常用CMOS模拟开关功能和原理

合集下载

CMOS模拟开关的选择与典型应用

CMOS模拟开关的选择与典型应用

CMOS模拟开关的选择与典型应用CMOS模拟开关的选择与典型应用一、模拟开关简介早期的模拟开关大多工作于±20V 的电源电压,导通电阻为几百欧姆,主要用于模拟信号与数字控制的接口,近几年,集成模拟开关的性能有了很大的提高,它们可工作在非常低的电源电压,具有较低的导通电阻、微型封装尺寸和极佳的开关特性。

被广泛用于测试设备、通讯产品、PBX/PABX 设备以及多媒体系统等。

一些具有低导通电阻和低工作电压的模拟开关成为机械式继电器的理想替代品。

模拟开关的使用方法比较简单,但在具体应用中应根据实际用途做合理的选择。

本文主要介绍模拟开关的基本特性和几种特殊模拟开关的典型应用。

二、正确选择CMOS开关1、导通电阻:传统模拟开关的结构如图1 所示,它由N 沟道MOSFET 与P 沟道MOSFET 并联构成,可使信号双向传输,如果将不同VIN值所对应的P 沟道MOSFET 与N 沟道MOSFET 的导通电阻并联,可得到图2 并联结构下导通电阻(RON)随输入电压(VIN)的变化关系,如果不考虑温度、电源电压的影响,RON 随VIN 呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD),这是设计人员所不希望的,如何将RON随VIN的变化量降至最小也是设计新一代模拟开关所面临的一个关键问题三、几种特殊的模拟开关:1、高频T型开关T 型开关适用于视频及其它频率高于10MHz的应用,如图4 所示,它由两个模拟开关(S1、S3)串联组成,另一开关S2 接在地和S1、S3的交点之间,这种结构的开关其关断隔离高于单个开关,由于寄生电容与每个串联开关并联,断开状态的T 型开关其容性串扰随频率的提高而增大。

因此,影响开关高频特性的关键在于开关的断开状态而不是接通状态。

当T 型开关导通时,S1 和S3 闭合,S2 断开;当开关断开时,S1、S2 断开,S3 闭合,此时,那些要通过串联MOSFET 的寄生电容耦合到输出端的输入信号被S3 旁路,断开状态下的10MHz 视频T 型开关(MAX4545)的关断隔离达-80dB,而标准模拟开关(MAX312)的关断隔离度只有-36dB。

