第四章-电涡流式传感器()讲解学习
自动检测技术(化工版)教案:第四章 电涡流式传感器

自动检测技术(化工版)教案:第四章电涡流式传感器➢教学要求1.了解电涡流效应和等效阻抗分析。
2.熟悉电涡流探头结构和被测体材料、形状和大小对灵敏度的影响。
3.熟悉电涡流式传感器的测量转换电路。
4.掌握电涡流式传感器的应用。
5.掌握接近开关的分类和特点。
➢教学手段多媒体课件、各种电涡流传感器演示➢教学课时3学时➢教学内容:第一节电涡流传感器工作原理一、电涡流效应(演示)从金属探测器的探测过程导出电涡流传感器的电涡流效应。
从金属探测器的结构来说明图4-1电涡流传感器工作原理。
二、等效阻抗分析图4-1中的电感线圈称为电涡流线圈。
分析它的等效电路:一个电阻R和一个电感L 串联的回路。
电涡流线圈受电涡流影响时的等效阻抗Z的函数表达式(分析其实际价值)Z=R+jωL=f(i1、f、μ、σ、r、x)(4-1)结论:电涡流线圈的阻抗与μ、σ、r、x之间的关系均是非线性关系,解决方法:必须由微机进行线性化纠正。
第二节电涡流传感器结构及特性一、电涡流探头结构(实物演示)电涡流传感器的传感元件是一只线圈,俗称为电涡流探头。
线圈结构:用多股较细的绞扭漆包线(能提高Q值)绕制而成,置于探头的端部,外部用聚四氟乙烯等高品质因数塑料密封,(图4-2)。
CZF-1系列电涡流探头的性能:表4-1 CZF-1系列传感器的性能提问:请同学由上表分析得出结论:探头的直径越大,测量范围就越大,但分辨力就越差,灵敏度也降低。
二、被测体材料、形状和大小对灵敏度的影响线圈阻抗变化与哪些因素有关:金属导体的电导率、磁导率等。
第三节测量转换电路(简单介绍调幅式和调频式测量转换电路。
)一、调幅式电路调幅式:以输出高频信号的幅度来反映电涡流探头与被测金属导体之间的关系。
图4-3:高频调幅式电路的原理框图。
调幅式缺点:电压放大器的放大倍数的漂移会影响测量精度,必须采取各种温度补偿措施。
二、调频式电路联系收音机,说明所谓调频式就是将探头线圈的电感量L与微调电容C0构成LC振荡器,以振荡器的频率f作为输出量。
《电涡流传感器》课件

电涡流传感器是一种用于测量目标物体电导率、电磁参数等参数的无接触传 感器。本PPT课件将为您介绍电涡流传感器的原理、应用和设计制造等相关内 容。
什么是电涡流传感器?
电涡流传感器是一种利用电涡流效应测量物体电导率或电磁参数的非接触式 传感器。它通过感应电流和涡流之间的相互作用来实现测量。
电涡流原理介绍
电涡流原理是指当导体中有交变电磁场时,产生的涡流会产生磁场,从而对 原交变磁场产生影响,实现了电导率、电磁参数等参数的测量。
电涡流传感器与其他传感器的比较
量方法,不会破坏目标物体表面,适用于高温、高压、腐蚀等 恶劣环境。
高精度和快速响应
电涡流传感器具有较高的精度和快速的响应速度,适用于对物体电导率和电磁参数需要精确 测量的场景。
灵敏度受温度影响
电涡流传感器的灵敏度受温度影响较大,需要进行温度补偿来保证测量的准确性。
电涡流传感器的优点和应用领域
1 高灵敏度
电涡流传感器具有高灵敏度,可用于测量小电导率变化,如金属疲劳检测和材料缺陷检 测。
2 宽测量范围
电涡流传感器的测量范围广,可应用于不同电导率的材料测量,如金属、陶瓷等。
3 工业应用广泛
电涡流传感器的输出方式
电涡流传感器的输出方式可以是模拟输出、数字输出或脉冲输出等。不同的 输出方式适用于不同的应用场景和信号处理需求。
电涡流传感器广泛应用于机床加工、工业自动化、航空航天等领域的电导率、电磁参数 测量。
电涡流传感器的设计与制造
电涡流传感器的设计与制造需要考虑形状尺寸、材料选择、绕组设计等因素。 通过优化设计和制造工艺,可以提高传感器的性能和稳定性。
电涡流传感器的参数测量
电涡流传感器可以测量的参数包括电导率、电磁参数、涡流强度、涡流深度 等。通过测量这些参数可以获取目标物体的相关信息。
传感器4电涡流传感器精品PPT课件

等效阻抗与非电量的测量
检测深度的控制:由于存在集肤效应,电涡 流只能检测导体表面的各种物理参数。改变f, 可控制检测深度。激励源频率一般设定在 100kHz~1MHz。频率越低,检测深度越深。
