使得,写出m,n之间的关系,联合基本不等式获得最小值.【解答】解:设等比数列的公比为q( q> 0),则∵a7=a6+2a5,∴a5q2=a5q+2a5,∴q2﹣q﹣ 2=0,∴q=2,∵存在两项a m, a n使得,∴a m a n=16a12,∴q m+n﹣2=16,∴m+n=6∴=(m+n)()=(10+)m 1 n 5时,=;m 2n 4时,=.= , ==, =∴的最小值为,应选 B.6.【考点】由三视图求面积、体积.【剖析】三视图还原的几何体,下部是放倒的四棱柱,上部是正方体,依据三视图的数据,求出几何体的表面积.【解答】解:三视图还原的几何体,下部是放倒的四棱柱,底面是直角梯形,边长分别为:3,2,1,;高为: 1;上部是正方体,也能够看作是三个正方体和半个正方体的组合体,所以几何体的体积为:3×13+=,应选 C.7.【考点】平面向量数目积的运算.【剖析】利用向量数目积的几何意义和三角形外心的性质即可得出.【解答】解:联合向量数目积的几何意义及点O 在线段 AB , AC 上的射影为相应线段的中点,可得,∴,应选: B,8.【考点】函数零点的判断定理;根的存在性及根的个数判断.【剖析】由题意结构函数y1=sin| x| ,y2=kx ,而后分别做出两个函数的图象,利用图象和导数求出切点的坐标以及斜率,即可获得选项.【解答】解:依题意可知x 不可以等于0.令 y1=sin| x| , y2=kx ,明显函数y1为偶函数,y2=kx 为奇函数,故θ,φ为绝对值最小的两个非零零点.而后分别做出两个函数的图象.由题意可得y2与 y1仅有两个交点,且φ是 y1和 y2相切的点的横坐标,即点(φ, sin| φ| )为切点,φ∈(﹣,﹣π),故sin|φ|=﹣sinφ.因为(﹣ sin φ)′ =﹣ cosφ,所以切线的斜率k=﹣ cosφ.再依据切线的斜率为k==,∴﹣cosφ,即sin θ θcosφ==﹣,应选: D.9.【考点】函数的定义域及其求法.【剖析】求出函数的定义域,依据随意m,n∈ D,点 P( m, f ( n))构成的图形为正方形,获得函数的最大值为 2,解方程即可获得结论.【解答】解:要使函数存心义,则a( x﹣1)( x﹣ 3)≥ 0,∵a< 0,∴不等式等价为(x﹣ 1)( x﹣3)≤ 0,即 1≤ x≤3,∴定义域 D =[ 1,3] ,∵随意 m, n∈D ,点 P( m,f ( n))构成的图形为正方形,∴正方形的边长为2,∵f(1) =f ( 3) =0,∴函数的最大值为 2,即 a( x﹣ 1)( x﹣ 3)的最大值为4,设 f (x) =a( x﹣ 1)( x﹣3) =ax2﹣4ax+3a,∴当 x=2 时, f ( 2) =﹣a=4,即 a=﹣ 4,应选: D.10.【考点】数列的乞降.【剖析】由数列的通项公式求出数列前几项,获得数列的奇数项均为1,每两个偶数项的和为6,由此能够求得 S120的值.【解答】解:由a n=(﹣1)n( 2n﹣ 1) cos+1,a=﹣cos 1 1a3cosπ12,得1+ =,2=+ =﹣a3=﹣ 5cos+1=1, a4=7cos2π+1=8,a5=﹣ 9cos+1=1, a6=11cos3π+1=﹣ 10,a7=﹣ 13cos+1=1, a8=15cos4π+1=16,由上可知,数列 { a n} 的奇数项为1,每两个偶数项的和为6,∴S120=( a1+a3+ +a119)+( a2+a4 + +a58+a120) =60+30× 6=240.应选: D.11.【考点】直线与平面所成的角.【剖析】连结AC,BD,交于点O,由题设条件推导出OA 1OC 2.将△ABD沿着对角线BD翻折成△= ,=A ′ BD ,当 A′ C 与以 O 为圆心, OA ′为半径的圆相切时,直线 A ′ C 与平面 BCD 所成角最大,由此能求出结果.【解答】解:如图,平面四边形ABCD 中,连结 AC , BD ,交于点 O,∵AD =AB =,CD=CB=,且 AD ⊥AB ,∴BD=2,AC⊥BD,=∴BO =OD=1,∴OA ==1,OC==2.将△ ABD 沿着对角线BD 翻折成△ A ′ BD ,当 A ′C 与以 O 为圆心, OA ′为半径的圆相切时,直线 A ′C 与平面 BCD 所成角最大,此时, Rt△OA ′ C 中, OA ′=OA =1, OC=2,∴∠ OCA ′=30°,∴A ′C 与平面 BCD 所成的最大角为 30°.应选: A.12.【考点】几何概型.【剖析】 f( x) =a x?g( x),g( x)≠ 0,结构 h( x)=a x=,又f′(x)?g(x)<f(x)?g′(x),利用导数可得:函数h( x)单一递减,0< a< 1.利用+=,解得a,再求概率.【解答】解:∵ f ( x) =a x?g( x), g(x)≠ 0,h x) =a x=,又f′(xg x f x gx),∴()? ()<()?′(h′(x)=0h x)单一递减,∴0 a 1∴<,∴函数(<<.+=,∴ a+a﹣1=,解得 a=.对于x的方程abx2+x 2 0,即bx2+x 2 0,,∴,+ =+ =∴对于 x 的方程 abx2+x+2=0(b∈( 0, 1))有两个不一样实根的概率为=,应选 B.13.【考点】定积分.【剖析】dx =,由此能求出结果.【解答】解:dx===(lnx)21= .故答案为: 1.14.【考点】多面体和旋转体表面上的最短距离问题.【剖析】把平面 BMD 及平面 AMD 以 DM 为折线展平,三角形 DAM 是正三角形的一半,故在平面 BMAD 中,连结 BA ,与 MD 订交于 P 点,则 AP+BP 为最短距离,再利用余弦定理即可得出.【解答】解:因为各棱长均为 1 的四周体是正四周体把平面 BMD 及平面 AMD 以 DM 为折线展平,三角形DAM 是正三角形的一半DM =,AM =,AD =1,BM =,BD=1故在平面 BMAD中,连结BA ,与 MD 订交于 P 点,则 AP+BP 为最短距离,在三角形 BMD 中,依据余弦定理,cos BMD== ,∴sin∠BMD=,∠cos DMB cos 90°+∠BMC) =﹣sin∠BMC=﹣,∠= (∴BA 2 =BM 2+AM 2﹣ 2BM ?AM ?cos∠ AMB =+ ﹣2???(﹣) =.故答案为:.15.【考点】程序框图.【剖析】第一判断程序框图的功能,依据退出循环的条件即可求得n 的值.【解答】解:模拟履行程序框图,可得程序框图的功能是计算S123的值,且当S2016时,=+++ =>输出 n 的值,因为,当n 64时,S=2080<2016,==当n 65时,S2145>2016,===故输出 n 的值为 65.故答案为: 65.16.【考点】简单线性规划.【剖析】作出不等式对应的平面地区,利用线性规划的知识,利用z 的几何意义即可获得结论. .【解答】解:作出不等式组对应的平面地区如图:由 z=x+4y 得 y=﹣x+ z ,平移直线 y=﹣ x+ z ,由图象可知当直线y=﹣ x+ z 经过点 A ( 1, 0)时,直线的截距最小,此时z 最小.此时 z min =1+4× 0=1, 故答案为: 1.17.【考点】命题的真假判断与应用.【剖析】求出命题 p 真、命题 q 真时 a 的取值范围,由命题p 和 q 有且仅有一个正确,求 a 的取值范围.p :由 11 x【解答】解:对于命题a 3x 0 知, a, x ﹣ ,0 , a 13对于命题 16q : ax 2xa 0在 R 上恒成立3① 若 a 0 ,则 - x0 在 R 上恒成立,明显不行能,舍去. ② 若 aa 01,则1 4a 2,解得: a2∵命题 p 和 q 有且仅有一个正确,∴ p 真q假或许 p 假 q真,而由 p 真 q假,可得 a1 1;由 p假 q真,可得 a2综上可得,所求 a 的取值范围为18.【考点】正弦定理;余弦定理.【剖析】( Ⅰ)利用正弦定理把已知等式中的边转变成角的正弦, 化简整理可用 tanA 分别表示出 tanB 和 tanC ,从而利用两角和公式求得tanA ,从而求得 A .