cmos开关应用

cmos开关应用

cmos开关应用CMOS开关是一种常见的电子元器件,广泛应用于各种电路和系统中。

它具有低功耗、高速度、可靠性强等优点,因此被广泛应用于数字集成电路、无线通信、计算机硬件等领域。

CMOS开关的工作原理是基于场效应管的开关特性。

它由一对互补的MOS场效应管组成,其中一个是P型MOS管,另一个是N型MOS管。

当输入信号为高电平时,N型MOS管导通,P型MOS 管截止;当输入信号为低电平时,N型MOS管截止,P型MOS管导通。

通过控制输入电平的高低,可以实现对CMOS开关的开关控制。

CMOS开关具有很多应用场景。

首先,在数字集成电路中,CMOS 开关可以用于实现逻辑门、触发器等基本逻辑功能。

CMOS技术的发展使得数字集成电路的集成度越来越高,功耗越来越低,性能越来越好。

其次,在无线通信系统中,CMOS开关可以用于射频开关、功率放大器等关键部件。

CMOS开关具有高频带宽、低插入损耗、高隔离度等特点,能够满足无线通信系统对高速数据传输和信号处理的需求。

此外,在计算机硬件中,CMOS开关可以用于内存、存储器、时钟控制等关键部件。

CMOS开关的低功耗特性使得计算机硬件能够更好地满足能耗和性能的平衡。

CMOS开关的应用还涉及到模拟电路、传感器、光电器件等领域。

在模拟电路中,CMOS开关可以用于模拟开关、模拟运算等功能。

CMOS开关的高速度、低功耗、低噪声等特点使得模拟电路的性能得到提升。

在传感器领域,CMOS开关可以用于信号采集、信号处理等关键环节。

CMOS开关的高灵敏度、低功耗使得传感器具有高精度、低功耗的特点。

在光电器件领域,CMOS开关可以用于光电开关、光电传感器等应用。

CMOS开关的高速度、高隔离度、低功耗使得光电器件的性能得到提升。

CMOS开关作为一种重要的电子元器件,广泛应用于各种电路和系统中。

它的低功耗、高速度、可靠性强等优点使得它成为数字集成电路、无线通信、计算机硬件等领域的重要组成部分。

随着科技的不断进步,CMOS开关的应用将会越来越广泛,性能将会越来越优越。

常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理CMOS模拟开关是一种常用的电子器件,用于开关模拟信号。

它在电子电路中广泛应用,能够实现信号的开关、选择、分配和调制等功能。

CMOS模拟开关的原理是基于CMOS(互补金属氧化物半导体)技术。

CMOS技术是一种特殊的半导体制造工艺,它由P型和N型MOSFET(金属氧化物半导体场效应晶体管)组成。

P型MOSFET的特点是在负电压下导电,而N型MOSFET在正电压下导电。

CMOS模拟开关的工作原理是利用P型和N型MOSFET的互补特点,以及它们的互补工作状态来实现模拟信号的开关。

在CMOS模拟开关中,一个P型MOSFET和一个N型MOSFET相连,形成一个互补对。

通过控制栅极电压来控制MOSFET的导通与截止,从而实现信号的开关。

CMOS模拟开关具有以下功能:1.信号开关:CMOS模拟开关可以实现信号的开关功能,当控制信号为高电平时,开关导通,信号可以通过;当控制信号为低电平时,开关截止,信号被阻断。

2.信号调制:CMOS模拟开关可以实现信号的调制功能,通过改变控制信号的频率和幅度,可以实现模拟信号的变化。

3.信号选择:CMOS模拟开关可以实现信号的选择功能,可以根据控制信号选择不同的输入信号传递到输出端,实现多路选择功能。

4.信号分配:CMOS模拟开关可以实现信号的分配功能,可以将输入信号分配到多个输出端。

CMOS模拟开关的优点是功耗低、噪声小、响应速度快、尺寸小、可靠性高。

这些优点使得它在各种应用场合都有广泛的应用。

例如,CMOS 模拟开关常用于音频、视频信号的开关和选择,射频信号的开关和调制,以及模拟信号的处理等领域。

总结起来,CMOS模拟开关通过利用P型和N型MOSFET的互补特性,以及它们的互补工作状态来实现信号的开关、选择、分配和调制等功能。

它具有功耗低、噪声小、响应速度快、尺寸小、可靠性高等优点,在电子电路中有着广泛的应用。

cmos开关原理

cmos开关原理

cmos开关原理
CMOS开关原理是基于电子元件的工作原理,通过控制电压来控制开关的通断状态。

CMOS(Complementary Metal-Oxide-Semiconductor)指的是互补金属氧化物半导体。

CMOS开关由一个pMOS(p型金属氧化物半导体)和一个nMOS(n型金属氧化物半导体)两个晶体管组成。

在CMOS 开关中,pMOS和nMOS是串联连接的,pMOS的源极与nMOS的漏极相连,而nMOS的源极与pMOS的漏极相连。

CMOS开关的工作原理是基于晶体管的导通与截止特性。

当pMOS的栅极电压为低电平(0V),而nMOS的栅极电压为高电平(VDD),此时pMOS导通,nMOS截止。

反之,当pMOS的栅极电压为高电平(VDD),而nMOS的栅极电压为低电平(0V),此时pMOS截止,nMOS导通。

由于pMOS和nMOS互为互补,所以当CMOS开关的输入信号为低电平时,即使存在微小的漏电流,也会带来非常小的功耗。

而当输入信号为高电平时,CMOS开关的导通能力非常强。

CMOS开关广泛应用于数字电路中,如逻辑门、存储器、微控制器等。

其优点包括低功耗、高噪声抑制能力、较高的集成度和稳定性等。

总之,CMOS开关利用pMOS和nMOS的导通与截止特性,
通过控制栅极电压来实现通断状态的切换,具有低功耗和高噪声抑制能力,适用于各种数字电路应用。

CMOS模拟开关

CMOS模拟开关

CMOS模拟开关正确选择CMOS模拟开关摘要:本⽂概述了模拟开关的基本结构、⼯作原理和应⽤范围;定义了导通电阻、平坦度和电荷注⼊等与性能密切相关的指标;并对ESD保护、故障保护和加载-感应功能等针对特定应⽤的特性进⾏了介绍。

