石化反渗透浓水回用技术
浓水反渗透浓水回用循环水场技术分析

表 2 浓水 反渗 透 浓水水 质指 标
浊度 / mg・ - L 总铁 / mg・ L
18 . 02 .
项目
p H
实际平均值
7. 4 0- 3l 0.36 0
电导率 , s・ m c
细菌总数 / ・ L 个 m- 钙硬度 f 以碳酸钙计 ) g・ / m L 总碱度 ( 以碳酸钙计 ) / mg・ L
难提高浓缩倍数 , 、 钙 碱的浓度难以保证 , 循环水腐 蚀 速率偏 高 。
3 浓水反渗透 浓水 回用后对循环水水 质 的影 响
31 增强 循环水 系统 缓蚀 能力 . 2 1 年 5月 2 01 1日, 水 反 渗透 浓 水 回用 以来 , 浓 由于 浓 水含 有 较 高 的钙硬 度 和 总碱 度 , 回用后 明显 提 高 循 环水 的钙硬 度 和 总碱 度 , 目前 两 者 可 以稳 定 保 持 在 >10 0 对增 强 系统 缓蚀 能力 有积 极 作 2 ×1~,
邓朝 红 ,梅 军
( 中国石油广西石化公司动力部 ,广西 钦州 5 5 0 ) 308
摘 要: 分析 了将 浓水反渗透浓水回用于循环水场作为补水 的可 能性 。针对浓水反渗透浓水 的水质情况 ,进行 了 结垢倾 向的计算 。详 细介绍 了浓水反渗 透浓水 回用于循环水 场作 为补水的经验及效果 。结果表明,广西地区浓水反 渗透浓 水回用作为循环水补水 ,不仅大大提高 了水资源的利用率 、降低了循环水场运行成本 ,同时降低了循 环水 的 腐蚀速率 ,延长换热器 的使用寿命 。
第 4 卷 第 8 1 期 2 1 年8月 02
化
工
技
术
与
开
发
V0. No8 1 41 . Au .01 g2 2
反渗透浓水回用方案

反渗透浓水回用方案一、背景介绍反渗透技术是目前应用广泛的水处理技术之一,其主要作用是通过半透膜的选择性过滤作用,将水中的离子、微生物和有机物质等杂质去除,从而得到高纯度的水。
然而,在反渗透过程中,会产生大量浓水废液,这些废液含有高浓度的溶解性盐类和有机物质,直接排放会对环境造成污染。
因此,如何有效地回收利用反渗透浓水废液成为了亟待解决的问题。
二、反渗透浓水回用方案1. 前处理系统(1)调节pH值:在反渗透系统进入前,需要对原水进行预处理。
首先要调节原水pH值以保证其在合理范围内(通常为6-8),以防止膜表面被腐蚀或者结垢。
(2)过滤:通过精密过滤器将原水中大颗粒、悬浮物等杂质去除。
2. 反渗透系统(1)反渗透设备:采用高品质反渗透设备进行处理,保证出水质量达到标准。
(2)浓水回收系统:将反渗透系统产生的废液进行回收,采用多级蒸发器和结晶器进行处理,将溶解性盐类和有机物质分离出来,得到可再利用的水。
3. 后处理系统(1)净化:对浓水回收后的水进行进一步净化处理,去除残留的杂质和微生物。
(2)消毒:对净化后的水进行消毒处理,保证其符合卫生标准。
(3)储存:将处理后的水储存起来,以备后续使用。
三、实施方案1. 设计方案在建立反渗透浓水回用系统之前,需要对原水质量、产生的浓水废液、回用效果等因素进行充分调研和评估。
根据实际情况设计合理的前处理、反渗透和后处理系统,并确定相应设备及运行参数。
2. 实施步骤(1)前期准备工作:包括场地选址、设备采购、人员培训等。
(2)安装设备:按照设计方案安装前处理、反渗透和后处理设备,并连接好管道。
(3)调试运行:对设备进行调试和运行,检查各个系统的运行状态,确保设备正常运行。
(4)监测评估:对回用水质量进行监测和评估,根据实际情况进行调整和改进。
四、经济效益反渗透浓水回用系统的建立可以有效地减少废液排放量,降低环境污染。
同时,可再利用的水也可以节约用水成本。
