勾股定理地证明方法67327

合集下载

证明勾股定理的4种方法

证明勾股定理的4种方法

证明勾股定理的4种方法证明勾股定理的4种方法勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

以下是小编整理的证明勾股定理的4种方法,仅供参考,大家一起来看看吧。

证明勾股定理的4种方法勾股定理是一个基本的几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。

当整数a,b,c满足a^2;+b^2;=c^2;这个条件时,(a,b,c)叫做勾股数组。

也就是说,设直角三角形两直角边为a和b,斜边为c,那么a^2;+b^2;=c^2;。

在中国数学史中同样源远流长,是中算的重中之重。

《周髀算经》中已有“勾三股四弦五”的记述,赵爽的《周髀算经》中将勾股定理表述为“勾股各自乘,并之,为弦实。

开方除之,即弦。

”勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。

下面我们一起来欣赏其中一些证明方法:方法一:赵爽“弦图”三国时期吴国数学家赵爽在为《周髀算经》作注解时,创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对勾股定理最早的证明。

2002年世界数学家大会在北京召开,这届大会会标的中央图案正是经过艺术处理的“弦图”,标志着中国古代数学成就。

方法二:刘徽“青朱出入图”约公元263年,三国时代魏国的数学家刘徽为古籍《九章算术》作注释时,用“出入相补法”证明了勾股定理。

方法三:欧几里得“公理化证明”希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》给出一个公理化的证明。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。

根据勾股定理,我们有a^2 + b^2 = c^2。

将三条边的
长度代入该等式,进行计算验证即可证明。

2. 几何证明:通过绘制直角三角形,并利用几何原理证明。

例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。

3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。

4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。

通过平行四边形的性质可以得出a^2 + b^2 = c^2。

5. 微积分证明:利用微积分的知识可以证明勾股定理。

通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。

这种证明方法比较复杂,需要较高的数学知识和
技巧。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。

利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。

2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。

3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。

4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。

5. 通过三角形内部的相似三角形进行推导得出勾股定理。

将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。

6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。

7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。

8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。

9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。

这可以通过暴力算法或递推算法来实现。

10. 利用反证法证明勾股定理。

假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。

通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。

11. 利用勾股定理证明三角形的周长和面积公式。

将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。

12. 利用勾股定理证明三角形的内心与垂心之间的关系。

将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。

13. 利用勾股定理证明三角形的外心与垂心之间的关系。

通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。

14. 利用圆的性质证明勾股定理。

将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。

15. 通过三角形的相似性质,证明勾股定理。

将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。

勾股定理的证明方法5种

勾股定理的证明方法5种

勾股定理的证明方法5种勾股定理是几何学中最为经典的定理之一,它揭示了直角三角形中直角边与斜边的关系。

勾股定理有多种不同的证明方法,下面我们将依次介绍其中五种不同的证明方法。

方法一:几何法证明这种证明方法是最为直观的,它通过几何形状的变换来证明勾股定理。

首先,我们先画出一个直角三角形ABC,然后作出辅助线AD ⊥BC,将三角形ABC分成两个小三角形ΔABD和ΔADC。

根据相似三角形的性质,我们可以得到BD/AB=AB/AC,即BD*AC=AB^2。

同理,我们可以得到CD*AB=AC^2。

将这两个式子相加起来,我们就可以得到BD*AC+CD*AB=AB^2+AC^2,根据平行四边形的性质,我们可以得到BC*AD=AB^2+AC^2,而BC*AD就是直角三角形ABC的斜边的平方AC^2。

因此,通过几何法证明,我们可以得到勾股定理成立。

方法二:代数法证明这种证明方法是使用代数运算来证明勾股定理。

我们可以用直角三角形的三条边的长度来表示三角形的面积。

假设直角三角形的三条边分别为a、b、c,其中c 为斜边,利用面积公式S=1/2*底*高,我们可以得到三角形面积的两种表达式:S=1/2* a*bS=1/2* c*h通过这两个表达式,我们可以得到c*h=a*b,即c^2=a^2+b^2。