引⾔集成模拟开关在25年前⾸次问世以来,常常⽤作模拟信号与数字控制器的接⼝。

本⽂将介绍模拟开关的理论基础及其常见的应⽤,另外还将讨论校准型多路复⽤器(cal-mux)、故障保护型模拟开关、加载-感应开关等模拟开关的特殊性能。

近⼏年,集成模拟开关的开关性能有了很⼤的提⾼,它们可⼯作在⾮常低的电源电压,具有很⼩的封装尺⼨。

⽆论是性能指标还是特殊功能都可提供多种选择,有经验的设计⼈员可以根据具体的应⽤挑选到理想的开关产品。

标准的模拟开关CMOS模拟开关易于使⽤,这⼀点已为⼤多数设计者所公认。

但是,需要提醒⼤家的是:千万不要轻视模拟开关在某些⼯程问题中所发挥的作⽤。

现在,许多半导体⼚商仍在⽣产⼀些早期的模拟开关,如:CD4066、MAX4066等,其基本结构如图1所⽰。

Maxim还提供MAX4610等与⼯业标准器件引脚兼容、但性能更优的产品。

图1. 采⽤并联n沟道和p沟道MOSFET的典型模拟开关的内部结构将n沟道MOSFET与p沟道MOSFET并联,可使信号在两个⽅向上同等顺畅地通过。

n沟道与p沟道器件之间承载信号电流的多少由输⼊与输出电压⽐决定。

由于开关对电流流向不存在选择问题,因⽽也没有严格的输⼊端与输出端之分。

两个MOSFET 在内部反相与同相放⼤器控制下导通或断开。

这些放⼤器根据控制信号是CMOS或是TTL逻辑、以及模拟电源电压是单或是双,对数字输⼊信号进⾏所需的电平转换。

低电阻开关求出V IN在各种电平下的p沟道与n沟道MOSFET导通电阻(R ON)的并联值(积除以和),可以得到这种并联结构的复合导通电阻特性(图2)。

这个R ON随V IN的变化曲线在不考虑温度、电源电压和模拟输⼊电压对R ON影响的情况下为直线。

常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理(4066,4051-53)开关在电路中起接通信号或断开信号的作用。

最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。

CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。

一、常用CMOS模拟开关引脚功能和工作原理1.四双向模拟开关CD4066CD4066的引脚功能如图1所示。

每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。

当控制端加高电平时,开关导通;当控制端加低电平时开关截止。

模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。

模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。

各开关间的串扰很小,典型值为-50dB。

2.单八路模拟开关CD4051CD4051引脚功能见图2。

CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。

其真值表见表1。

“INH”是禁止端,当“INH”=1时,各通道均不接通。

此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。

例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表13.双四路模拟开关CD4052CD4052的引脚功能见图3。

CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。

其真值表见表2。

表24.三组二路模拟开关CD4053CD4053的引脚功能见图4。

CD4053内部含有3组单刀双掷开关,3组开关具体接通哪一通道,由输入地址码ABC来决定。

常用模拟开关芯片型号与功能和应用介绍-PPT精选文档

常用模拟开关芯片型号与功能和应用介绍-PPT精选文档

注意:
AD7501,AD7502,AD7503 芯片都是单向多到
一的多路开关,即信号只允许从多个 (8个) 输入端向
一个输出端传送。
单八路模拟开关CD4051
• CD4051相当于一个单刀八掷开关,开关接通哪一通 道,由输入的3位地址码ABC来决定。
当选通E为 1 时,而输入端A为0时,则 S2 端为 1 , S1端为0,这时VT1截止,VT2导通,输出端B为0, A=B,也相当于输入端和输出端接通。 当选通端E为0时,这时VT1和VT2均为截止状 态,电路输出呈高阻状态。 从上面的分析可以看出,只有当选通端E为高电 平时,模拟开关才会被接通,此时可从A向B传送信 息;当输入端A为低电平时,模拟开关关闭,停止传 送信息。
AD 7501
14 13 12 11 10 9
... ...
S1 S8
图3.7 AD7501(AD7503)芯片结构及引脚功能
片上所有逻辑输入与TTL/DTL及CMOS 电路兼容。
表3.1 AD7501真值表
A2
0 0 0 0 1 1 1 1 ×
A1
0 0 1 1 0 0 1 1 ×
A0
0 1 0 1 0 1 0 1 ×
二、常用的CMOS模拟开关集成电路
在模拟开关的集成过程中,晶体三极管和场效应 晶体管均可用来做模拟开关的有源器件,实际上,由 于场效应晶体管特性的对称性不存在残余电压等优点, 所以在模拟开关中用的最多的还是场效应晶体管。 • 开关在电路中起接通信号或断开信号的作用。最常见的 可控开关是继电器,当给驱动继电器的驱动电路加高电 平或低电平时,继电器就吸合或释放,其触点接通或断 开电路。 • CMOS模拟开关是一种可控开关,它不象继电器那样可 以用在大电流、高电压场合,只适于处理幅度不超过其 工作电压、电流较小的模拟或数字信号。

cmos双向模拟开关a b的关系

cmos双向模拟开关a b的关系

cmos双向模拟开关a b的关系CMOS双向模拟开关a b的关系CMOS双向模拟开关是一种常用的电子元件,可以用于控制模拟信号的传输和切换。

它的作用类似于普通的开关,但具有更强大的功能和更低的功耗。

在实际应用中,CMOS双向模拟开关通常由两个互补的MOSFET(金属氧化物半导体场效应晶体管)组成,分别用于控制信号的传输和切换。

CMOS双向模拟开关的主要特点是具有双向传输能力。

它可以将输入信号传输到输出端,同时也可以将输出信号传输到输入端。

这种双向传输的能力使得CMOS双向模拟开关在许多应用场合中发挥了重要作用。

在实际应用中,CMOS双向模拟开关常常用于模拟信号的切换和选择。

通过控制a和b两个输入端的电压,可以实现对不同模拟信号的选择和切换。

当a和b都为低电平时,开关处于关闭状态,输入信号无法传输到输出端;当a为高电平、b为低电平时,开关打开,输入信号可以传输到输出端;当a为低电平、b为高电平时,开关也打开,但此时输入信号可以从输出端传输到输入端;当a和b都为高电平时,开关处于关闭状态,输入信号也无法传输到输出端。

CMOS双向模拟开关的使用极为灵活。

它可以被广泛应用于各种电路中,如模拟信号选择开关、模拟电路切换、模拟信号放大和滤波等。

在模拟信号选择开关中,CMOS双向模拟开关可以根据控制信号的不同,将不同的输入信号选择传输到输出端,实现信号的切换和选择功能。

在模拟电路切换中,CMOS双向模拟开关可以将不同的电路连接到同一个输入端或输出端,实现电路的切换和连接功能。

在模拟信号放大和滤波中,CMOS双向模拟开关可以通过控制输入信号的传输和切换,实现对信号的放大和滤波处理。

CMOS双向模拟开关具有许多优点。

首先,它具有很低的功耗,可以在低电压下工作,从而节省能源。

其次,它具有很高的带宽和很低的失真,可以保持信号的高质量传输。

此外,CMOS双向模拟开关还具有良好的线性度和很低的开关电压,可以保证信号的准确传输和切换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用CMOS模拟开关功能和原理(4066,4051-53)开关在电路中起接通信号或断开信号的作用。