(Ⅱ)利用 tanA ,求得 tanB 和 tanC 的值,利用同角三角函数关系获得 sinB 和 sinC ,从而依据正弦定理求得 b 和 a 的关系式,代入面积公式求得 a .【解答】解:(Ⅰ)∵ab c.∴sinA sinBsinC ,cosA 2cosB3cosC即 tanA 112tanA , tanC3tanA ,tanBtanC ,tanB2 3∵ tanAtan BC2tan A 3tan A ,1 tan B tan C∴ tanA2tan A 3tan A ,整理求得 2A 1, tanA1,1 6tan2 Atan当tanA时,tanB 2 ,则A ,B 均为钝角,与A 矛盾,故舍去,1B C π∴ tanA 1, Aπ4 .(Ⅱ)∵ tanA 1,tanB 2tanA , tanC 3tanA ,∴ tanB 2,tanC 3 ,∴ sinB2 ,sin C3 ,510 ∴ cosB1,cosC1510sinA sinB Csin B CsinBcosC cosBsinC2 1 13 15105102ab,∵sinA sinBsinB a 2 10a ,∴ bsinA5∵SABC1absinC 1 a ? 2 10 ?a3 3a 2 3 ,225105∴ a 25, a5 .19.【考点】直线与平面所成的角;直线与平面垂直的判断.【剖析】( 1)先依据条件获得 BD ⊥平面 AEM ;从而经过求边长获得AE ⊥ ME ;即可获得结论;( 2)先成立空间直角坐标系,求出平面 ADC 的法向量的坐标,再代入向量的夹角计算公式即可.【解答】( 1)证明:如图 1 取 BD 中点 M ,连结 AM ,ME .∵ABAD 2,∴ AM BD∵ DB 2, DC 1, BC5 ,DB 2 DC 2 BC 2 ,∴ BCD 是 BC 为斜边的直角三角形, BD DC ,∵ E 是 BC 的中点,∴ ME 为 BCD 的中位线 ∴ ME / /CD ,ME1CD ,2∴ ME BD , ME1 ,2∴ AME 是二面角 A BD C 的平面角,∴ AME 60∵ AM BD ,ME BD 且 AM 、ME 是平面 AME 内两订交于 M 的直线,∴ BD 平面 AEM ∵ AE平面 AEM ,∴ BDAE ∵ AB AD2,DB 2,∴ ABD 为等腰直角三角形, ∴ AM1BD 1,2∴ AE 2AM 2 ME 2 2 AM ME cos AME3 ,4∴ AE3 ,4∴ AE 2 ME 2 1 AM 2,∴ AE ME M , ∴ BD ME , BD平面 BDC , ME 面 BDC ,∴ AE平面 B DC(2)解:如图 2, M 为原点 MB 为 x 轴, ME 为 y 轴,成立空间直角坐标系 M xyz ,则由( 1)及已知条件可知B 1,0,0 , E 0,1,0 ,A 0,1, 3 , D 1,0,0 ,C1,1,02 2 2∴ DA1,1 ,3,DC0,1,1 , AE0,0, 3,2 22设平面 ACD 的法向量为 nx,y,z则 x+ 13 0,∴ n2y2z3,0, 2 ,y 0设直线 AE 与平面 ADC 所成角为,则 sin32 73772∴直线 AE 与平面 ADC 所成角的正弦值为2 7720.【考点】函数与方程的综合运用;函数的图象;根的存在性及根的个数判断.【剖析】( 1)利用已知条件,列出方程,逐个求解即可.(2)求出函数的分析式,获得 a 的表达式,画出图象,经过 a 的范围议论函数零点个数即可.【解答】解:( 1)当x>0时, sgn x 1 ,解方程x23x 1 1,得 x 3( x 0 不合题意舍去);当 x 0时, sgn x0 ,0不是方程 x23x 1 0的解;当 x<0 时,sgn x1,解方程x23x1 1 ,得x 2 或 x 2 (均不合题意舍去).综上所述, x 3 是方程x23x 1sgn x 的根.x 22x,x2(2)因为函数f x x22x,0x2,x2 2 x,x0x23x,x2则原方程转变为:a x2x,0x 2 .x23x,x0数形联合可知:①当 a<- 2 时,原方程有1个实根;②当 a- 2 时,原方程有 2 个实根;③ 当2<a<0 时,原方程有 3 个实根;④当 a 0 时,原方程有 4 个实根;⑤当 0< a<1时,原方程有 5 个实根;4⑥ 当1时,原方程有 4 个实根;4⑦当1< a<9时,原方程有 3 个实根;44⑧当 a 92 个实根;时,原方程有4⑧当 a 91 个实根.时,原方程有4故当 a2,019x a 有3个互异的实根.4, 时,对于x的方程 f x421.【考点】等比数列的通项公式;数列的乞降;数列与函数的综合.【剖析】(Ⅰ)设出等比数列的公比,利用对于随意的n∈ N+有 S n, S n+2, S n+1成等差得2S3=S1+S2,代入首项和公比后即可求得公比,再由已知,代入公比后可求得首项,则数列 { a n} 的通项公式可求;(Ⅱ)把(Ⅰ)中求得的a n和已知 b n=n 代入整理,而后利用错位相减法求T n,把 T n代入( n﹣ 1)2≤m( T n﹣ n﹣ 1)后分别变量m,使问题转变为求函数的最大值问题,剖析函数的单一性时可用作差法.【解答】解:(Ⅰ)设等比数列a n的公比为q,∵对于随意的n N 有 S n, S n 2, S n 1成等差,∴ 2 a1a1 q a1 q2a1a1a1q .整理得: 2 1 q q2a2q.1∵ a10,∴, 22q2q22q .∴ 2q2q 0,又 q0 ,∴ q 1 .2又 a1a4a1 1 q37 ,16把 q 1代入后可得 a11.22所以,;1n b n n n (Ⅱ)∵ b n n 2,n , a n,∴n2a n12∴ T n 1 21 2 22 3 23n 2n.2T n 1 22 2 23 3 24n 1 2n n 2n 1.∴T n 2 22232n -n 2n +1=21 2n n 2n 1 12∴ T n 2-2n 1n 2n1n1n12.122若 n2m T n n 1 对于n 2 恒成立,1则 n2m n 1 2n12n1对于 n 2 恒成立,1也就是n12m n12n1 1 对于n 2 恒成立,∴mn1对于 n 2 恒成立,2n 11令 f n n1,2n11∵ f n 1 f nn n12n 2n 110 n 21 2n 112n 2 1 2n 112∴ f n为减函数,∴f n f221 1 .2317∴ m 1.7所以, n12m T n 1 对于 n 2 恒成立的实数m 的范围是1,.n7 22.【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【剖析】(Ⅰ)求导数,利用函数在x 1a b的值;=时获得极值,可务实数﹣(Ⅱ)确立f x)在(,1上单一递减,在1f x)在(, +∞)内有独一极(][ , +∞)上单一递加,可得(小值,也就是f( x)在(0, +∞)内的最小值;(Ⅲ)由(II)知f(x f(1)3且f(x)在(,1] 上单一递减,证明ln+,可得结) min==﹣>论.【解答】解:( I)∵f x ln x bx a,x∴ f x bx x a,x2∵在 x1时获得极值,∴ f 1 b 1 a 0 ∴a- b1 4 分(II )a2,b1,∴ f x ln x x 2,x∴ f x 121x2x2x2x1x0 ,x x2x2x2∴ f x在0,1 上单一递减,在1,上单一递加,∴ f x在0,内有独一极小值,也就是f x 在0,内的最小值,∴ f x min f138 分(III)由( II )知 f xmin f 1 3 且f x在0,1 上单一递减.∵ 0n1 ,n1∴ f n ln n 2 n1n f13 n11n n 1n∴ ln n211n n1n()n n 11n∴ n1与e0 ,∴ n n+1 lnn2 ,0 nn1n2。