虽然建设成本较高,但长期来看可以带来可观的经济效益。
反渗透浓水再利用

2 X 6 帆
,
厦 ≯
t 0
、
渗 透 _ l :
三J j 纯水梨
泵
2 0 1 5
蔡 巧燕 : 反 渗透 浓水 再利 用
7 5
向, 若 结 垢 会 造 成 备 用 的 l x 6 0 m / h 反 渗透 系统 膜 迅 零 , 具有较 明显结垢 倾 向。但是仍然符合反渗 透阻 速 结垢 , 不 能正 常运 行 。
两套 系统运行均可采用 P L C自动 控 制 , 整套 装
用, 因其不使用酸碱等化学药剂 、 不污染环境 、 操作 置 在 预 处 理 、 工 艺 流 程 和 工 艺 参 数 的 控 制 都 比较 合 简便 的优点 , 让更多 的企 业采用 此项水处 理技术 。 理 , 在 运 行 过 程 中均 保 持 了稳 定 的 段 间 压 差 和脱 盐 但其产水率不 足 7 5 %, 在 水 资 源 严 重 缺 乏 的今 天 和 率 , 产水量和 出水水质常年都保持稳定 。每年膜清
2浓水再利用方案选择
阜康冶炼厂动力车间的反渗透系统生水消耗量
5 % 以上 , 要 顺 利 实 现 浓 水 力车 间浓水再利用项 目获得 了突破 , 使反渗透产水 占全 车 间 生水 消耗 量 的 9 的再 利 用 , 只 能 考 虑 将 浓 水 回用 于 反 渗 透 系 统 。我 率提高至 8 5 %以上 。现将 反 渗 透浓 水 再 利 用工 艺 介 们 提 出 了两 种方 案 。 绍 如下 。 方案一 : 保持原有工艺 , 运行参数不变 , 将 部 分
一
级两段 7 : 4 排列 。阻垢剂 采用美 国原装 P wT 公 司 阻
原 农
… .
-
;
反渗透浓水再利用方案

反渗透浓水再利用方案随着全球水资源日益短缺,水资源的高效利用成为了人们关注的焦点之一。
反渗透浓水是指在反渗透(RO)膜处理过程中产生的浓缩废水,通常富含高浓度的污染物和盐类。
为了解决反渗透浓水的处理和再利用问题,本文将介绍一种可行的反渗透浓水再利用方案。
1. 方案概述我们提出的反渗透浓水再利用方案基于多级处理工艺。
主要过程包括预处理、反渗透膜系统、蒸发结晶和污泥处理。
通过该方案可以高效地回收利用反渗透浓水中的水资源,并将废水中的污染物和盐类进行有效处理。
2. 预处理预处理是反渗透浓水再利用过程中的重要环节。
它主要通过物理、化学等方法对浓水进行预处理,以降低其污染物和盐类的浓度。
常用的预处理技术包括沉淀、过滤、絮凝和调整pH值等。
预处理可以有效地提高反渗透膜的使用寿命,并减少膜堵塞的风险。
3. 反渗透膜系统反渗透膜系统是反渗透浓水再利用方案的核心部分。
该系统利用RO膜的特殊结构和分离机理,将浓水中的水分子从污染物和盐类中分离出来。
反渗透膜具有高效、节能的特点,能够实现对浓水中多种污染物的去除,并得到高纯度的水。
4. 蒸发结晶蒸发结晶是反渗透浓水再利用方案中的后续处理过程。
该过程通过控制浓水中的水分蒸发,将溶解的盐类逐渐结晶沉淀,从而实现对盐类的回收。
蒸发结晶技术具有高效、环保的特点,可以有效地减少对环境的污染,并获得高纯度的盐类产品。
5. 污泥处理污泥处理是反渗透浓水再利用方案中的最后一个环节。
在处理过程中产生的污泥通常含有高浓度的污染物和盐类,需要进行处理和处置。
常见的污泥处理方法包括固体化、焚烧和填埋等。
通过科学合理的污泥处理方案,可以减少对环境的影响,并实现对污泥中有价值成分的回收。
总结:本文介绍了一种基于多级处理工艺的反渗透浓水再利用方案。
该方案通过预处理、反渗透膜系统、蒸发结晶和污泥处理等环节,实现了反渗透浓水中水资源和盐类的高效回收利用。
