勾股定理的三种验证方法
几种简单证明勾股定理的方法

几种简单证明勾股定理的方法勾股定理是一个著名的数学定理,它描述了直角三角形三条边的长度之间的关系。
下面是几种简单证明勾股定理的方法:方法一:特例验证法对于任意一个直角三角形,我们可以列出它的两条直角边的长度的平方和,以及斜边的长度的平方,验证它们是否相等。
例如,对于一个直角边分别为3和4的直角三角形,我们可以计算出它的斜边的长度为5,然后验证3²+4²=5²。
这种方法虽然简单,但是只适用于特例,不能推广到一般情况。
方法二:几何构造法将两个大小相同的直角三角形放在同一直线上,使得它们的斜边成为一条直线。
这时,我们可以证明两个三角形的面积之和等于底边长度之和的两倍。
由于两个三角形面积相等,因此可以得出底边长度之和等于斜边长度。
例如,对于两个直角边分别为a和b的直角三角形,它们的斜边长度分别为c,将它们放在同一直线上,使得它们的斜边成为一条直线。
可以证明两个三角形的面积之和等于底边长度之和的两倍,即ab/2+ab/2=c²/2。
因此,可以得出a²+b²=c²。
方法三:代数推导法通过代入特殊值的方式,可以得到勾股定理的公式。
例如,当直角三角形的两条直角边分别为3和4时,可以得出斜边的长度为5,然后代入公式3²+4²=5²得到验证。
这种方法虽然简单,但是只适用于已知直角三角形两条直角边长度的特殊情况。
方法四:平方法通过平方法证明勾股定理的思路是:将直角三角形的一条直角边平移到斜边所在的直线上方,与斜边重合。
这时,可以将直角三角形的一条直角边看作是斜边减去一条直角边的长度所得的差,因此可以得出斜边的平方等于两条直角边的平方和。
例如,对于一个直角边分别为a和b的直角三角形,可以将其一条直角边平移到斜边所在的直线上方,与斜边重合。
这时,可以将直角三角形的一条直角边看作是斜边减去一条直角边的长度所得的差,即a²+b²=c²。
证明勾股的方法

证明勾股的方法证明勾股定理是数学中的一项重要工作,它以勾股定理为基础,推导出了许多与直角三角形相关的性质和定理。
在本文中,我们将通过几种不同的方法来证明勾股定理的有效性。
一、几何证明法勾股定理的几何证明法是最直观的一种方法。
我们可以通过绘制一个直角三角形,分别用边长a、b、c表示三个边,其中c为斜边,a和b为直角边。
然后,我们可以利用几何形状和一些基本几何原理来推导出勾股定理。
我们可以根据直角三角形的性质得出,直角边a和b与斜边c的关系是相似的。
然后,我们可以利用平行线的性质,将直角边a和b 分别与斜边c垂直相交,得到两个直角三角形。
根据相似三角形的性质,我们可以得出以下等式:a/c = c/b通过化简,我们可以得到:a^2 + b^2 = c^2这就是勾股定理的几何证明法。
二、代数证明法勾股定理的代数证明法是另一种常见的证明方法。
我们可以通过代数运算推导出勾股定理的有效性。
假设有一个直角三角形,其中两个直角边的长度分别为a和b,斜边的长度为c。
根据勾股定理,我们有:a^2 + b^2 = c^2我们可以通过代数运算来证明这个等式。
首先,我们可以将c表示为其他变量的函数,假设c = f(a,b)。
然后,我们可以将a和b表示为其他变量的函数,假设a = g(b)和b = h(a)。
接下来,我们将等式a^2 + b^2 = c^2代入c = f(a,b)、a = g(b)和b = h(a)中,进行代数运算。
通过整理和化简,我们可以得到等式:g(b)^2 + h(a)^2 = f(a,b)^2通过比较等式两边的项,我们可以得出结论:f(a,b) = sqrt(g(b)^2 + h(a)^2)也就是说,斜边的长度f(a,b)等于直角边的长度g(b)和h(a)的平方和的平方根。
这证明了勾股定理的有效性。
三、三角函数证明法还有一种证明勾股定理的方法是利用三角函数的性质。
我们可以通过定义正弦、余弦和正切函数来推导出勾股定理。
勾股定理几种证明方法