【安徽省马鞍山】2017学年高考一模数学年(文科)试题

【安徽省马鞍山】2017学年高考一模数学年(文科)试题


n


1 2
n

n 2n ,
Tn 1 21 2 22 3 23 n 2n .
2Tn 1 22 2 23 3 24 n 1 2n n 2n1 .
Tn 2 22 23
2 1 2n
2n n 2n+1=
73 7 2
直线 AE 与平面 ADC 所成角的正弦值为 2 7 7
20.解:(1)当 x 0 时, sgn x 1 ,解方程 x2 3x 1 1,得 x 3 ( x 0 不合题意舍去); 当 x 0 时, sgn x 0 ,0 不是方程 x2 3x 1 0 的解; 当 x 0 时, sgn x 1,解方程 x2 3x 1 1,得 x 2 或 x 2 (均不合题意舍去).
∵存在两项 am,an 使得

∴aman=16a12, ∴qm+n﹣2=16, ∴m+n=6

= (m+n)(
)= (10+

,写出 m,n 之间的关系,
m=1,n=5 时,
又 a1 a4 a1 1 q3
7 , 16
- 4 - / 19

q


1 2
代入后可得
a1


1 2

所以,
an

a1q1



1 2




1 2
n1



1 2
n

(Ⅱ)
bn

n

an

安徽省马鞍山市2017届高中毕业班第二次教学质量检测【理数试题+答案】模板

安徽省马鞍山市2017届高中毕业班第二次教学质量检测【理数试题+答案】模板

马鞍山市2017届高中毕业班第二次教学质量检测高三理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的学校、姓名、班级、座号、准考证号.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上答题无效......... 4.考试结束,务必将试题卷和答题卡一并上交.第I 卷(选择题,共60分)一、选择题:本大题共12个题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集合2{|230}A x x x =-->,{||2|3}B x x =-≤,则A B =( ▲ )(A )(1,5] (B )(3,5] (C )R (D )(,1)(1,)-∞--+∞ 【答案】C【命题意图】本题考查集合基本运算,难度:简单题.(2)已知复数z 满足34i z i ⋅=+(其中i 为虚数单位),则z 的虚部为( ▲ )(A )3- (B )3 (C )3i - (D )3i 【答案】A【命题意图】考查复数的基本概念和运算,难度:简单题.(3)动点(),A x y 在圆221x y +=上绕坐标原点沿逆时针方向匀速旋转,其初始位置为01(2A ,12秒旋转一周. 则动点A 的纵坐标y 关于t (单位:秒)的函数解析式为( ▲ )(A )sin()36y t ππ=+(B )cos()63y t ππ=+(C )sin()63y t ππ=+ (D )cos()36y t ππ=+【答案】C【命题意图】本题考查三角函数的定义,难度:简单题.(4)已知函数1()2mx f x x n+=+的图象关于点(1,2)对称,则( ▲ )(A )42m n =-=, (B )42m n ==-,(C )42m n =-=-, (D )42m n ==, 【答案】B【命题意图】本题考查函数图象与性质,难度:中等题.(5)执行如图所示的程序框图,如果输出s =4,那么判断框内应填入的条件是( ▲ )(A )k ≤ 14? (B )k ≤ 15? (C )k ≤ 16? (D )k ≤ 17?【答案】B【命题意图】本题考查程序框图,难度:中等题.(6)已知2cos sin αα=,则41+cos sin αα=( ▲ )(A(B(C )12(D )2【答案】D【命题意图】本题考查三角恒等变换,难度:中等题.(7)将正方形ABCD 沿对角线AC 折成120︒的二面角,则折后的直线BD 与平面ABC 所成角的正弦值为( ▲ )(A )12(B(C(D【答案】A【命题意图】本题考查立体几何,二面角以及线面角的有关计算,难度:中等题.(8)设等差数列{}n a 的前n 项和为n S ,若410S ≥,515S ≤,则4a 的最大值为( ▲ ) (A )2 (B )3 (C )4 (D )5 【答案】C【命题意图】本题考查线性规划思想与等差数列的基本运算,难度:中等题.(9)已知P 、Q 为ABC ∆中不同的两点,且32PA PB PC ++=0,QA QB QC ++=0,则:PAB QAB S S ∆∆ 为( ▲ ) (A )1:2 (B )2:1 (C )2:3 (D )3:2 【答案】A【命题意图】考查平面向量,难度:中等题.(10)某几何体的三视图如图所示,则该几何体的外接球的表面积为( ▲ ) (A )25π (B )26π (C )32π (D )36π 【答案】C【命题意图】本题考查三视图,球的计算,难度:中等题. (11)已知函数2()ln 1f x x x =+,()g x kx =,若存在0x 使得00()()f x g x =,则k 的取值范围是( ▲ ) (A )(,1]-∞ (B )[1,)+∞ (C )(,]e -∞ (D )[,)e +∞ 【答案】B【命题意图】本题考查函数图象与性质,难度:中等题.(12)已知(0,7)A ,(0,7)B -,(12,2)C ,以C 为一个焦点作过 A 、B 的椭圆,则椭圆的另一个焦点F 的轨迹方程是( ▲ )(A )22148x y -= (B )22148y x -=(C )22148x y -=(1y ≤-) (D )22148y x -=(1y ≥)【答案】C【命题意图】本题考查椭圆、双曲线的基本概念与运算,难度:中等题.俯视图侧视图正视图第10题图第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