最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。

CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。

一、常用CMOS模拟开关引脚功能和工作原理1.四双向模拟开关CD4066CD4066的引脚功能如图1所示。

每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。

当控制端加高电平时,开关导通;当控制端加低电平时开关截止。

模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。

模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。

各开关间的串扰很小,典型值为-50dB。

2.单八路模拟开关CD4051CD4051引脚功能见图2。

CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。

其真值表见表1。

“INH”是禁止端,当“INH”=1时,各通道均不接通。

此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。

例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表13.双四路模拟开关CD4052CD4052的引脚功能见图3。

CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。

其真值表见表2。

表24.三组二路模拟开关CD4053CD4053的引脚功能见图4。

CD4053内部含有3组单刀双掷开关,3组开关具体接通哪一通道,由输入地址码ABC来决定。

其真值表见表3。

表35.十六路模拟开关CD4067CD4067的引脚功能见图5。

CD4067相当于一个单刀十六掷开关,具体接通哪一通道,由输入地址码ABCD来决定。

其真值表见表4。

表4二、典型应用举例1.单按钮音量控制器单按钮音量控制器电路见图6。

VMOS管VT1作为一个可变电阻并接在音响装置的音量电位器输出端与地之间。

VT1的D极和S极之间的电阻随VGS成反比变化,因此控制VGS就可实现对音量大小的控制。

VT1的G极接有3个模拟开关S1~S3和一个100μF的电容,其中100μF电容起电压保持作用。

由于VMOS管的G极和S极之间的电阻极高,故100μF电容上的电压可长时间基本保持不变。

模拟开关S1为电容提供充电回路,当S1导通时,电源通过S1给电容充电,电容上电压不断增高,使VT1导通电阻越来越小,使音量也越来越小。

模拟开关S2为电容提供放电回路,当S2导通时,电容通过S2放电,电容上电压不断下降,使音量越来越大。

模拟开关S3起开机音量复位作用,开机时,电源在S3控制端产生一短暂的正脉冲,使S3导通,由于与S3连接的电阻较小,故使电容很快充到一定的电压,使起始音量处于较小的状态。

F1~F6及其外围元件组成长短脉冲识别电路。

静态时,F1、F2输入为高电平,当较长时间按压按钮开关AN时,F4输出变高,经100k电阻给3.3μF电容充电,当充电电压超过CMOS 门转换电压时,F5输出由高变低,F6输出由低变高,模拟开关S2导通,100μF电容放电,音量变大。

与此同时,F1输出也变高,也给电容充电,但F1输出的一次正跳变不足以使电容上电压超过转换电压,故F2输出仍为高电平,F3输出低电平,模拟开关S1保持截止。

当连续按动按钮开关AN 时,F4输出也不断变化,输出为高时,给电容充电,而输出变低时,电容又很快通过二极管VD3放电,故电容上电压总是达不到转换电压,因此F6输出一直为低。

而此时F1输出连续高低变化,经二极管整流不断给电容充电,使3.3μF电容上电压迅速达到转换电压,F2输出变低,F3输出变高,模拟开关S1导通,给电容充电,音量变小。

由此,利用一只按钮开关,实现了对音量的大小控制。

2.四路视频信号切换器四路视频信号切换器电路见图7。

“与非”门YF3、YF4组成脉冲振荡器,振荡频率由100k电位器调节。

若嫌调节范围不够,可适当更换0.47μF 电容和100k电阻。

脉冲振荡器受YF1、YF2组成的双稳态电路的控制,按S1时,YF1输出低电平,脉冲振荡器停振;按S2时,YF1输出高电平,脉冲振荡器开始振荡。

脉冲振荡器的输出作为CD4017十进制计数器的时钟,使Y0~Y3依次出现高电平,相应的四个模拟开关依次导通,由Vi1~Vi4输入的视频信号被依次切换至输出端,完成了四路视频信号的切换。