该方案具有高效、节能、环保等优点,可为解决水资源短缺和环境污染问题提供参考。
反渗透浓水回用技术分析

反渗透浓水回用技术分析反渗透浓水回用技术是一种将反渗透膜过滤后的废水再次利用的技术。
随着水资源的日益紧缺和环境污染的日益严重,浓水回用技术成为了解决水资源短缺和环境污染问题的一种重要途径。
本文将从技术原理、应用领域、优缺点以及发展前景等方面对反渗透浓水回用技术进行详细分析。
首先,反渗透浓水回用技术的原理是将废水经过反渗透膜过滤,去除其中的杂质和有害物质,得到清洁的水资源。
这种技术主要适用于工业废水处理、市政废水处理、农业灌溉等领域。
在工业废水处理方面,反渗透浓水回用技术可以有效地减少废水排放量,降低对环境的污染。
在市政废水处理方面,可以提高废水的再利用率,缓解城市用水紧张的问题。
在农业灌溉方面,可以提高土壤水分利用效率,增加作物产量。
其次,反渗透浓水回用技术的优点是处理效果好,能够去除废水中的有害物质和杂质,得到清洁的水资源。
同时,该技术还具有节能、环保、资源综合利用等优点,符合可持续发展的要求。
然而,反渗透浓水回用技术也存在一些缺点,如设备投资大、运行成本高、操作维护难等问题,限制了其在一些领域的广泛应用。
最后,反渗透浓水回用技术的发展前景是广阔的。
随着人们对水资源的重视和环境保护意识的提高,反渗透浓水回用技术将会得到更广泛的应用和推广。
未来,可以通过技术创新和设备改进来降低成本、提高效率,进一步拓展该技术的应用领域。
同时,政府和企业也应该加大对该技术的支持和投入,推动其在实践中的推广和应用。
总的来说,反渗透浓水回用技术是一种重要的水处理技术,具有良好的环境和经济效益。
通过不断地技术创新和政策支持,可以进一步提高其在水资源管理和环境保护中的作用,为解决当前的水资源短缺和环境污染问题做出重要贡献。
希望未来能够看到更多关于反渗透浓水回用技术的研究成果和应用案例,让我们的水资源得到更好的保护和利用。
反渗透中水回用中高盐浓水处理工艺方法

反渗透中水回用中高盐浓水处理工艺方法1. 背景介绍反渗透技术是目前应用较为广泛的水处理技术之一、经过反渗透膜处理后的水中大部分固体颗粒和溶解物质被过滤,产生的废水中残留大量的高盐浓水。
这些高含盐浓水一般都需要再次处理,才能充分利用资源,降低环境污染。
现在,中高盐浓水也能通过一些高效的处理方法再次利用,从而达到节能资源和削减污染的目的。
2. 中高盐浓水污染的问题中高盐浓水一般指的是反渗透膜生产中的浓水,含盐量在10000mg/L以上。
这类水资源不能直接回用,而需要再次处理才能达到农业浇灌、制作工业净水等目的。
假如这些水资源未得到再次利用,将会造成以下的后果:•挥霍水资源,造成更多水资源缺乏的问题;•大量废水被排放到河流、湖泊等紧要水源地,造成水体污染;•高浓度盐分被排放到土地中,造成土地板结、盐渍化等严重问题。
3. 中高盐浓水处理工艺方法3.1 蒸发结晶法蒸发结晶法是目前反渗透系统中中高盐浓水集中处理的一种技术,利用其物理特性,将水蒸发而盐分浓缩至饱和,随后得到纯洁水和盐分。
这种技术可以分为多效蒸发和单效蒸发。
多效蒸发具有能耗低,效率高等特点,而单效蒸发则较为简单,操作便捷。
3.2 阳离子交换法阳离子交换法是通过离子交换材料吸附和分别水中阳离子盐类,达到削减盐分和降低EC值的目的。
这种技术属于离子交换技术范畴,操作简单,成本较低,可以应用于中低盐度水体的处理。
3.3 反渗透联合电渗析法反渗透联合电渗析法是将反渗透技术和电渗析技术结合使用,兼具两种技术的优点,可以削减能量消耗、提高产水率和脱盐效率,且操作简便简单。
3.4 集成蒸发法集成蒸发法是一种同时利用多种方法对中高盐度水体进行处理的综合性技术。