2017年马鞍山二中高一理科实验班招生考试数学试题及标准答案

2017年马鞍山二中高一理科实验班招生考试数学试题及标准答案

2017年马鞍山市第二中学创新人才实验班招生考试数 学【注意事项】1.本试卷共4页,总分150分,答题时长120分钟,请掌握好时间。

2.请将自己的姓名、准考证号用钢笔或圆珠笔填写在答题卷的相应位置上。

3.考生务必在答题卷上答题,在试卷上作答无效。

考试结束后,请将试卷 和答题卷一并交回。

一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的代号填入答题卷相应表格中...........) 1.将一些棱长为1的正方体摆放在33⨯的平面上(如图1所示),其正视图和侧视图分别如图2、图3,记摆放的正方体个数的最大值为m ,最小值为n ,则m n -=( )A . 4B . 5C . 6D . 72.多项式2234(1)(1)(3)(1)x x x x +++-+-等于下列哪个选项( )A .22(1)x x - B . 2(1)(1)x x x +- C . (1)(1)x x x +- D . 22(1)(1)x x --3.甲、乙两人在玩一种纸牌,纸牌共有40张.每张纸牌上有1至10中的一个数,每个数有四种不同的花色.开始时,每人有20张牌,每人将各自牌中相差为5的两张牌拿掉,最后甲还有两张牌,牌上的数分别为4和a ,乙也还有两张牌,牌上的数分别为7和b ,则b a -的值是( )A . 3B . 4C . 6D . 7 4.已知x 为实数,且|31||41||171|x x x -+-++-的值是一个确定的常数,则这个常数的值是( ): A . 5 B . 10 C . 15 D . 755.[]x 表示不超过实数x 的最大整数4ππ-(如[]=3,[-]=-4,[]=-4),记x x x M=[]+[2]+[3]. 将不能表示成M 形式的正整数称为“隐形数”.则不超过2014的“隐形数”的个数是( ) A . 335 B . 336 C . 670 D . 6716.如图,点O 为锐角ABC ∆的外心,点D 为劣弧AB 的中点, 若,BAC α∠=,ABC β∠=,βα>且则DCO ∠=( ) A .2βα- B .3αβ- C .3βα+ D .4βα+第6题图C第1题图图1图2图3二、填空题(本大题共10小题,每小题6分,共60分.将答案填在答题卷中相应横线上............) 7.如果不等式||||2x a x -+<没有实数解,则实数a 的取值范围 ; 8.已知实数xx =,则x 的取值范围是 ; 9.函数y =的最大值为 ;10.设a b 、为实数,已知坐标平面上的抛物线2y x ax b =++与x 轴交于P Q 、两点,且线段7PQ =.若抛物线28y x ax b =++-与x 轴交于R S 、两点,则线段=RS ;11.正方形ABCD 中,两个顶点到直线l 的距离相等,且均为另两个顶点到直线l 的距离的两倍,则这样的直线有 条;12.使二次方程222510x px p p -+--=的两根均为整数的质数p 的所有可能值为 ;13.在平面直角坐标系中,不管实数a 取什么实数,抛物线223y ax x =++的顶点都在同一条直线上,这条直线的函数关系式是 ;14.已知实数,,a b c 满足1a b c ++=,1111a b cb c ac a b++=+-+-+-,则abc = ;15.如图,P 为等边ABC ∆内一点,2,1,PA PB PC ===则ABC ∆的面积为 ;16.如图,在AOB ∠的边OA 上过到点O 的距离为1,3,5,7,…的点作互相平行的直线,分别与OB 相交,得到如图中所示的阴影梯形,它们的面积依次记为123,,,S S S …. 则20142013S S = .三、解答题(本大题共5小题,共60分.将答案填在答题卷中相应........位置处...,答题应写出文字说明、证明过程或演算步骤.)17.(本题满分10+O第16题图第15题图CB18.(本题满分12分)甲、乙两辆汽车同时从同一地点A 出发,沿同方向直线行驶,每辆车最多只能带240L 汽油(含油箱中的油),途中不能再加油,每升油可使一辆车前进12km ,两辆车都必须沿原路返回出发点A ,但是两车相互可借用对方的油.请你设计一种方案,使其中一辆车尽可能地远离出发点A ,并求这辆车一共行驶了多少千米?19.(本题满分12分)如图,四边形ABCD 内接于O ,AB 是O 的直径,AC 和BD 相交于点E ,且2.DC CE CA =⋅ (1)求证:BC CD =(2)分别延长AB ,DC 交于点P ,过点A 作AF CD ⊥交CD 的延长线于点F ,若,22,PB OB CD ==求DF 的长.20.(本题满分13分)如图,已知抛物线(2)(4)8k y x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于,A B两点,与y 轴交于点C ,经过点B 的直线33y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以,,A B P 为顶点的三角形与ABC ∆相似,求k 的值;第19题图(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?第20题图21.(本题满分13分)一个自然数(即非负整数)若能表示成两个自然数的平方差,则称这个自然数为“好数”.例如,22=-就是一个“好数”.1653(1)2014是不是“好数”?说明理由.(2)从小到大排列,第2014个“好数”是哪个自然数?数学试题答案及评分标准..................17.解:原式+=+=+………………………………………………5分77=--14=-………………………………………………………………10分18.解:设尽可能远离出发点A 的甲汽车行驶了xkm ,乙汽车行驶了ykm ,则24012224012x y x y +≤⨯⨯⎧⎨-≤⨯⎩而11()()432022x x y x y =++-≤,即甲车一共行驶了4320km .………………………6分 具体的方案是:两辆汽车行驶了720km 后,乙车借给甲车60L 汽油,并在此地等着,甲车继续前进1440km 后返回,碰到乙车时再借60L 汽油,然后两车回到出发点A .………………12分19.(1)证明:2,DC CE CA =⋅∴CDE ∆∽CAD ∆∴CDB DBC ∠=∠, ∵四边形ABCD 内接于O ,∴BC CD =………………………………………………3分 (2)解:如图,连接OC , ∵BC CD =,∴DAC CAB ∠=∠,又∵AO CO =,∴CAB ACO ∠=∠,∴DAC ACO ∠=∠, ∴AD ∥OC ,∴,PC POPD PA= ∵,22,PB OB CD ==∴2,4 2.322PC PC PC =∴=+又∵PC PD PB PA ⋅=⋅∴4PA =也就是半径4OB =,……………………6分在RT ACB ∆中,22228(22)214,AC AB BC =-=-=∵AB 是直径,∴90ADB ACB ︒∠=∠=∴90FDA BDC ︒∠+∠=,90CBA CAB ︒∠+= ∵BDC CAB ∠=∠∴FDA CBA ∠=∠ 又∵90AFD ACB ︒∠=∠=,∠AFD =∠ACB =90° ∴AFD ∆∽ACB ∆∴2147,22AF AC FD CB ===………………………………9分 在RT APF ∆,设FD x =,则7AF x =,∴222(7)(62)12,x x ++=求得322DF =.………………………………12分 20.解:(1)抛物线(2)(4)8k y x x =+-,令0y =,解得2x =-或4x =,∴(2,0)A -,(4,0)B .∵直线33y x b =-+经过点(4,0)B ,∴解得433b =, ∴直线BD 解析式为:33334y x =-+.当5x =-时,33y =,∴(5,33)D -在抛物线(2)(4)8k y x x =+-上,解得839b =.………………………………………………………………………3分 (2)由抛物线解析式,令0x =,得y k =-,∴(0,)C k -,OC k =.点P 在第一象限内的抛物线上,所以ABP ∠为钝角.因此若两个三角形相似,只可能是ABC ∆∽APB ∆或ABC ∆∽ABP ∆.第19题图①若ABC ∆∽APB ∆,则有BAC PAB ∠=∠,如答图2﹣1所示.设(,)P x y ,过点P 作PN x ⊥轴于点N ,则,ON x PN y ==.tan tan BAC PAB ∠=∠,即:,.222k y k y x k x =∴=++ ∴(,)2kP x x k +,代入抛物线解析式整理得:26160x x --=, 解得:8x =或2x =(与点A 重合,舍去),∴(8,5)P k . ∵ABC ∆∽APB ∆,∴AC ABAB AP=, 即2246625100k k +=+,解得:455k =.……………………………………7分 ②若ABC ∆∽ABP ∆,则有ABC PAB ∠=∠,如答图2﹣2所示.同理,可求得2k =.综上所述,455k =或2k =.………………………9分 则33DN =,(3)由(1)知:(5,33)D -,如答图3,过点D 作DN x ⊥轴于点N ,5,9,ON BN ==∴tan 3,3DBA DN BN ∠==∴30,DBA ︒∠= 过点D 作DKx 轴,则30,KDF DBA ︒∠=∠=过点F 作FG DK ⊥于点G ,则12FG DF =.由题意,动点M 运动的路径为折线AF DF +,运动时间:12t AF DF AF FG =+=+.由垂线段最短可知,折线AF FG +的长度的最小值为DK 与x 轴之间的垂线段.过点A 作AH DK ⊥于点H ,则min t AH =,AH 与直线BD 的交点,即为所求之F 点.∵A 点横坐标为2-,直线BD 解析式为:33y x =+∴(F -.………………………………………………………13分21、(1)2014不是“好数”.如果2014是“好数”,不妨设222014()m n m n =-、为自然数,则()()m n m n +-⨯=21007,而m n m n +-、的奇、偶性相同,即()()m n m n +-要么是奇数要么能被4整除.所以2014不是“好数”.…………………………………………4分(2)设k 为自然数,由(1)类似可得如42k +的自然数都不是“好数”22221)(1)4,(1)21k k k k k k +--=+-=+(,故4,k 21k +的自然数都是“好数”,……………………………………………………10分所以从小到大的“好数”为:0,1,3,4,5,7,8,9,11,12,13,……所以第n 个“好数”为1[]3n n -+,所以第2014个“好数”为2684.…………………………………………………………13分。