勾股定理几种证明方法勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即11a2+b2+4×ab=c2+4×ab22,整理得a2+b2=c2.【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积1ab2等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AEH+∠AHE=90º,∴∠AEH+∠BEF=90º.∴∠HEF=180º―90º=90º.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90º,∴∠EHA+∠GHD=90º.又∵∠GHE=90º,∴∠DHA=90º+90º=180º.2∴.∴a+b=c.【证法3】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角(a+∴ABCD是一个边长为a+b的正方形,它的面积等于(a+b)2=4×1ab+c22221ab2三角形的面积等于.把这四个直角三角形拼成如图所示形状.∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90º,∴∠EAB+∠HAD=90º,2∴ABCD是一个边长为c的正方形,它的面积等于c.∵EF=FG=GH=HE=b―a,∠HEF=90º. 2(b−a)∴EFGH是一个边长为b―a的正方形,它的面积等于.14×ab+(b−a)2=c22∴.222∴a+b=c.【证法4】(1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面1ab2积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵∴∵∴∴∴RtΔEAD≌RtΔCBE,∠ADE=∠BEC.∠AED+∠ADE=90º,∠AED+∠BEC=90º.∠DEC=180º―90º=90º.ΔDEC是一个等腰直角三角形,12c2它的面积等于.又∵∠DAE=90º,∠EBC=90º,∴AD∥BC.1(a+b)2∴ABCD是一个直角梯形,它的面积等于2.1(a+b)2=2×1ab+1c222.∴2∴a+b=c.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,222∴∴又∵∴∴∵∴∴即又∵∠BED+∠GEF=90°,∠BEG=180º―90º=90º.AB=BE=EG=GA=c,ABEG是一个边长为c的正方形.∠ABC+∠CBE=90º.RtΔABC≌RtΔEBD,∠ABC=∠EBD.∠EBD+∠CBE=90º.∠CBD=90º.∠BDE=90º,∠BCP=90º,BC=BD=a.∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则1a2+b2=S+2×ab,21c2=S+2×ab2,∴a2+b2=c2.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90º,QP∥BC,∴∠MPC=90º,∵BM⊥PQ,∴∠BMP=90º,∴BCPM是一个矩形,即∠MBC=∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º,∴∠QBM=∠ABC,又∵∠BMP=90º,∠BCA=90º,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,12a∵ΔFAB的面积等于2ΔGAD的面积等于矩形ADLM的面积的一半,2∴矩形ADLM的面积=a.2b同理可证,矩形MLEB的面积=.∵正方形ADEB的面积=矩形ADLM的面积+矩形MLEB的面积222222∴c=a+b,即a+b=c.【证法8】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.过A作AF⊥AC,AF交GT于F,AF交DT于R.过B作BP⊥AF,垂足为P.过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD=90º,∠PAC=90º,∴∠DAH=∠BAC.又∵∠DHA=90º,∠BCA=90º,AD=AB=c,∴RtΔDHA≌RtΔBCA.