方法三:相似三角形法证明这种证明方法利用相似三角形的性质来证明勾股定理。

我们可以在直角三角形ABC中找到一个与之全等的直角三角形DEF。

然后我们可以发现直角三角形ABC和DEF分别是直角三角形ACB和EDF的相似三角形。

由于相似三角形的对应边成比例,我们可以得到AB/DE=BC/EF=AC/DF。

利用这个性质,我们可以得到AB^2=DE^2+DF^2和AC^2=DE^2+EF^2。

将这两个式子相加起来,我们可以得到AB^2+AC^2=DE^2+DF^2+DE^2+EF^2,根据平行四边形的性质,我们可以得到AB^2+AC^2=2*DE^2+2*DF^2。

勾股定理的证明方法

勾股定理的证明方法

勾股定理的证明方法勾股定理是数学中一个经典的定理,最早由中国古代数学家所发现并提出。

它描述了直角三角形的边长关系,具体表达为:直角三角形的斜边的平方等于两直角边的平方和。

本文将介绍勾股定理的三种常见证明方法。

方法一:几何证明法首先,我们假设有一个直角三角形,其两个直角边分别为a和b,斜边为c。

我们可以通过绘制图形来证明勾股定理。

(图1:绘制直角三角形ABC,角C为直角)在图中,我们可以看到三个三角形:△ABC、△ACD和△BCD。

根据正弦定理,我们可以得到以下等式:sinA = b/csinB = a/c由于直角三角形的两个锐角相加等于90°,即有A + B = 90°,我们可以得到sinA = cosBsinB = cosA综上所述,我们有以下等式:sinA/c = cosBsinB/c = cosA因此,我们可以得到以下关系:b =c × sinAa = c × sinB下面我们计算c², a²和b²之和:c² = (c × sinA)² + (c × sinB)²= c²(sinA)² + c²(sinB)²= c²(sin²A + sin²B)= c²(sin²A + cos²A) (由于sin²B = cos²A)= c²根据以上推导,我们可以得到c² = a² + b²,进而证明了勾股定理。

方法二:代数证明法我们可以通过代数运算来证明勾股定理。

假设有一个直角三角形,其斜边为c,两个直角边分别为a和b。

根据勾股定理,有c²= a²+ b²。

首先,我们可以根据直角三角形的定义得出一个重要关系:直角三角形中一个锐角的正弦值等于另一个锐角的余弦值,即sinA = cosBsinB = cosA我们可以利用三角恒等式来推导出上述关系:sin²A + cos²A = 1cos²B + sin²B = 1接下来,我们计算c²和a²+b²:c² = (a sinB + b cosB)²= a² sin²B + 2ab sinB cosB + b² cos²B= a² (1 - cos²B) + 2ab sinB cosB + b² cos²B= a² + b² - a² cos²B + 2ab sinB cosB + b² cos²B= a² + b² + 2ab sinB cosB (由于a² cos²B + b² cos²B = a² + b²)= a² + b² + 2ab sinA (由于sinA = cosB,sinB = cosA)根据上述推导,我们可以得到c² = a² + b²,证明了勾股定理。

勾股定理的九种证明方法(附图)

勾股定理的九种证明方法(附图)

勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。

右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。

因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。

因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。

作CD⊥AB,垂足为D。

则△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ×BA,①由△CAD∽△BAC可得AC2=AD ×AB。

②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。

它利用了相似三角形的知识。

四、古人的证法:CABD如图,将图中的四个直角三角形涂上深红色,把中间小正方形涂上白色,,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。

即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

五、项明达证法:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA = 90°,QP∥BC,∴∠MPC = 90°,∵ BM⊥PQ,∴∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。