安徽省马鞍山二中、安师大附中2017届高三12月阶段性测试理数试题 Word版含答案

安徽省马鞍山二中、安师大附中2017届高三12月阶段性测试理数试题 Word版含答案

数学(理)试卷 第Ⅰ卷(选择题)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数)5z i i i =-(i 为虚数单位),则复数z 的共轭复数为( ) A .2i - B .2i + C .4i - D .4i +2.“2a =-”是“直线1:30l ax y -+=与()2:2140l x a y -++=互相平行”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.如下程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的,m n 分别为495,135,则输出的m = ( )A .0B .5C . 45D . 904. 将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()()|,|P A B P B A 分别是( ) A .601,912 B .160,291 C .560,1891 D .911,21625. 某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .306. 已知点,,P A B 在双曲线22221x y a b-=上,直线AB 过坐标原点,且直线PA PB 、的斜率之积为13,则双曲线的离心率为( )A .3 B .3 C .2 D .27.在边长为1的正ABC ∆中,,D E 是边BC 的两个三等分点(D 靠近于点B ),则AD AE 等于( ) A .16 B .29 C .1318 D .138. 已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 图象上的所有点向右平移6π个单位得到函数()g x 的图象,则函数()g x 的单调递增区间为( )A .,,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .2,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ C .,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D .2,2,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦9. 已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1nn na b a +=,若对任意的*n N ∈,都有8n b b ≥成立,则实数a 的取值范围是( )A .()8,7--B .[)8,7--C .(]8,7--D .[]8,7--10.函数4cos xy x e =-(e 为自然对数的底数)的图像可能是( )A .B .C .D .11. 当,x y 满足不等式组22472x y y x x y +≤⎧⎪-≤⎨⎪-≤⎩时,22kx y -≤-≤恒成立,则实数k 的取值范围是( )A .[]1,1--B .[]2,0-C .13,55⎡⎤-⎢⎥⎣⎦D .1,05⎡⎤-⎢⎥⎣⎦12. 已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A BC D -中,P 是面1111A B C D 上的动点.给出以下四个结论中,则正确的个数是( )①与点D P 形成一条曲线 ,且该曲线的长度是2;②若//DP 平面1ACB ,则DP 与平面11ACC A 所成角的正切值取值范围是3⎫+∞⎪⎪⎣⎭;③若DP ,则DP 在该四棱柱六个面上的正投影长度之和的最大值为 A .0 B .1 C .2 D .3第Ⅱ卷(非选择题 )二、填空题(本大题 共4小题 ,每题5分,满分20分,将答案填在答题纸上) 13.已知()f x 是定义在R 上的奇函数,且当0x <时,()2xf x =,则()4log 9f =____________.14.若0,,cos 224ππααα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,则sin 2α= ____________. 15.在数列{}n a 及{}n b 中,1111b 1,1n n n n n n a a b a b a b ++=+=+==.设11n n nc a b =+,则数列{}n c 的前2017项和为 ____________.16.已知点A 在椭圆221259x y +=上,点P 满足()()1AP OA R λλ=-∈,有72OA OP =,则线段OP 在x 轴上的投影长度的最大值为____________.三、解答题 (本大题共6小题,第17题 至21题每题 12分,在第22、23题中任选一题10分,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)如图,在ABC ∆中,12,cos 3AB B ==,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2,BD DC ACD =∆sin sin BAD CAD∠∠的值. 18.(本小题满分12分)近年来我国电子商务行业迎来发展的新机遇.2016年“618”期间,某购物平台的销售业绩高达516亿元人民币,与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)请完成关于商品和服务评价的22⨯列联表,并判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全为好评的次数为随机变量X :①求对商品和服务全为好评的次数X 的分布列: ②求X 的数学期望和方差. 附临界值表:2K 的观测值:()()()()()2n ad bc k a b c d a c b d -=++++(其中n a b c d =+++)关于商品和服务评价的22⨯列联表:19.(本小题满分12分)已知四棱锥P ABCD -中,底面ABCD 是梯形,//BC AD ,AB AD ⊥,且1,2AB BC AD ===,顶点P 在平面ABCD 内的射影H 在AD 上,PA PD ⊥.(1)求证:平面PAB ⊥平面PAD ;(2)若直线AC 与PD 所成角为60°,求二面角A PC D --的余弦值. 20.(本小题满分12分)已知焦点为F 的抛物线()21:20C x py p =>,圆222:1C x y +=,直线l 与抛物线相切于点P ,与圆相切于点Q .(1)当直线l的方程为0x y -=时,求抛物线1C 的方程; (2)记12,S S 分别为,FPQ FOQ ∆∆的面积,求12S S 的最小值. 21.(本小题满分12分) 已知函数()()ln ,x af x m a m R x-=-∈在x e =(e 为自然对数的底)时取得极值,且有两个零点记为12,x x .(1)求实数a 的值,以及实数m 的取值范围; (2)证明: 12ln ln 2x x +>.选做题 (在第22、23两题中任选一题作答,若两题都做,按第22题 记分.)22. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆C的参数方程为53x ty t⎧=-⎪⎨=+⎪⎩(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于,A B 两点,点P 是圆C 上任一点,求,A B 两点的极坐标和PAB ∆面积的最小值.23. (本小题满分10分)选修4-5:不等式选讲 已知函数()2f x x =-.(1)解不等式:()()12f x f x ++≤;(2)若0a <,求证:()()()2f ax af x f a -≥.参考答案一、选择题二、填空题 13. 13-14. 151615. 4034 16. 15 三、解答题17.