∴DH=BC=a,AH=AC=b.由作法可知,PBCA是一个矩形,所以RtΔAPB≌RtΔBCA.即PB=CA=b,AP=a,从而PH=b―a.∵RtΔDGT≌RtΔBCA,RtΔDHA≌RtΔBCA.∴RtΔDGT≌RtΔDHA.∴DH=DG=a,∠GDT=∠HDA.又∵∠DGT=90º,∠DHF=90º,∠GDH=∠GDT+∠TDH=∠HDA+∠TDH=90º,∴DGFH是一个边长为a的正方形.∴GF=FH=a.TF⊥AF,TF=GT―GF=b―a.∴TFPB是一个直角梯形,上底TF=b―a,下底BP=b,高FP=a+(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为c2=S1+S2+S3+S4+S5①∵S8+S3+S4=1[b+(b−a)]•[a+(b−a)]b2−1ab22,=S5=S8+S9,1S3+S4=b2−ab−S8b2−S−S18.2∴=②把②代入①,得c2=S1+S2+b2−S1−S8+S8+S92b+S2+S9=b2+a2.=222∴a+b=c.【证法9】(李锐证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图).∵∠TBE=∠ABH=90º,∴∠TBH=∠ABE.又∵∠BTH=∠BEA=90º,BT=BE=b,∴RtΔHBT≌RtΔABE.∴HT=AE=a.∴GH=GT―HT=b―a.又∵∠GHF+∠BHT=90º,∠DBC+∠BHT=∠TBH+∴∠GHF=∠DBC.∵DB=EB―ED=b―a,∠HGF=∠BDC=90º,∴RtΔHGF≌RtΔBDC.即S7=S2.过Q作QM⊥AG,垂足是M.由∠BAQ=∠BEA=90º,可知∠ABE=∠QAM,而AB=AQ=c,所以RtΔABE≌RtΔQAM.又RtΔHBT≌RtΔABE.所以RtΔHBT≌RtΔQAM.即S8=S5.由RtΔABE≌RtΔQAM,又得QM=AE=a,∠AQM=∠BAE.∵∠AQM+∠FQM=90º,∠BAE+∠CAR=90º,∠AQM=∠BAE,∴∠FQM=∠CAR.又∵∠QMF=∠ARC=90º,QM=AR=a,∴RtΔQMF≌RtΔARC.即S4=S6.222c=S+S+S+S+Sa=S+Sb1234516∵,,=S3+S7+S8,又∵S7=S2,S8=S5,S4=S6,22a+b=S1+S6+S3+S7+S8∴=S1+S4+S3+S2+S5=c,222即a+b=c.【证法10】(利用反证法证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.222222假设a+b≠c,即假设AC+BC≠AB,则由AB2=AB•AB=AB(AD+BD)=AB•AD+AB•BD22可知AC≠AB•AD,或者BC≠AB•BD.即AD:AC≠AC:AB,或者BD:BC≠BC:AB.在ΔADC和ΔACB中,∵∠A=∠A,∴若AD:AC≠A C:AB,则∠ADC≠∠ACB.在ΔCDB和ΔACB中,∵∠B=∠B,∴若BD:BC≠BC:AB,则∠CDB≠∠ACB.又∵∠ACB=90º,∴∠ADC≠90º,∠CDB≠90º.222AC+BC≠AB这与作法CD⊥AB矛盾.所以,的假设不能成立.222∴a+b=c.【证法15】(辛卜松证明)DD2设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为(a+b)2=a2+b2+2ab;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为∴∴(a+b)21=4×ab+c222=2ab+c.a2+b2+2ab=2ab+c2,【证法11】(陈杰证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上.用数字表示面积的编号(如图).在EH=b上截取ED=a,连结则AD=c.∵EM=EH+HM=b+a,ED=∴DM=EM―ED=(b+a)―a=b.又∵∠CMD=90º,CM=a,∠AED=90º,AE=b,∴RtΔAED≌RtΔDMC.∴∠EAD=∠MDC,DC=AD=c.