显然,增加一片CD4066可做成八路视频信号切换器,相应地,由Y0~Y7进行模拟开关控制,Y8连至Cr。

依此类推,可做成更多路数的视频信号切换器。

而且,输入、输出也可以是其它形式的信号。

如要求视频、音频信号同传,则并接上相应数量的模拟开关即可。

3.数控电阻网络图8示出数字控制电阻网络电阻值大小的电路。

在图8中,CD4066的四个独立开关分别并接在四个串接电阻上,电阻的值是按二进制位权关系选择的。

当某个开关接通时,并接在该开关上的电阻被短路,此处假设该电阻阻值R RON(RON为模拟开关的导通电阻);当某个开关断开时,电阻两端阻值仍保持原阻值不变,此处假设该电阻阻值R ROFF(ROFF为模拟开关断开时的电阻)。

四个开关的控制端由四位二进制数A、B、C、D控制,因此,在A、B、C、D端输入不同的四位二进制数,可控制电阻网络的电阻变化,并从其上获得2~16种不同的电阻值。

按图8所给的电阻值,该电阻网络所对应的16种阻值列于表5中。

表54.音量调节电路音量调节电路见图9。

音频信号由Vi端输入,经分压电阻R11和隔直电容加到由R1~R10构成的加/减电阻网络。

CD40192为十进制加/减计数器,“与非”门YF3、YF4构成低频振荡器,“与非”门YF1、YF2分别为加计数端CPU和减计数端CPD的计数闸门。

当D1端为高电平时,闸门YF1开通,低频脉冲经YF1加到CD40192的CPU端,使其作加法计数,输出端Q0~Q3数据增大,使16路模拟开关的刀向低端转换,顺序接通R1~R10,接通的电阻增大,经与R11分压后,使输出音频信号Vo增大;当D2端为高电平时,闸门YF2开通,低频脉冲经YF2加到CD40192的CPD端,使其作减法计数,输出端Q0~Q3数据减小,使16路模拟开关的刀向高端转换,顺序接通R10~R1,接通的电阻减小,经与R11分压后,使输出音频信号Vo减小。

CD4051 CD4052 CD4053中文资料CD4051/CC4051是单8通道数字控制模拟电子开关,有三个二进控制输入端A、B、C和INH 输入,具有低导通阻抗和很低的截止漏电流。

幅值为4.5~20V的数字信号可控制峰值至20V 的模拟信号。

例如,若VDD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。

这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。

当INH输入端=“1”时,所有的通道截止。

三位二进制信号选通8通道中的一通道,可连接该输入端至输出。

CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B两个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。

幅值为4.5~20V的数字信号可控制峰峰值至20V的模拟信号。

例如,若V DD=+5V,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号,这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关,当INH输入端=“1”时,所有通道截止。

二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。

CD4053/CC4053是三2通道数字控制模拟开关,有三个独立的数字控制输入端A、B、C和INH输入,具有低导通阻抗和低的截止漏电流。

幅值为4.5~20V的数字信号可控制峰-峰值至20V的数字信号。

例如若VDD=+5,VSS=0,VEE=-13.5V,则0~5V的数字信号可控制-13.5~4.5V的模拟信号。

这些开关电路在整个VDD-VSS和VDD-VEE电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。

当INH输入端=“1”时,所有通道截止。

控制输入为高电平时,“0”通道被选,反之,“1”通道被选。

CD4051引脚图CD4052引脚图CD4053引脚图CD4051逻辑图CD4052逻辑图CD4053逻辑图切换时间波形图本发明为一种音频信号左右声道反相检测方法,其特征在于检测步骤如下:获取各预设参数值,初始化各中间变量;通过音频采集设备获得采样值,在检测时间片P内,统计反相采样次数c1和同相采样次数c2;若反相概率r大于反相概率门限R,判断当前音频信号状态值V[n]为反相;当累计检测时间t大于等于检测时间长度T时,计算反相百分比s;反相百分比s大于反相敏感度S时判定当前音频信号状态反相;累计反相时间d1大于等于反相时间门限D1,确认音频信号反相;累计同相时间d2大于等于同相时间门限D2,确认音频信号同相,否则音频信号为临界状态。

本发明结合历史状态值和当前状态值确定最终状态,大大减少了音频相位的随机性对检测结果稳定性的影响,保证了检测方法的准确性,适用各种音响系统应用场合的需要。

相关文档
最新文档