(1)在三角形中,∵1cos 3B =,∴sin B =...................2分又ADC S ∆=ADC S ∆=...................7分∵1sin 2ABC S AB BC ABC ∆=∠,∴6BC =, ∵11sin ,sin 22ABD ADC S AB AD BAD S AC AD CAD ∆∆=∠=∠,2ABD ADC S S ∆∆=,∴sin 2sin BAD ACCAD AB∠=∠,....................9分 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC ABC =+-∠,∴AC =sin 242sin BAD ACCAD AB∠==∠.........................12分18.解:(1)由题 意可得关于商品和服务评价的22⨯列联表如下:()222008010407011.11110.8281505012080K ⨯⨯-⨯==>⨯⨯⨯,故能在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关........................4分 (2)①每次购物时,对商品和服务全为好评的概率为25,且X 取值可以是0,1,2,3.其中()()()32211233327235423360;1;25125551255512P X P X C P X C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫========= ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;()3033238355125P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, X 的分布列为:........................8分 ②由于23,5X B ⎛⎫⎪⎝⎭,则()()2622183,31555525E X D X ⎛⎫=⨯==⨯⨯-=⎪⎝⎭............12分19.解析:(1)∵PH ⊥平面,ABCD AB ⊂平面ABCD ,∴PH AB ⊥, ∵,,,AB AD ADPH H AD PH ⊥=⊂平面PAD ,∴AB ⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD ................5分 (2)以A 为原点,如图建立空间直角坐标系A xyz -,∵PH ⊥平面ABCD , ∴x 轴//PH .则()()()0,0,0,1,1,0,0,2,0A C D ,设(),02,0AH a PH h a h ==<<>, ∴()0,,P a b ,()()()0,,,0,2,,1,1,0AP a h DP a h AC ==-=, ∵PA PD ⊥,∴()220AP DP a a h =-+=, ∵AC 与BD 所成角为60°. ∴()21cos ,222AC DP a ==-, ∴()222a h -=,∴()()210a a --=,∵02a <<,∴1a =,∵0h >,∴1h =,∴()0,1,1P ......................8分 ∴()()()()0,1,1,1,1,0,1,0,1,1,1,0AP AC PC DC ===-=-,设平面APC 的法向量为(),,n x y z =,由n AP y z n AC x y ⎧=+=⎨=+=⎩,得平面APC 的一个法向量为()1,1,1n =-,设平面DPC 的法向量为(),,m x y z =,由00m PC x z m DC x y ⎧=-=⎨=-=⎩,得平面DPC 的一个法向量为()1,1,1, ∴1cos ,3m nm n m n ==. ∵二面角A PC D --的平面角为钝角,∴二面角A PC D --的余弦值为13-.............12分20.解:(1)设点200,2x P x p ⎛⎫ ⎪⎝⎭,由()220x py p =>得,22x y p =,求导x y p '=, 因为直线PQ 的斜率为1,所以01x p =且2002x x p-=,解得p = 所以抛物线1C的方程为2x =.(2)因为点P 处的切线方程为:()20002x x y x x p p-=-,即200220x x py x --=,根据切线与圆切,得d r =1=,化简得4220044x x p =+,由方程组20022422002201440x x py x x y x x p ⎧--=⎪+=⎨⎪--=⎩,解得20042,2x Q x p ⎛⎫- ⎪⎝⎭,所以002P Q PQ x x =-=-=,点0,2p F ⎛⎫⎪⎝⎭到切线PQ的距离是d ==所以2220010211224p x p x S PQ d p x +-==⨯=,20122Q pS OF x x ==, 而由4220044x x p =+知,24200440p x x =->,得02x >,所以()()()()()() ()222242222 222000000000012422 20000 222442222422424443324x p x x x x x x xxx p xSS p x p p x x xxx+-+---+-=⨯===---=++≥-当且仅当224424xx-=-时取“=”号,即24x=+p=所以12SS的最小值为3.21.(1)()()21ln1lnax x a a xxf xx x--+-'==,由()10af x x e+'=⇒=,且当1ax e+<时,()0f x'>,当1ax e+>时,()0f x'<,所以()f x在1ax e+=时取得极值,所以10ae e a+=⇒=,....................2分所以()()()2ln1ln,0,x xf x m x f xx x-'=->=,函数()f x在()0,e上递增,在(),e+∞上递减,()1f e me'=-,()00x x→>时,();f x x→-∞→+∞时,()(),f x m f x→-有两个零点12,x x,故101,0mmeem⎧->⎪<<⎨⎪-<⎩,.......................5分(2)不妨设12x x<,由题意知1122lnlnx mxx mx=⎧⎨=⎩,则()()221121221121lnln,lnxx xx x m x x m x x mx x x=+=-⇒=-.需证12ln ln2x x+>,只需证明212x x e>,只需证明:()12ln2x x >,只需证明:()122m x x+>,即证:()122211ln2x x xx x x+>-,即证2122111ln21x x x x x x +>-,设211xt x =>,则只需证明:1ln 21t t t ->+.也就是证明:1ln 201t t t -->+.....................9分 记()()1ln 2,11t u t t t t -=->+,∴()()()()222114011t u t t t t t -'=-=>++,∴()u t 在()1,+∞单调递增,∴()()10u t u >=,所以原不等式成立,故212x x e >,则12ln ln 2x x +>得证............12分22.(1)由53x ty t⎧=-+⎪⎨=⎪⎩,消去参数t ,得()()22532x y ++-=,所以圆C 的普通方程为()()22532x y ++-=, 由cos 4πρθ⎛⎫+= ⎪⎝⎭cos sin 2ρθρθ-=-, 所以直线l 的直角坐标方程为20x y -+=.....................5分(2)直线l 与x 轴,y 轴的交点为()()2,0,0,2A B -,化为极坐标为()2,,2,2A B ππ⎛⎫⎪⎝⎭,设P 点的坐标为()5,3t t -++,则P 点到直线l的距离为d==∴min d ==AB = 所以PAB ∆面积的最小值是1222242S '==.....................10分 23.(1)由题意,得()()112f x f x x x ++=-+-, 因此只须解不等式122x x -+-≤,当1x ≤时,原不等式等价于232x -+≤,即112x ≤≤; 当12x <≤时,原不等式等价于12≤,即12x <≤; 当2x >时,原不等式等价于232x -≤,即522x <≤. 综上,原不等式的解集为15|22x x ⎧⎫≤≤⎨⎬⎩⎭.............5分 (2)由题意得()()()222222222f ax af x ax a x ax a ax ax a ax a f a -=---=-+-≥-+-=-=,所以()()()2f ax af x f a -≥成立.........................10分。