∵∠ADE+∠ADC+∠MDC=180º,∠ADE+∠MDC=∠ADE+∠EAD=90º,∴∠ADC=90º.∴作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形.∵∠BAF+∠FAD=∠DAE+∠FAD=90º,∴∠BAF=∠DAE.连结FB,在ΔABF和ΔADE中,∵AB=AD=c,AE=AF=b,∠BAF=∠DAE,∴ΔABF≌ΔADE.∴∠AFB=∠AED=90º,BF=DE=a.∴点B、F、G、H在一条直线上.在RtΔABF和RtΔBCG 中,∵AB=BC=c,BF=CG=a,∴RtΔABF≌RtΔBCG.2c=S2+S3+S4+S5,∵S1=S5=S4=S6+S7,b2=S1+S2+S6,a2=S3+S7,22a+b=S3+S7+S1+S2+S6∴=S2+S3+S1+(S6+S7)∴=S2+S3+S4+S52=c。
勾股定理500种证明方法

勾股定理500种证明方法勾股定理是数学中的一个重要定理,它表明在一个直角三角形中,斜边的平方等于两直角边的平方和。
因为勾股定理的证明方法有很多,以下仅列举其中的一些方法,并进行简要说明。
1.几何证明法:利用几何图形的性质和关系,通过构造适当的图形来推导出勾股定理。
常见的方法有直角三角形的外接圆和内切圆法、相似三角形法等。
2.代数证明法:通过代数运算推导出勾股定理。
常见的方法有使用平方差公式,将直角三角形的三边平方代入公式进行计算。
3.向量证明法:利用向量的性质和关系来证明勾股定理。
可以使用向量的内积和外积进行计算和推导。
4.能量守恒法:利用机械能守恒定律,将直角三角形看作一个物体在斜坡上滑动的问题,从而推导出勾股定理。
5.数学归纳法:通过数学归纳法来证明勾股定理。
可以先证明直角三角形边长为整数时勾股定理成立,然后再利用数学归纳法推广到一般情况。
6.解析几何证明法:利用坐标系和直角三角形的性质,通过坐标运算来推导勾股定理。
7.平面几何证明法:利用平面几何中的定理和性质,通过推演来证明勾股定理。
8.近似证明法:通过近似的方法进行证明,例如使用三角函数的泰勒级数展开来近似计算直角三角形的边长关系。
9.反证法:假设勾股定理不成立,推导出矛盾的结论,从而证明勾股定理的正确性。
10.画图证明法:通过绘制恰当的图形,利用图形的特征和性质来推导和证明勾股定理。
以上仅是列举了一些常见的证明方法,实际上还有很多其他的证明方法可以应用于勾股定理的证明。
不同的证明方法多角度地展示了勾股定理的内在原理和几何意义,使我们对这个定理有了更深入和多样化的理解。
勾股定理的验证及实际应用

勾股定理的验证及实际应用勾股定理在数学中是一种常见的定理,它可以用于验证三角形是否为直角三角形,还可以用于测量无法直接测量的长度。
在本文中,我们将探讨勾股定理的验证方法以及其实际应用。
勾股定理是指,在一个直角三角形中,斜边的平方等于两直角边的平方和。
可以表示为:a²+ b²= c²。
其中,a、b分别表示两条直角边的长度,c表示斜边的长度。
为了验证这个定理,我们可以通过以下方法来进行。
验证勾股定理的方法一:方法一是通过计算来验证勾股定理。
首先,我们需要知道一个三角形的三边长度,然后再计算它们的平方值。
接着,我们将两个小边长度的平方相加,并将它们与斜边长度的平方相比较。
如果两个值相等,则说明勾股定理成立。
例如,对于一个直角三角形,其直角边长度分别为3和4,斜边长度应为5。
我们可以计算3²+4²的值,结果是9+16=25。
由上可得,勾股定理成立。
验证勾股定理的方法二:方法二是通过几何图形来验证勾股定理。
在坐标系中,我们可以画出直角三角形的三边,并且标上对应的坐标值。
接着,我们可以利用勾股定理来计算三边的平方和,并且比较它们是否相等。
如果相等,则说明勾股定理成立。
例如,对于上述直角三角形,我们可以在坐标系中画出直角三角形,并且标出三边的坐标值。
然后,我们可以计算出它们的平方和,即3²+4²=25。
最后,我们可以测量斜边的长度,结果是5。
由此可见,勾股定理成立。
除了验证,勾股定理还有许多实际应用。
其中一项应用是用勾股定理来测量无法直接测量的长度。