通过预处理、电渗析、多级蒸发等工艺将废水流经各阶段系统,通过渐渐浓缩、提高蒸发效率等手段,最后得到纯洁水和可回收的固体盐分。
4. 实际应用案例在一项中高盐度水体饮用水处理工程中,接受了反渗透联合电渗析法。
反渗透浓水处理及回用研究

反渗透浓水处理及回用研究反渗透浓水处理及回用技术摘要:从无害化、减量化、资源化三个途径分别阐述了当前国内外针对反渗透浓水处理和回用的研究进展,列举了成功的工程实例。
并对新兴的膜蒸馏技术应用于反渗透浓水处理的方法和可行性进行了探讨。
关键词:浓水 回用 膜蒸馏一、 概述反渗透膜分离技术,由于它具有物料无相变、相对能耗低、除盐效果好、处理工艺成熟可靠,设备简单、自动化程度高,易于运行和管理等优点,近几年来在许多行业得到广泛的应用。
但是,目前反渗透技术一般的设计产水率为75%,实际产水率更低,大约会产生30%的浓盐水。
若原水是水质非常差的地下苦咸水,或者海水,浓水产生量会更大,可能达到50%。
当前很多反渗透工艺产生的浓水都不经处理直接排放,造成水资源和能源的浪费,同时对周围的环境造成污染。
针对反渗透浓水,当前的研究主要围绕三个目的展开:减量化——优化反渗透工艺设计,减少浓水的产生量;无害化——针对反渗透浓水直接排放可能对环境造成危害这一状况,探索经济有效的处理手段,将危害减轻;资源化——探索反渗透浓水再利用的途径,变废为宝。
事实上,反渗透浓水的回用需要考虑多种因素,这三个目的都不是孤立的,而是需要综合考虑,互为补充。
二、 以排放为目的2.1 单独处理排放反渗透浓水的主要问题是钙镁等离子含量高,硬度高。
一般来说,经过简单的软化处理即可实现达标排放。
软化主要采用投加石灰、纯碱等碱性物质的方法,利用它们同浓水中的钙镁等物质发生反应,生成碳酸盐沉淀,而从水体中去除,降低浓水的硬度,减少其对环境的危害。
以下是其化学反应方程式:2232Ca(OH)CO CaCO +H O +−−→↓23232Ca(OH)Ca(HCO )2CaCO +2H O +−−→↓2323222Ca(OH)+Mg(HCO )2CaCO +Mg(OH)+2H O −−→↓↓423324CaSO +Na CO CaCO +Na SO −−→↓423324MgSO +Na CO MgCO +Na SO −−→↓2.2 混入其他废水共同处理对于绝大部分生产企业来说,除了制水车间产生的反渗透浓水以外,还会产生其他各种废水。
反渗透设备浓水的回收技术应用

反渗透设备浓水的回收技术应用反渗透水处理设备的工作原理为:原水先经过盘式过滤器粗滤后,在高压泵施加的压力(大于原水与淡水之间的渗透压)下,纯水部分透过膜组件流入到淡水(产品水)侧压力容器,再汇入到产品水管网系统中;而膜组件外的剩余部分(浓水,即离子浓度含量高的水)则汇集到浓水管网系统中。
反渗透水处理设备主要技术参数为:产品水生产能力100t/h,回收率75%,脱盐率R≥97%。
也就是说每小时在消耗原水约133t的前提下,能得到产品水100t,也就意味着每小时约有33t的浓水产生;在此过程中无论是盘式过滤器的粗滤,还是反渗透装置膜组件的精滤,产品水和浓水均没有经过有害物质的二次污染。
其COD,BOD,SS等指标均在污水排放达标范围之内(已经过我公司化验员对浓水水质化验的进一步确认),故此浓水不仅可以不经过污水处理而直接排放,而且可以完全满足锅炉麻石水膜除尘器的用水水质要求。
使用现状反渗透水处理系统产生的浓水使用现状原水先经盘式过滤器粗滤、反渗透膜精滤后汇入到产品水管网系统中,以供使用部门使用;而反渗透膜外的浓水(离子浓度高的水)则汇集到浓水管网系统中,直接排入厂区下水道,经污水处理站处理后,排入厂区外城市地下管网,这样既造成了水的大量浪费,也增加了污水处理费用。