间距x的测量:如果控制上式中的f、、、r不变,
电涡流线圈的阻抗Z就成为间距x的单值函数,这样就 成为非接触位移传感器。
齐平式传感器安装时可以不高出安装 面,不易被损害。
V系列电涡流位移传感器外形(参考浙江洞头开关厂资料)
30.11.2020
齐平式
22
电涡流位移传感器的应用
电涡流探头线圈的阻抗受诸多因素影响, 例如金属材料的厚度、尺寸、形状、电导率、 磁导率、表面因素、距离等,因此电涡流传感 器的应用领域十分广泛,但也同时带来许多不 确定因素,一个或几个因素的微小变化就足以 影响测量结果。所以电涡流传感器多用于定性 测量。 在用作 定 量 测量时,必须采用逐点标 定、计算机线性纠正、温度补补偿等措施。
频率f越高,电涡流的渗透的深度就越 浅,集肤效应越严重。
二、等效阻抗分析
电涡流线圈受电涡流影响时的等效阻抗Z的 函数表达式为:
Z=R+jωL=f(f、、、r、x)
式中的r为表面因子。
检测深度与激励源频率有何关系?
如果控制上式中的f、、、r不变,电涡流
线圈的阻抗Z就成为哪个变量的单值函数?属于 接触式测量还是非接触式测量?
2
电涡流的应用 ——在我们日常生活中经常可以遇到
干净、 高效的 电磁炉
集肤效应
电涡流传感器工作原理:当高频 (100kHz~2MHz)信号源产生的高频电压施 加到一个靠近金属导体附近的电感线圈L1时, 被测导体表面就产生电涡流i2。i2在金属导体 的纵深方向并不是均匀分布的,而只集中在 金属导体的表面,这称为集肤效应。
一文读懂电涡流传感器

一文读懂电涡流传感器电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。
传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。
这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。
注意:电涡流传感器要求被测体必须是导体。
电涡流传感器的工作原理当接通传感器系统电源时,在前置器内会产生一个高频信号,该信号通过电缆送到探头的头部,在头部周围产生交变磁场H1。
如果在磁场H1的范围没有金属导体接近,则发射到这一范围内的能量都会被释放;反之,如果有金属导体接近探头头部,则交变磁场H1将在导体的表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2。
由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。
这种变化与电涡流效应有关,也与静磁学效应有关(与金属导体的电导率、磁导率、几何形状、线圈几何参数、激励电流频率以及线圈到金属导体的距离参数有关)。
假定金属导体是均质的,其性能是线形和各向同性的,则线圈——金属导体系统的磁导率u、电导率σ、尺寸因子r、线圈与金属导体距离δ线圈激励电流I和频率ω等参数来描述。
因此线圈的阻抗可用函数Z=F(u,σ,r,δ,I,ω)来表示。
如果控制u,σ,r,I,ω恒定不变,那么阻抗Z就成为距离的单值函数,由麦克斯韦尔公式,可以求得此函数为一非线形函数,其曲线为“S”型曲线,在一定范围内可以近似为一线形函数。
通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离δ的变化转化成电压或电流的变化。
输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。
一般来说,传感器线圈的阻抗、电感和品质因数的变化与导体的几何形状、导电率和磁导率有关。
电涡流式传感器讲解

a)比较浅的裂缝信号
返回
上一页
b)经过幅值甄别后的信号
电感式传感器
电涡流式传感 电涡流传感器的应用
电涡流传感器
电感式传感器
电涡流式传感 电涡流传感器的应用
• 低频透射式涡流厚度传感器
电感式传感器
电涡流式传感 电涡流传感器的应用
• 高频反射式涡流厚度传感器
电感式传感器
电涡流式传感 电涡流传感器的应用
下一页
5. 涡流探伤
可以用来检查金属的表面裂纹、热处理裂纹以 及用于焊接部位的探伤等。