【安徽省马鞍山二中】2017届高三上学期期中(理科)数学试卷

【安徽省马鞍山二中】2017届高三上学期期中(理科)数学试卷

安徽省马鞍山二中2017届高三上学期期中(理科)数学试卷一、选择题(每小题5分,计60分):1.设非空集合M N 、满足:(){}|0M x f x =,(){}|0N x g x =,()(){}P |0x f x g x ==,则集合P 恒满足的关系为( ) A .P M N =UB .()P M N ⊆UC .P ≠∅D .P =∅2.已知命题():,0,34x xP x ∃∈-∞<;命题π:0,,tan 2q x x x ⎛⎫∀∈> ⎪⎝⎭,则下列命题中真命题是( )A .p q ∧B .()p q ∨⌝C .()p q ∧⌝D .()p q ⌝∧3.已知定义在R 上的单调连续函数()f x 在区间()0,2上存在零点的一个必要不充分条件是( ) A .()()020f f < B .()()120f f <C .()()030f f <D .()()010f f <4.已知复数1z =-,z 是z 的共轭复数,则z z =g ( )A .14B .12C 1i 4D 1i 4-5.已知正项等比数列{}n a 满足7652a a a =+.若存在两项m n a a ,14a ,则19m n+的最小值为( )A .83B .114C .145D .1766.一个几何体按比例绘制的三视图如图所示(单位:m ),则该几何体的体积为( )A .373mB .392mC .372mD .394m7.已知ABC △中,24AB AC O ==,,为△ABC 的外心,则AO BC u u u r u u u rg 等于( )A .4B .6C .8D .108.函数sin ()x f x k x=-0k (>)有且仅有两个不同的零点θ,()ϕθϕ>,则以下有关两零点关系的结论正确的是( )A .sin cos ϕϕθ=B .sin cos ϕϕθ=-C .sin cos θθϕ=D .sin cos θθϕ=-9.已知()0<)f x a =,定义域为D ,任意m n D ∈,,点(())P m f n ,组成的图形为正方形,则实数a 的值为( ) A .1-B .2-C .3-D .4-10.设数列{}n a 的通项公式为()π(1)(21)cos 12n n n a n n =--+∈*N g ,其前n 项和为n S ,则120S =( ) A .60﹣B .120﹣C .180D .24011.在平面四边形ABCD 中,ADAB ==,CD CB ==AD AB ⊥,现将△ABD 沿着对角线BD 翻折成△A BD ',则在△A BD '折起至转到平面BCD 内的过程中,直线A C '与平面BCD 所成的最大角为( ) A .30oB .45oC .60︒D .90o12.已知()()f x g x 、都是定义在R 上的函数,()0g x ≠,()()()()f x g x f x g x ''<,()()xf x ag x =,()()()()115112f fg g -+=-,则关于x 的方程()()22001abx b +=∈,有两个不同实根的概率为( ) A .15 B .12C .35D .45二、填空题(每小题5分,计20分):13.2e 1ln x dx x=⎰____. 14.已知正四面体ABCD 的棱长为1,M 为AC 的中点,P 在线段DM 上,则()2AP BP +的最小值为____. 15.阅读如图的程序框图,输出的结果为____.16.已知x y ,满足约束条件:010x x y y ≥⎧⎪+≥⎨⎪≥⎩,则4x y +的最小值为____.三、解答题(共6大题计70分):17.已知命题()p f x :(]0x ∈-∞,上有意义,命题q :函数()2lg y ax x a =-+的定义域为R .若p q ∨为真,p q ∧为假,求实数a 的取值范围.18.在ABC △中,a b c ,,分别为角A B C ,,所对的边,且 cos cos cosCa b cA B ==. (1)求角A 的大小;(2)ABC △的面积为3,求a 的值.19.如图,四边形ABCD 中(图1),E 是BC的中点,21,,DB DC BC AB AD ====将(图1)沿直线BD 折起,使二面角A BD C --为60o (如图2) (1)求证:AE ⊥平面BDC ;(2)求直线AE 与平面ADC 所成角的正弦值.20.对x ∈R ,定义函数()1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩(1)求方程()231sgn x x x +=-的根;(2)设函数()()()2sgn 22f x x x x =⎡⎤⎣⎦-g ﹣,若关于x 的方程()f x x a =+有3个互异的实根,求实数a 的取值范围.21.已知数列{}n a 为等比数列,其前n 项和为n S ,已知14716a a +=-,且对于任意的n *∈N 有21n n n S S S ++,,成等差数列;(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)已知()n b n n +=∈N ,记312123n n nb b b b T a a a a =++++K ,若()()211n n m T n ≤﹣﹣﹣对于2n ≥恒成立,求实数m 的范围.22.已知函数()ln af x x bx x=--(a b 、为常数),在1x =时取得极值. (Ⅰ)求实数a b -的值;(Ⅱ)当2a =-时,求函数()f x 的最小值;(Ⅲ)当*N n ∈时,试比较()11n n n n +⎛⎫⎪+⎝⎭与21e n +⎛⎫ ⎪⎝⎭的大小并证明.。

【安徽省马鞍山二中】2017届高三上学年期期中(理科)数学年试题答案

【安徽省马鞍山二中】2017届高三上学年期期中(理科)数学年试题答案

-4-/4
1.已知集合 A x | (x 3)(x 1) 0 , B x | 2 x 2 ,则 A B ( )
A.[2, 1]
B.[1, 2]
2.设 i 为虚数单位,则复数 z 1 i 的模为( 1 i
A.1
B. 2
C. [1,1] )
C. 3
D.[1, 2] D. 2
21.(本小题满分 12 分) 已知函数 f (x) (x 1)ln x (x a)2(a R) .
-3-/4
(Ⅰ)若 f (x) 在 (0, ) 上单调递减,求 a 的取值范围;
(Ⅱ)若
f
(x)
有两个极值点
x1,
x2
,求证:
x1

x2

5 4

请考生在第(22)和第(23)题中任选一题作答,如果多做,则按所做的第一题计分.
(Ⅰ)请将上述列联表补充完整; (Ⅱ)判断是否有 99.9% 的把握认为喜欢游泳与性别有关?
附: K 2
n(ad bc)2
(a b)(c d )(a c)(b d )
p(K 2 k0 )
0.10
0.05
0.025 0.010 0.005 0.001
k0
2.706 3.841 5.024 6.635
17.(本小题满分 12 分)
已知数列an 的前 n 项和为 Sn ,且 2Sn 4a 1.
(Ⅰ)求an 的通项公式
(Ⅱ)设 bn an an1 2 ,求数列bn 的前 n 项和 Tn .
18.(本小题满分 12 分)
2017 年 3 月 27 日,一则“清华大学要求从 2017 级学生开始,游泳达到一定标准才能毕业”的消息在
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年马鞍山市第二中学创新人才实验班招生考试数 学【注意事项】1.本试卷共4页,总分150分,答题时长120分钟,请掌握好时间。