例如,在森林中测量高度,我们可以利用勾股定理来测量树木的高度。
我们只需要测量眼睛和树底部之间的距离,以及眼睛到树顶的角度。
然后,我们可以利用勾股定理计算出树木的高度。
此外,勾股定理还可以用于解决直角三角形的问题,例如计算斜边长度,计算三角形的面积等。
同时,此定理也可以用于其他数学领域的问题,例如在三维几何中的应用。
勾股定理的三种验证方法

学习方法报社 全新课标理念,优质课程资源 第 1 页 共 1 页勾股定理的三种验证方法1.赵爽“弦图”验证法三国时期的数学家赵爽,利用图1验证了勾股定理,这个图形被称为“弦图”.在边长为c 的正方形中有四个斜边为c 的全等直角三角形,已知它们的直角边长分别为a ,b .你能利用这个图形验证勾股定理吗?验证:大正方形可以看成边长为c 的正方形;也可以看成4个全等的直角三角形与一个小正方形的和,且小正方形的边长为(a -b ).S 大正方形=21ab ×4+(a -b )2,同时也有S 大正方形=c 2,所以21ab ×4+(a -b )2=c 2 . 整理得a 2+b 2=c 2.2.火柴盒推倒验证法一个直立的火柴盒在桌面倒下,启迪人们发现了勾股定理的一种新的验证方法.如图2,火柴盒的一个侧面ABCD 倒下到D C B A '''的位置,连接C C ',设AB = a ,BC = b ,AC = c ,请利用四边形D C BC ''的面积验证勾股定理:a 2 + b 2 = c 2.验证:因为四边形D C BC ''为直角梯形,所以S 梯形BCC ′D ′ =21(BC +2)()2b a D B D C +='⋅''. 因为Rt △ABC ≌ Rt △AB ′C ′,所以∠BAC =∠B ′AC ′.所以∠CAC ′ = ∠CAB ′ +∠B ′AC ′ =∠CAB ′ +∠BAC = 90°. 所以S 梯形BCC ′D ′ = S △ABC + S △CAC ′ + S △D ′AC ′ =21ab +21c 2 +21ab =222ab c +. 所以222)(22ab c b a +=+,所以a 2 + b 2 = c 2. 3.面积割补验证法如图3,可以用面积割补法来验证勾股定理.因为S 正方形CDEF =S 正方形MNOP ,而S 正方形CDEF =2142c ab +⨯,S 正方形MNOP =22142a b ab ++⨯,所以222=a b c +.b 图1a c 图2图3。
勾股定理证明方法大全

勾股定理证明方法大全勾股定理是数学中一个重要而古老的定理,它在几何学中有广泛的应用。
勾股定理的证明有很多种方法,本文将介绍一些较常见的证明方法,以帮助读者更好地理解和掌握这一定理。
一、几何证明法几何证明法是最传统和直观的证明方法之一。
根据勾股定理的内容,我们可以构造一个直角三角形,然后利用三角形的性质进行证明。
首先,我们假设三边长度分别为a、b、c,其中c是斜边,而a和b是两个直角边。
然后,我们通过画一条高到斜边上,将三角形分为两个直角三角形。
分别利用这两个直角三角形的面积进行推理,可以得到a² + b² = c²,即勾股定理成立。
二、代数证明法代数证明法利用平面直角坐标系和代数运算的原理来证明勾股定理。
我们可以将直角三角形的顶点放在坐标系的原点和两个轴上,然后根据三角形的性质,写出斜边的方程和直角边的方程。
通过代入数值计算,我们可以验证勾股定理的成立,例如,当a=3、b=4、c=5时,计算(3² + 4²) - 5² 的结果,应该等于0。
若结果为零,则证明了定理的正确性。
三、相似三角形证明法相似三角形证明法利用相似三角形的性质来证明勾股定理。
根据三角形的相似关系,我们可以得到两个直角三角形的对应边比例相等,进而利用比例关系计算出三角形的边长。
例如,我们将较小的直角三角形的直角边和斜边分别记为a/b/c,将较大的直角三角形的直角边和斜边分别记为ka/kb/kc(k为正实数)。
根据相似三角形的定义,我们可以得到a/b = ka/kb,从而得出ka² + kb² = kc²。
通过确认两个三角形相似真实成立,我们可以证明勾股定理的正确性。
四、向量证明法向量证明法是一种利用向量运算的证明方法。
我们可以考虑两个向量(a,b)和(c,0),这两个向量的内积等于它们的模的乘积。
根据向量的定义,我们可以得到a·c + b·0 = (a² + b²)·(c² +0²)^1/2。
勾股定理的500种证明方法

勾股定理的500种证明方法1.几何推导:这是最著名的证明方法。
它通过将直角三角形切割、旋转、重新拼合,利用几何图形的性质,推导出勾股定理。
2. 代数证明:假设直角三角形的两条直角边长度分别为a和b,斜边长度为c。
则根据勾股定理,我们有c² = a² + b²。
我们可以将这个等式写成(a + b)² = c² + 2ab。
将c² = a² + b²代入,得到(a + b)² = a² + b² + 2ab。
再进一步化简,得到a² + 2ab + b² = a² + b² +2ab。
最后,化简为a² + b² = a² + b²。
我们可以发现,等式两边完全相等,从而验证了勾股定理。
3.数学归纳法证明:我们首先证明直角三角形边长为3,4,5时,满足勾股定理。
然后,假设对于边长小于n的所有直角三角形,都满足勾股定理。
接下来,我们考虑直角三角形边长为n的情况。
我们可以将这个三角形切割成由三个直角子三角形组成的形状。
根据归纳假设,这三个子三角形满足勾股定理。
我们可以对这些子三角形应用基本的代数运算和性质,进一步证明整个直角三角形也满足勾股定理。
4.平行四边形法证明:将一个直角三角形内切于正方形中,然后根据正方形的性质和等式关系,利用平行四边形的性质推导出勾股定理。
5.反证法证明:假设存在一个直角三角形,它的三条边无法满足勾股定理。
然后,通过对无法满足定理的条件进行分析,得出矛盾,从而证明了勾股定理的正确性。
6.数学几何方法:通过利用数学几何的原理和定理,如相似三角形、垂直直角等,推导出勾股定理的等式。
7.三角函数法证明:将三角函数引入到勾股定理的等式中,然后根据三角函数的性质,推导出等式成立。
以上仅为部分常见的证明勾股定理的方法,实际上有无数种证明方法可供选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习方法报社 全新课标理念,优质课程资源 第 1 页 共 1 页
勾股定理的三种验证方法
1.赵爽“弦图”验证法
三国时期的数学家赵爽,利用图1验证了勾股定理,这个图形被称为“弦图”.在边
长为c 的正方形中有四个斜边为c 的全等直角三角形,已知它们的直角边长分别为a ,b .你
能利用这个图形验证勾股定理吗?
验证:大正方形可以看成边长为c 的正方形;也可以看成4个全等的直角三角形与一
个小正方形的和,且小正方形的边长为(a -b ).
S 大正方形=21ab ×4+(a -b )2,同时也有S 大正方形=c 2,所以2
1ab ×4+(a -b )2=c 2 . 整理得a 2+b 2=c 2.
2.火柴盒推倒验证法
一个直立的火柴盒在桌面倒下,启迪人们发现了勾股定理的一种新的验证方法.
如图2,火柴盒的一个侧面ABCD 倒下到D C B A '''的位置,连接C C ',设AB = a ,
BC = b ,AC = c ,请利用四边形D C BC ''的面积验证勾股定理:a 2 + b 2 = c 2.
验证:因为四边形D C BC ''为直角梯形,所以S 梯形BCC ′D ′ =2
1(BC +2)()2
b a D B D C +='⋅''. 因为Rt △ABC ≌ Rt △AB ′C ′,所以∠BAC =∠B ′AC ′.
所以∠CAC ′ = ∠CAB ′ +∠B ′AC ′ =∠CAB ′ +∠BAC = 90°. 所以S 梯形BCC ′D ′ = S △ABC + S △CAC ′ + S △D ′AC ′ =21ab +21c 2 +2
1ab =222ab c +. 所以2
22)(22ab c b a +=+,所以a 2 + b 2 = c 2. 3.面积割补验证法
如图3,可以用面积割补法来验证勾股定理.
因为S 正方形CDEF =S 正方形MNOP ,而S 正方形CDEF =2142c ab +⨯,S 正方形MNOP =
22142
a b ab ++⨯,所以222=a b c +.
b 图1
a c 图2
图3。