综合参数(x, ρ, μ)的变化将引起传感器参数的 变化,通过测量传感器参数的变化即可达到探 伤的目的。
在探伤时导体与线圈之间是有着相对运动速度 的,在测量线圈上就会产生调制频率信号
返回
上一页
Байду номын сангаас下一页
在探伤时,重要的是缺陷信号和干扰信号比。 为了获得需要的频率而采用滤波器,使某一频率的信号通过, 而将干扰频率信号衰减。
r——导体相对磁导率;
ƒ ——交变磁场频率(Hz)。
返回
上一页
下一页
电涡流式传感器
3.4.1 高频反射式涡流传感器 3.4.2 低频透射式涡流传感器 3.4.3 涡流式传感器的应用
返回
上一页
下一页
3.4.1 高频反射式涡流传感器
1. 基本原理 2.等效电路 3. 传感器的结构 4. 测量电路
返回
• 电涡流金属板、带材厚度测量
电感式传感器
电涡流式传感 电涡流传感器的应用
• 涡流非导电 •材料厚度测量
• 涡流轴 •心轨迹测量
电感式传感器
电涡流式传感 电涡流传感器的应用
4电涡流传感器详解

2024/7/15
16
鉴频器特性
使用 鉴频器可 以将f 转 换为电压 Uo
2024/7/15
鉴频器的输出电压与输入频率成正比
17
鉴频器在调频式电路中的应用
设电路参数如上页, 计算电涡流线圈未接近 金属时的鉴频器输出电 压Uo0 ;若电涡流线圈靠 近金属后,电涡流探头
的输出频率f 上升为
500kHz,f 为多少?输 出电压Uo又为多少?
2024/7/15
10
CZF-1系列传感器的性能
分析上表请得出结论:
探头的直径与测量范围及分辨力之间 有何关系?
2024/7/15
11
大直径电涡流探雷器
2024/7/15
12
第三节 测量转换电路
一、调幅式(AM)电路
石英振荡器产生稳频、稳幅高频振荡电压(100kHz~1MHz) 用于激励电涡流线圈。金属材料在高频磁场中产生电涡流,引
当电涡流线圈与被测体的距离x 改变时,电涡流 线圈的电感量L 也随之改变,引起LC 振荡器的输出 频率变化,此频率可直接用计算机测量。如果要用模
拟仪表进行显示或记录时,必须使用鉴频器,将f转 换为电压Uo 。
2024/7/15
15
并联谐振回路的谐振频率
f 1
2 LC0
4-3
设电涡流线圈的电感量L=0.8mH, 微调电容C0=200pF,求振荡器的频率f 。
高频电 流通过励磁 线圈,产生 交变磁场, 在铁质锅底 会产生无数 的电涡流, 使锅底自行 发热,烧开 锅内的食 物。
8
第二节 电涡流传感器结构及特性
交变磁场
电涡流探头外形
电涡流探头内部结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路板 5—夹持螺母 6—电源指示灯
电涡流传感器的工作原理

电涡流传感器的工作原理
电涡流传感器是一种常用的非接触式测量传感器,它利用了电涡流的原理来实现对物体表面缺陷、形状、尺寸和位置等参数的测量。
其工作原理主要基于电磁感应和涡流效应,通过对被测物体表面感应出的涡流信号进行分析,从而实现对物体参数的测量。
首先,让我们来了解一下电涡流的基本原理。
当导体材料置于交变磁场中时,由于磁感应线的变化,导体内将产生感应电流,这种现象就是电涡流。
电涡流会产生磁场,这个磁场又会影响原来的磁场,从而改变了原来的磁场分布。
利用这种原理,电涡流传感器可以实现对被测物体表面的非接触式测量。
电涡流传感器主要由激励线圈和接收线圈两部分组成。
激励线圈通过交变电流产生交变磁场,而接收线圈则用来感应被测物体表面产生的涡流信号。
当被测物体靠近传感器时,感应出的涡流信号将会影响接收线圈的电压输出,通过对这个电压信号的分析处理,就可以得到被测物体表面的参数信息。
电涡流传感器的工作原理可以简单总结为,激励线圈产生交变磁场,被测物体表面感应出涡流信号,接收线圈感应出涡流信号并输出电压信号,通过对电压信号的分析处理得到被测物体表面参数信息。
电涡流传感器具有许多优点,例如非接触式测量、高精度、高灵敏度、不受被测物体材料影响等特点,因此在工业生产中得到了广泛应用。
它可以用于金属材料的缺陷检测、尺寸测量、位置测量等领域,为工业生产提供了重要的技术支持。