勾股定理的证明方法带图

勾股定理的证明方法带图

勾股定理的证明方法带图勾股定理是数学中一个非常重要的定理,它在几何学、物理学和工程学等领域都有广泛的应用。

勾股定理主要用于解决直角三角形的边长关系问题,它的常见表述是:直角三角形斜边的平方等于直角边的平方和。

在这篇文档中,我们将通过多个证明方法来证明勾股定理,并且将每个步骤都用图示来说明。

1. 证明方法一:几何学证明首先,我们来介绍一种几何学证明勾股定理的方法。

我们假设有一个直角三角形ABC,其中∠C为直角。

通过在边AC上作高CD,我们可以将三角形ABC分成两个矩形ACDE和BCFD。

接下来,我们将使用几何学的原理来证明∆ABC的边长关系。

我们知道,由于三角形ACD和BFC是矩形ACDE和BCFD的对角线,所以ACD和BFC是相似三角形。

因此,我们可以建立以下比例方程:AC/AD = BC/BF由于AD和BF都是三角形ABC的直角边,我们将其记为a和b,因此可以得到以下等式:AC/a = BC/b将上述等式两边都乘以a和b,得到:AC^2 = BC^2 + a^2 - - - (1)所以,通过几何学证明,我们可以得到勾股定理的一个解释:直角三角形的斜边的平方等于直角边的平方和。

为了更加清晰地理解这个几何学证明过程,让我们来看一个图示。

图示如下:```C|\\| \\a | \\ b| \\|____\\A c B```在上面的图示中,我们可以看到三角形ABC以及直角边a和b以及斜边c之间的关系。

通过几何学证明的过程,我们可以看到三角形ACD和BFC的构造,以及通过相似三角形的比例关系建立的方程式。

最终,我们得到了勾股定理的证明:直角三角形斜边的平方等于直角边的平方和。

2. 证明方法二:代数学证明除了几何学证明之外,我们还可以通过代数学方法来证明勾股定理。

在这种方法中,我们将使用代数方程和平方的运算来证明。

我们假设一个直角三角形ABC,其中∠C为直角。

假设直角边a的长度为x,直角边b的长度为y,斜边c的长度为z。

勾股定理的证明方法

勾股定理的证明方法

勾股定理的证明方法勾股定理是初中数学中的重要定理,它是数学中的基础知识之一,也是几何学中的重要定理。

勾股定理的证明方法有很多种,下面我们将介绍几种常见的证明方法。

一、几何证明法。

几何证明法是最直观的证明方法之一。

我们可以通过画出直角三角形的三条边,利用几何图形的性质来证明勾股定理。

具体步骤如下:1. 画出一个直角三角形ABC,其中∠C为直角,AB为斜边,AC为一条直角边,BC为另一条直角边。

2. 以AC为直径作圆,交BC于点D。

3. 以BC为直径作圆,交AC于点E。

4. 连接DE。

5. 证明△ADE与△ABC全等。

6. 证明AD⊥BC。

7. 证明AD=BC。

通过以上步骤,我们可以得出结论,在直角三角形ABC中,AB²=AC²+BC²,即勾股定理成立。

二、代数证明法。

代数证明法是利用代数运算来证明勾股定理。

具体步骤如下:1. 假设直角三角形的三条边分别为a、b、c,其中c为斜边。

2. 根据勾股定理的定义,我们有a²+b²=c²。

3. 将a²和b²分别展开,得到a²=x²+y²,b²=z²+w²。

4. 将a²和b²代入a²+b²=c²中得到x²+y²+z²+w²=c²。

5. 证明x²+y²、z²+w²、c²构成直角三角形。

通过以上步骤,我们可以得出结论,在直角三角形中,a²+b²=c²成立,即勾股定理成立。

三、数学归纳法。

数学归纳法是一种数学证明方法,它适用于证明一般情况下的结论。

具体步骤如下:1. 假设在直角三角形中,a²+b²=c²成立。

2. 证明在下一个直角三角形中,a'²+b'²=c'²也成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴ 8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 接于一个圆. 根据多列米定理,圆接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB .又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a ba 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.D∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴ 6217322S S S S S b a ++++=+=()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.。

相关文档
最新文档