一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的代号填入答题卷相应表格中...........) 1.将一些棱长为1的正方体摆放在33⨯的平面上(如图1所示),其正视图和侧视图分别如图2、图3,记摆放的正方体个数的最大值为m ,最小值为n ,则m n -=( )A . 4B . 5C . 6D . 72.多项式2234(1)(1)(3)(1)x x x x +++-+-等于下列哪个选项( )A .22(1)x x - B . 2(1)(1)x x x +- C . (1)(1)x x x +- D . 22(1)(1)x x --3.甲、乙两人在玩一种纸牌,纸牌共有40张.每张纸牌上有1至10中的一个数,每个数有四种不同的花色.开始时,每人有20张牌,每人将各自牌中相差为5的两张牌拿掉,最后甲还有两张牌,牌上的数分别为4和a ,乙也还有两张牌,牌上的数分别为7和b ,则b a -的值是( )A . 3B . 4C . 6D . 74.已知x 为实数,且|31||41||171|x x x -+-++-L 的值是一个确定的常数,则这个常数的值是( ): A . 5 B . 10 C . 15 D . 755.[]x 表示不超过实数x 的最大整数4ππ-(如[]=3,[-]=-4,[]=-4),记x x x M=[]+[2]+[3]. 将不能表示成M 形式的正整数称为“隐形数”.则不超过2014的“隐形数”的个数是( ) A . 335 B . 336 C . 670 D . 6716.如图,点O 为锐角ABC ∆的外心,点D 为劣弧AB 的中点, 若,BAC α∠=,ABC β∠=,βα>且则DCO ∠=( )A .2βα- B . 3αβ- C . 3βα+ D . 4βα+ 二、填空题(本大题共10小题,每小题6分,共60分.将答案填在答题卷中......相应横线....上..) 第6题图C第1题图图1图2图37.如果不等式||||2x a x -+<没有实数解,则实数a 的取值范围 ; 8.已知实数xx =,则x 的取值范围是 ; 9.函数y =的最大值为 ;10.设a b 、为实数,已知坐标平面上的抛物线2y x ax b =++与x 轴交于P Q 、两点,且线段7PQ =.若抛物线28y x ax b =++-与x 轴交于R S 、两点,则线段=RS ;11.正方形ABCD 中,两个顶点到直线l 的距离相等,且均为另两个顶点到直线l 的距离的两倍,则这样的直线有 条;12.使二次方程222510x px p p -+--=的两根均为整数的质数p 的所有可能值为 ;13.在平面直角坐标系中,不管实数a 取什么实数,抛物线223y ax x =++的顶点都在同一条直线上,这条直线的函数关系式是 ;14.已知实数,,a b c 满足1a b c ++=,1111a b cb c ac a b++=+-+-+-,则abc = ;15.如图,P 为等边ABC ∆内一点,2,1,PA PB PC ===则ABC ∆的面积为 ;16.如图,在AOB ∠的边OA 上过到点O 的距离为1,3,5,7,…的点作互相平行的直线,分别与OB 相交,得到如图中所示的阴影梯形,它们的面积依次记为123,,,S S S …. 则20142013S S = .三、解答题(本大题共5小题,共60分.将答案填在答题卷中相应........位置处...,答题应写出文字说明、证明过程或演算步骤.)17.(本题满分10+O第16题图第15题图CB18.(本题满分12分)甲、乙两辆汽车同时从同一地点A 出发,沿同方向直线行驶,每辆车最多只能带240L 汽油(含油箱中的油),途中不能再加油,每升油可使一辆车前进12km ,两辆车都必须沿原路返回出发点A ,但是两车相互可借用对方的油.请你设计一种方案,使其中一辆车尽可能地远离出发点A ,并求这辆车一共行驶了多少千米?19.(本题满分12分)如图,四边形ABCD 内接于O e ,AB 是O e 的直径,AC 和BD 相交于点E ,且2.DC CE CA =⋅ (1)求证:BC CD =(2)分别延长AB ,DC 交于点P ,过点A 作AF CD ⊥交CD 的延长线于点F ,若,22,PB OB CD ==求DF 的长.20.(本题满分13分)如图,已知抛物线(2)(4)8k y x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于,A B两点,与y 轴交于点C ,经过点B 的直线33y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以,,A B P 为顶点的三角形与ABC ∆相似,求k 的值;第19题图(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?第20题图21.(本题满分13分)一个自然数(即非负整数)若能表示成两个自然数的平方差,则称这个自然数为“好数”.例如,22=-就是一个“好数”.1653(1)2014是不是“好数”?说明理由.(2)从小到大排列,第2014个“好数”是哪个自然数?数学试题答案及评分标准..................17.解:原式+=+=+………………………………………………5分77=--14=-………………………………………………………………10分18.解:设尽可能远离出发点A 的甲汽车行驶了xkm ,乙汽车行驶了ykm ,则24012224012x y x y +≤⨯⨯⎧⎨-≤⨯⎩而11()()432022x x y x y =++-≤,即甲车一共行驶了4320km .………………………6分 具体的方案是:两辆汽车行驶了720km 后,乙车借给甲车60L 汽油,并在此地等着,甲车继续前进1440km 后返回,碰到乙车时再借60L 汽油,然后两车回到出发点A .………………12分19.(1)证明:2,DC CE CA =⋅Q∴CDE ∆∽CAD ∆∴CDB DBC ∠=∠, ∵四边形ABCD 内接于O e ,∴BC CD =………………………………………………3分 (2)解:如图,连接OC , ∵BC CD =,∴DAC CAB ∠=∠,又∵AO CO =,∴CAB ACO ∠=∠,∴DAC ACO ∠=∠, ∴AD ∥OC ,∴,PC POPD PA= ∵,22,PB OB CD ==∴2,4 2.322PC PC =∴=+又∵PC PD PB PA ⋅=⋅∴4PA =也就是半径4OB =,……………………6分在RT ACB ∆中,22228(22)214,AC AB BC =-=-=∵AB 是直径,∴90ADB ACB ︒∠=∠=∴90FDA BDC ︒∠+∠=,90CBA CAB ︒∠+= ∵BDC CAB ∠=∠∴FDA CBA ∠=∠ 又∵90AFD ACB ︒∠=∠=,∠AFD =∠ACB =90° ∴AFD ∆∽ACB ∆∴2147,22AF AC FD CB ===………………………………9分 在RT APF ∆,设FD x =,则7AF x =,∴222(7)(62)12,x x ++=求得322DF =.………………………………12分 20.解:(1)抛物线(2)(4)8k y x x =+-,令0y =,解得2x =-或4x =,∴(2,0)A -,(4,0)B .∵直线33y x b =-+经过点(4,0)B ,∴解得43b =, ∴直线BD 解析式为:33334y x =-+.当5x =-时,33y =,∴(5,33)D -在抛物线(2)(4)8k y x x =+-上,解得83b =.………………………………………………………………………3分 (2)由抛物线解析式,令0x =,得y k =-,∴(0,)C k -,OC k =.点P 在第一象限内的抛物线上,所以ABP ∠为钝角.因此若两个三角形相似,只可能是ABC ∆∽APB ∆或ABC ∆∽ABP ∆.第19题图①若ABC ∆∽APB ∆,则有BAC PAB ∠=∠,如答图2﹣1所示.设(,)P x y ,过点P 作PN x ⊥轴于点N ,则,ON x PN y ==.tan tan BAC PAB ∠=∠,即:,.222k y k y x k x =∴=++ ∴(,)2kP x x k +,代入抛物线解析式整理得:26160x x --=, 解得:8x =或2x =(与点A 重合,舍去),∴(8,5)P k . ∵ABC ∆∽APB ∆,∴AC ABAB AP=, 即224625100k k +=+,解得:455k =.……………………………………7分 ②若ABC ∆∽ABP ∆,则有ABC PAB ∠=∠,如答图2﹣2所示.同理,可求得2k =.综上所述,45k =或2k =.………………………9分 则33DN =,(3)由(1)知:(5,33)D -,如答图3,过点D 作DN x ⊥轴于点N ,5,9,ON BN ==∴tan 3,DBA DN BN ∠==∴30,DBA ︒∠= 过点D 作DK x P 轴,则30,KDF DBA ︒∠=∠= 过点F 作FG DK ⊥于点G ,则12FG DF =.由题意,动点M 运动的路径为折线AF DF +,运动时间:12t AF DF AF FG =+=+.由垂线段最短可知,折线AF FG +的长度的最小值为DK 与x 轴之间的垂线段.过点A 作AH DK ⊥于点H ,则min t AH =,AH 与直线BD 的交点,即为所求之F 点.∵A 点横坐标为2-,直线BD 解析式为:33y x =+∴(F -.………………………………………………………13分21、(1)2014不是“好数”.如果2014是“好数”,不妨设222014()m n m n =-、为自然数,则()()m n m n +-⨯=21007,而m n m n +-、的奇、偶性相同,即()()m n m n +-要么是奇数要么能被4整除.所以2014不是“好数”.…………………………………………4分(2)设k 为自然数,由(1)类似可得如42k +的自然数都不是“好数”22221)(1)4,(1)21k k k k k k +--=+-=+(,故4,k 21k +的自然数都是“好数”,……………………………………………………10分所以从小到大的“好数”为:0,1,3,4,5,7,8,9,11,12,13,……所以第n 个“好数”为1[]3n n -+,所以第2014个“好数”为2684.…………………………………………………………13分。

相关文档
最新文档