总之,电涡流传感器通过利用电涡流的原理实现了对被测物体表面参数的非接触式测量,具有高精度、高灵敏度等优点,在工业生产中发挥着重要作用。
希望本文对电涡流传感器的工作原理有所帮助,谢谢阅读!。
4电涡流传感器详解

电涡流传感器
本章学习电涡流传感器的
原理及应用,并涉及接近开关
的原理、结构、特性参数及应
用。
2018/10/11 1
第一节
电涡流传感器工作原理
当电涡流线 圈与金属板的距 离x 减小时,电 涡流线圈的等效 电感L 减小,等 效电阻R 增大。 感抗XL 的变化比 R 的变化 大 得 多,流过电涡流 线圈的电流 i1 增 大。 2
电涡流效应演示
2018/10/11
电涡流的应用 ——在我们日常生活中经常可以遇到
干净、 高效的 电磁炉
2018/10/11
3
集肤效应
图4-1是电涡流传感器工作原理示意图。当高频 (100kHz左右)信号源产生的高频电压施加到一个靠 近金属导体附近的电感线圈L1时,将产生高频磁场H1。 如被测导体置于该交变磁场范围之内时,被测导体就 产生电涡流i2。i2在金属导体的纵深方向并不是均匀分 布的,而只集中在金属导体的表面,这称为集肤效应 (也称趋肤效应)。
如果控制上式中的 i1、 f 、 、 、 r不变,电 涡流线圈的阻抗Z就成为哪个非电量的单值函数? 属于接触式测量还是非接触式测量?
2018/10/11 5
等效阻抗与非电量的测量
检测深度的控制:由于存在集肤效应,电 涡流只能检测导体表面的各种物理参数。改变f, 可控制检测深度。激励源频率一般设定在 100kHz~1MHz。频率越低,检测深度越深。
2018/10/11 29
位移传感器的分类
2018/10/11
30
偏心和振动检测
2018/10/11
31
通过测量间隙来测量径向跳动
2018/10/11
32
测量弯曲、波动、变形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z2M 222
A
Z 2 金属导体中产生的涡电流环的阻抗
线圈等效阻抗:Z(R 1R 2
Z 2M 2 22)j
L 1L 2
Z 2M 2 22 线圈等效电阻:R NhomakorabeaR1
R2
2M2
Z22
线圈等效电感:L
L1
L2
2M2
Z22
Q0无涡流影响
线 因圈数的:品质QRLRL11(1(1R RL L1212Z 2Z 2M M 222222))RL1111 R L R L1212 Z 2Z 2M M 2222 22
第四章-电涡流式传感器(2013)
电涡流的应用 ——在我们日常生活中经常可以遇到
1)干净、高效的电磁炉
电磁炉内部的励磁线圈
2)电磁炉的工作原理
高频电流通 过励磁线圈, 产生交变磁 场,在铁质 锅底会产生 无数的电涡 流,使锅底 自行发热, 烧开锅内的 食物。
3)大直径电涡流探雷器
§4-1工作原理
讨论 1、当 r ros 时,即在线圈外径处,电涡流密度最大(=jo);
2、在线圈的轴线附近,电涡流非常小,可以设想为一个孔,这个
孔的孔径为 r0.52ro5(sri) ;
3、当 r1.8r9o(sro) (称“有效外径”时,电流密度衰减
到最大值的5%)
ri 0.525 ros
ro 1.89 ros
x x2 ro2s
•
I1
1
1
1
ros x
2
•
I1 为线圈激励电流
x为间距
ros为线圈外半径
讨论 1、电涡流随轴向距离x的增加而迅速减小;即:
x I2
ros
I1
2、为了获得较强的电涡流效应,应保证: x 1
ros 一般:X 0.050.15
ros
二、涡电流的径向形成范围
一种简化的模型 如图。
t-趋肤深度(轴向贯穿深度);
在距离导体表面x=t处,该处涡流密度为: jt 则该深度即为趋肤深度(或轴向贯穿深度)。
jo e
贯穿深度值可由下式计算:
t
5000 ,
orf
r f
导体电阻率;
r 相对磁导率;
f 激励频率
讨论
(1)贯穿深度与被测体 的材料有关;
(2)当被测导体材料一 定时。轴向贯穿深度是激 励频率的函数。频率越高, 趋肤深度越小。
(4)在金属导体上流动的电涡流必然产生热量而消耗能量, 使线圈阻抗的实数部分增加,导致品质因数Q值下降。