麻石水膜除尘器为我公司设备用水大户。
现在我公司4套麻石水膜除尘器的用水全部为原水。
其中20t/h锅炉(2台)配套的麻石水膜除尘器耗水量为每台5.5-8t/h;lOt/h锅炉(2台)配套的麻石水膜除尘器耗水量为每台4.0-5.5t/h。
以每天平均使用20t/h锅炉和10t/h锅炉各1台来计算,则麻石水膜除尘器平均每小时的耗水量约12t,即每天耗原水约280t左右。
大量的原水经过麻石水膜除尘器吸附烟尘后,直接排放到厂区外城市地下管网中。
采取措施通过以上分析并结合我公司的实际情况,于2023年初,利用啤酒生产淡季,对我公司反渗透水处理系统产生的浓水进行回收,直接供给4台锅炉的麻石水膜除尘器,经吸附烟尘后排放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
废水深度处理与回用是解决我国水资源短缺的一种有效方法,尤其针对用水量较大的石
化企业,反渗透(RO)技术产水水质高和运行稳定等优点已成为废水回用的主流技术。
但
是 RO 必然会产生浓水,其污染物浓度是进水的几倍,其中含有大量盐分和难降解有机物,
已成为 RO 技术发展所面临的瓶颈和难题。
RO 浓水的排放造成了水资源的极大浪费,因此RO 浓水的回收利用具有极大的经济效益和社会效益,可以代替原水用于其他生产系统〔1〕,不仅提高废水重复利用率,还起到了节约水资源和环境保护的目的。
本研究针对山东某石化厂经过生化处理后的污水,该污水已经过了深度处理,其流程为
双介质过滤器+超滤+一级 RO,浓水再利用臭氧高级氧化+ RO 工艺进行处理,处理后的产水
回用至超滤产水箱,达到循环、节约用水的目的。
连续运行一段时间后,考察处理效果,并
分析了系统运行的稳定性和运行成本。
1 浓水处理工艺的可行性
1.1 RO 浓水水质
山东省某石化厂生化出水深度处理工艺为生化出水→双介质过滤器→UF→一级 RO。
该公司
一级
RO 浓水水质:pH 为 8.30,碱度为 11.05 mmol/L,总
硬度为 325 mg/L,浊度为 1.6 NTU,氯离子为 1 300
mg/L,电导率为5 660 μS/cm,COD 为 86 mg/L。
该 RO浓水具有电导率高、COD 高的特点,浓水再利用需要进行脱盐处理,现阶段脱盐主流工艺为 RO 工艺,但浓水的 COD 较高,若
直接利用 RO 处理必然会使
RO 膜迅速污堵,难以连续稳定运行,臭氧氧化可以将难降解的大分子污染物进行开环断链,而且臭氧还能直接将一些有机物氧化为 H O 与 CO ,从而起到降解有机物的作用,将浓水COD 降低,使 RO 系统连续运行,保证臭氧+RO 处理浓水工艺顺利进行。
2 处理工艺
工艺流程
2.1
原水为山东某石化厂 RO 浓水,处理规模为 75m3/h,工艺流程见图 1。
由表 1 可知,现有
RO 浓水经过臭氧氧化后,再经过浓水 RO 处理,其产水汇入现有 RO 产水箱,再经过现有
RO 处理后进行回用,RO 浓水进行回收,达到水资源循环利用、节水的目的。
2.2 臭氧氧化
臭氧氧化单元使用青岛国林臭氧设备,功率为8~10 kW·h/kg,臭氧产量为 15 kg/h(质量浓
度≥100
mg/L),臭氧系统的投加控制根据接触池水流量和预先设定的臭氧投加率自动调节臭氧投加量,调节范围在 10%~100%。
臭氧接触池的接触时间控制为 180 min,保证臭氧与污水的充
分接触。
系统采用微孔曝气盘投加臭氧,曝气盘安装在接触池池底但高于导流墙的最低位置
以避免气泡被引流到反应池中,在接触室中,被处理水由上向下流,而臭氧气体则由下向上
反向流以达到最好的接触效果。
反应后的臭氧尾气通过加热破坏。
臭氧氧化后出水 COD<
50 mg/L。
2.3 浓水反渗透装置
设置 1 套处理水量为 75 m3/h 的 RO 膜,由于进水 COD 高,选用陶氏品牌的宽流道抗污染
反渗透膜,设计回收率为 50%,膜平均通量≤11.5 L/(m2·h)。
每套反渗透配置 90 根膜组件,放置在 15 根 6 芯压力容器内,按一级一段并联排列。
高压泵前设置5 μm保安过滤器,在进
水中添加强化阻垢剂(投加量为5mg/L)、非氧化杀菌剂、盐酸(pH 调节为 6.5~6.8)、还原剂(NaHSO3,防止反渗透膜氧化),分别抑制无机盐结垢、微生物污染、中和浓水中碱度、中和臭氧缓冲池中未完全释放的臭氧,进一步抑制结垢倾向,保护反渗透膜。
3 处理效果
3.1 各单元的处理效果
浓水经过臭氧氧化+RO 处理后,水质情况见表 1。
由表 1 可知,臭氧氧化对有机物去除效果明显,COD 去除率为 53.5%,RO 产水对离子去除效果和有机物去除效果均极为显著,电导率去除率为 96.2%、硬度去除率为 93.5%、氯离子去除率为 86.3%、COD去除率为 98.0%、氨氮和浊度基本完全去除,RO 产水指标完全满足RO 进水要求。
3.2 有机物的去除效果
系统主要通过臭氧氧化和 RO 系统进行有机物的去除,由于浓水水质较为复杂,定量定性分析较为困难,为了考察系统对有机物的去除效果,将浓水、臭氧氧化产水、浓水 RO 产水进行了 GC-MS 色谱分析,结果见图 2。
由图 2 可知,浓水色谱图峰面积大、单峰峰值高,表明有机物含量高,臭氧处理后,COD 从86 mg/L 降到 40 mg/L,色谱图峰面积降低,峰值减弱,因为臭氧氧化作用,可以将有机物断链,故臭氧处理后浓水的色谱图中夹杂一些杂峰,而 RO 出水 COD 为 0.8mg/L,其色谱图与背景离子流色谱图无明显差异,表明RO 产水中有机物含量很低,可见 RO 膜对 COD具有很好的截留效果。
3.3 运行稳定性分析3.3.1 RO 稳定性分析
RO 进水压力和浓水压力见图 3。
由图 3 可知,RO 系统连续运行,为了维持一定的产水量,RO 进水压力和浓水压力都有所增长,进水压力从 1.05 MPa 上升到 1.25 MPa,浓水压力从0.96 MPa 上升到 1.14 MPa。
但进水压力和浓水压力的压差基本稳定在 0.1 MPa 左右,说明未出现结垢现象,造成压力上升的原因可能是因为水中有机物含量稍高造成的,但尚在允许范围内,不影响设备连续运行,当进水压力持续上升至 1.5 MPa 后,考虑化学清洗,以恢复膜通量。
3.3.2 经济性分析该工程处理浓水量为 75 m3/h,臭氧发生器功率为 150 kW,RO 系统所用水泵功率为 105 kW,故电耗为 255 kW·h,保安过滤器用大通量滤芯按 0.5 a使用寿命计算,则 1 a 使用 6 只,RO 膜元件按 5 a 使用寿命计算,折旧按 5 a 计算。
处理浓水的运行成本见表 2。
由表2 可见,浓水处理成本约 3.09 元/t,其中电费及膜更换费用占比例较大,由此可见,保持良好、稳定的运行环境,降低膜的污染程度以及延长膜的使用寿命可以进一步降低成本。
4 结论
通过规模化连续运行表明:针对石化废水经过一级 RO 处理后的浓水,利用臭氧+浓水 RO 处理工艺,系统运行稳定,浓水 RO 对离子去除效果和有机物去除效果均极为显著,电导率去除率为 96.2%、硬度去除率为 93.5%、氯离子去除率为 86.3%、COD 去除率为 98.0%、氨氮和浊度基本完全去除,反渗透产水注入现有处理工艺中的超滤产水箱,整套系统运行费用为 3.09 元/t。
达到了水资源循环利用的目的。
天津天化科威水处理技术有限公司。