§4-2电涡流形成的范围
电涡流不仅是距离x的函数,而且只在被测导体的表面薄层 内及半径方向的有限范围内形成。
一、电涡流与轴向距离的关系
由线圈-导体的电磁作用,可得导体中电涡流为:
• • I2 I1 1
一、工作原理
一个通有交流电流J1的传感器线 圈,由于电流的变化,在线圈周围 就产生一个交变磁场H1。
被测导体置于该磁场周围之内,
被测导体内变会产生电涡流J2,电
涡流也将产生一个新的磁场H2。
H2与H1方向相反,因而抵消部分 原磁场,从而导致线圈的电感量、
阻抗和品质因素发生改变。
涡电流
阻抗 电感
Z F 1 ,,r ,x ,t,I,为金属导体的磁 ,为 导电 率导,率
B p 2 (r oo N sr i) s b s I(x b b)l sr n r o is s r r i o 2 s 2 s( ( x x b b s s ) ) 2 2 x lr n r o is s r r i o 2 s 2 sx x 2 2
§4-3 电涡流传感器的设计
一、线圈的形状和大小
dx r
dr
r
ros
ris
Bp
x
x
传感器线圈
bs
在轴上的磁感应强度
在线圈中,取单匝载流圆导线,在其轴上的磁感应强度:
Bp
0I
2
(x2
r2 r2)32
毕奥-沙法-拉普拉斯定律
扁平导线,单位面积上的电流密度:
NI j
(ros ris)bs
取通过截面积为dxdr处的圆形电流:
讨论
LL1
L2
2M2
Z22
RR1
R2
2M2
Z22
(1)阻抗、电感、品质因数都与互感系数M有关。
M与x为非线性关系,即:
Z F 1 x ,L 1 F 2 x ,Q F 3 x
(2)若被测体为磁性材料,则x减小,L1增大;若被测 导体为非磁性材料,则L1=const.;
(3)L中第二项与电涡流有关,电涡流产生一与原磁场方 向相反的磁场并由此减小线圈的电感,间距x越小,电感的 减小程度就越大。
线圈外半径
导体假设只有一个环,而环
中的电流密度(电流/单位面积)是半径的函
数:
jr jjo ovv14e4e4114 10rrr osros
线圈内半径
v r , ros
jo为v 1时,电涡流(最大度 )密
ri 0.525 ros
被测金属
ro 1.89 ros
当: rros,最大电流密jr度 j0, ; 当: r0,或r, j0。
L 1 F 2 , ,r ,x ,t,I, x为距离 ,t为厚度 ,I为电流 ,为频率
品质因数 Q F 3 ,,r,x ,t,I, r为激励线圈,半径
如果控制上面公式中的某些参数不变,而只改变其中的一个参数,这样阻抗
就成为这个参数的单值函数。特别是在 、 、 r、 t、 I、 恒定不变时。Z就
变成距离x的单值函数。因此,电涡流传感器是一个载流线圈加上金属导体。
二、等效电路分析
精确列出线圈阻抗与线圈到被测导体 距离等参数之间的函数是比较困难的, 可将涡电流等效为一个短路线圈,它 与传感线圈构成耦合线圈。
由基尔霍夫定律,得:
R1
•
I1
jL1
•
I1
•
jMI2
•
U
•
jMI1R2
•
I2
jL2
•
三、电涡流的轴向贯穿深度
“趋肤效应”(集肤效应)—交流电通过导体时,由于感应作用,引起导体 截面积上电流分布不均匀;越近导体表面,电流密度越大。
由于“趋肤效应”,涡流密度在金属导体中的轴向分
布 按指数规律衰减:
x
jx joe t
j o -金属表面涡流密度(即最大电流密度);
j x -金属导体中某点距离金属表面x的电涡流密度;
I2
0
解:
•
I1
•
•
U R 1R 2 2 2M L 212R 2j L 1R 2 2 2 M L 222L 2 U Z
传感器等效阻抗:
ZR 1R 2 2 2M L 2 22R 2j L 1R 2 2 2M L 2 22L 2
记
2M2 R22L2
2
NI
i
dxdr
(ros ris)bs
此电流在轴上x处所产生的磁感应为:
dB p20I(x2r2 r2)32(rosNris)bs dxdr
则,整个载流扁平线圈在x处所产生的总的磁感应强度:
BpdpB 2(ros0 N ro)ib Is rriossxx12(x2 r2 r2)32dxdr
积分结果: