2016年福建省南平市中考数学试卷及答案
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年福建中考数学真题卷含答案解析

2016年福州市初中毕业会考高级中等学校招生考试数学试题(含答案全解全析)(满分:150分 时间:120分钟)第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每题3分,满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是( ) A.0.7B.12C.πD.-82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是( )3.如图,直线a,b 被直线c 所截,∠1与∠2的位置关系是( )A.同位角B.内错角C.同旁内角D.对顶角4.下列算式中,结果等于a 6的是( ) A.a 4+a 2B.a 2+a 2+a 2C.a 2·a 3D.a 2·a 2·a 25.不等式组{x +1>0,x -3>0的解集是( )A.x>-1B.x>3C.-1<x<3D.x<36.下列说法中,正确的是( ) A.不可能事件发生的概率为0 B.随机事件发生的概率为12 C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()A.(-2,1)B.(-2,-1)C.(-1,-2)D.(-1,2)⏜上一点(不与A,B重合),连接9.如图,以O为圆心,1为半径的弧交坐标轴于A,B两点,P是ABOP,设∠POB=α,则点P的坐标是()A.(sin α,sin α)B.(cos α,cos α)C.(cos α,sin α)D.(sin α,cos α)10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10-x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差11.已知点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()12.下列选项中,能使关于x的一元二次方程ax2-4x+c=0一定有实数根的是()A.a>0B.a=0C.c>0D.c=0第Ⅱ卷(非选择题,共114分)二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-4=.14.若二次根式√x-1在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(-1,1),(2,2),(23,32),(-5,-15),从中随机选取一个点,在反比例函数y=1x图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“>”“=”或“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.(7分)计算:|-1|-√83+(-2 016)0.20.(7分)化简:a-b-(a+b)2a+b.21.(8分)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011—2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.⏜中点,连接BM,CM.24.(12分)如图,正方形ABCD内接于☉O,M为AD(1)求证:BM=CM;⏜的长.(2)当☉O的半径为2时,求BM,在AC边上截取AD=BC,连接BD.25.(12分)如图,在△ABC中,AB=AC=1,BC=√5-12(1)通过计算,判断AD2与AC·CD的大小关系;(2)求∠ABD的度数.26.(13分)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围. 答案全解全析:一、选择题1.C 0.7为有限小数,12为分数,-8为整数,都属于有理数,π为无限不循环小数,属于无理数.故选C.2.C 根据俯视图的定义可知选C.3.B ∠1与∠2是内错角.故选B.4.D A.a 4+a 2≠a 6;B.a 2+a 2+a 2=3a 2; C.根据同底数幂的乘法法则,可得a 2·a 3=a 5;D.根据同底数幂的乘法法则,可得a 2·a 2·a 2=a 6.故选D. 5.B {x +1>0,①x -3>0,②解不等式①,得x>-1,解不等式②,得x>3, ∴x>3,故原不等式组的解集是x>3.故选B.6.A A.不可能事件发生的概率为0,所以A 选项正确; B.随机事件发生的概率在0与1之间,所以B 选项错误;C.概率很小的事件不是不可能发生,而是发生的概率较小,所以C 选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误.故选A. 7.B 表示互为相反数的点,必须要满足在数轴原点的左、右两侧,且到原点的距离相等.故选B.8.A ∵A(m,n),C(-m,-n), ∴点A 和点C 关于原点对称, ∵四边形ABCD 是平行四边形, ∴点D 和点B 关于原点对称, ∵B(2,-1),∴点D的坐标是(-2,1).故选A.9.C过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sin α=PQOP ,cos α=OQOP,即PQ=sin α,OQ=cos α,∴点P的坐标为(cos α,sin α).故选C.评析熟练掌握锐角三角函数的定义是解本题的关键.10.B由题表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为5+15+10=30,故该组数据的众数为14岁,中位数为14+142=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选B.11.C∵点A(-1,m),B(1,m),∴点A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),m+1>m,∴C正确,D错误.故选C.12.D若一元二次方程ax2-4x+c=0有实数根,则Δ=(-4)2-4ac=16-4ac≥0,且a≠0.∴ac≤4,且a≠0.A.若a>0,则当a=1,c=5时,ac=5>4,故此选项错误;B.a=0不符合一元二次方程的定义,故此选项错误;C.若c>0,则当a=1,c=5时,ac=5>4,故此选项错误;D.若c=0,则ac=0≤4,故此选项正确.故选D.评析 本题主要考查一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根. 二、填空题 13.答案 (x+2)(x-2) 解析 x 2-4=(x+2)(x-2). 14.答案 x ≥1解析 若二次根式√x -1在实数范围内有意义,则x-1≥0,解得x ≥1. 15.答案 12解析 ∵-1×1=-1,2×2=4,23×32=1,(-5)×(-15)=1, ∴点(23,32),(-5,-15)在反比例函数y=1x 的图象上, ∴随机选取一点,在反比例函数y=1x 图象上的概率是24=12. 16.答案 < 解析 如图.易得r 上<r 下. 17.答案 98解析 x 3y+xy 3=xy(x 2+y 2)=xy[(x+y)2-2xy],将x+y=10,xy=1代入,得原式=1×(102-2×1)=98.18.答案√32解析如图,连接EA,EC,易知E、C、B三点共线.设小菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=√3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE =√3a2a=√32.三、解答题19.解析原式=1-2+1=0.20.解析原式=a-b-(a+b)=a-b-a-b=-2b.21.证明在△ABC与△ADC中,{AB=AD, BC=DC, AC=AC,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.22.解析设甲种票买了x张,则乙种票买了(35-x)张.由题意,得24x+18(35-x)=750.解得x=20.∴35-x=15.答:甲种票买了20张,乙种票买了15张.23.解析(1)7.(2)2014.(3)预测2016年福州市常住人口数大约为757万人.理由如下:从统计图可以看出,福州市常住人口每年增加的数量的众数为7万人,因此预测2016年福州市常住人口数大约为757万人.(答案不唯一,言之有理即可得分)24.解析 (1)证明:∵四边形ABCD 是正方形,∴AB=CD,∴AB⏜=CD ⏜. ∵M 为AD ⏜中点,∴AM ⏜=DM ⏜,∴BM ⏜=CM ⏜,∴BM=CM.(2)连接OM,OB,OC.∵BM ⏜=CM ⏜,∴∠BOM=∠COM.∵正方形ABCD 内接于☉O,∴∠BOC=360°4=90°.∴∠BOM=135°.由弧长公式,得BM ⏜的长l=135×2×π180=32π. 25.解析 (1)∵AD=BC=√5-12, ∴AD 2=(√5-12)2=3-√52.∵AC=1,∴CD=1-√5-12=3-√52, ∴AD 2=AC ·CD.(2)∵AD 2=AC ·CD,AD=BC,∴BC 2=AC ·CD,即BC AC =CD BC .又∠C=∠C,∴△ABC ∽△BDC.∴AB BD =AC BC .又AB=AC,∴BD=BC=AD.∴∠A=∠ABD,∠ABC=∠C=∠BDC.设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°.解得x=36°.∴∠ABD=36°.评析本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△ABC∽△BDC是解题的关键.26.解析(1)由折叠可知△ANM≌△ADM,∴∠MAN=∠DAM.∵AN平分∠MAB,∴∠MAN=∠NAB.∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°.∴∠DAM=30°,=√3.∴DM=AD·tan∠DAM=3×√33(2)如图,延长MN交AB的延长线于点Q.∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ.由折叠可知△ANM ≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1.∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=1+x.在Rt △ANQ 中,AQ 2=AN 2+NQ 2,∴(x+1)2=32+x 2.解得x=4.∴NQ=4,AQ=5.∵AB=4,AQ=5,∴S △NAB =45S △NAQ =45×12AN ·NQ=245.(3)如图,过点A 作AH ⊥BF 于点H,则△ABH ∽△BFC.∴BH AH =CF BC .∵AH ≤AN=3,AB=4,∴当点N,H 重合(即AH=AN)时,DF 最大.(AH 最大,BH 最小,CF 最小,DF 最大)此时点M,F 重合,B,N,M 三点共线,△ABH ≌△BFC(如图).∴CF=BH=√AB2-AH2=√42-32=√7,∴DF的最大值为4-√7.评析本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识.本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.解析根据题意,抛物线的解析式可化为y=a(x-h)2+k(a≠0).(1)∵h=1,k=2,∴y=a(x-1)2+2,∵该抛物线经过原点,∴a+2=0,解得a=-2,∴y=-2(x-1)2+2,即y=-2x2+4x.(2)∵抛物线y=tx2(t≠0)经过点A(h,k),∴k=th2.∴y=a(x-h)2+k可化为y=a(x-h)2+th2.∵抛物线y=a(x-h)2+th2(a≠0)经过原点,∴ah2+th2=0.∵h≠0,∴a=-t.(3)∵点A(h,k)在抛物线y=x2-x上,∴k=h2-h.∴y=a(x-h)2+k可化为y=a(x-h)2+h2-h.∵抛物线y=a(x-h)2+h2-h(a≠0)经过原点,∴ah 2+h 2-h=0.∵h ≠0,∴a=1ℎ-1. 分两类讨论:①当-2≤h<0时,由反比例函数性质可知1ℎ≤-12, ∴a ≤-32; ②当0<h<1时,由反比例函数性质可知1ℎ>1, ∴a>0.综上所述,a 的取值范围是a ≤-32或a>0.评析 本题考查二次函数等知识,解题的关键是学会用参数解决问题,题目比较难,参数比较多,第三个问题要注意讨论,属于中考压轴题.。
2016年福建省南平市中考数学(有解析)

2016年福建省南平市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣3的倒数是()A.3 B.﹣3 C.D.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.2.如图所示的几何体的左视图是()A. B. C.D.【解答】解:从左面看可得到一个三角形.故选:A.3.如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()A.44°B.46°C.134°D.54°【解答】解:如图所示:∵直线a∥b,∠1=46°,∴∠1=∠3=46°.∵∠2与∠3是对顶角,∴∠2=∠3=46°.故选:B.4.下列事件是必然事件的是()A.某种彩票中奖率是1%,则买这种彩票100张一定会中奖B.一组数据1,2,4,5的平均数是4C.三角形的内角和等于180°D.若a是实数,则|a|>0【解答】解:A、某种彩票中奖率是1%,则买这种彩票100张一定会中奖为随机事件,不符合题意;B、一组数据1,2,4,5的平均数是4是不可能事件,不符合题意;C、三角形的内角和等于180°为必然事件,符合题意;D、若a是实数,则|a|>0为事件事件,不符合题意.故选C.5.2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:身高(cm)176 178 180 182 186 188 192人数 1 2 3 2 1 1 1则这11名队员身高的众数和中位数分别是( )(单位:cm ) A .180,182 B .180,180 C .182,182 D .3,2【解答】解:∵180出现的次数最多,∴众数是180.将这组数据按照由大到小的顺序排列:176、178、178、180、180、180、182、182、186、188、192. 所以众数为180.故选:B .6.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .2D .4【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选:A .7.下列运算正确的是( )A .3x +2y=5xyB .(m 2)3=m 5C .(a +1)(a ﹣1)=a 2﹣1D . =2【解答】解:A 、3x +2y ≠5xy ,此选项错误;B 、(m 2)3=m 6,此选项错误;C 、(a +1)(a ﹣1)=a 2﹣1,此选项正确;D 、≠2,此选项错误;故选C .8.下列一元二次方程中,没有实数根的是( )A .x 2﹣2x ﹣3=0B .x 2﹣x +1=0C .x 2+2x +1=0D .x 2=1【解答】解:A 、a=1,b=﹣2,c=﹣3,b 2﹣4ac=4+12=16>0,有两个不相等的实数根,故此选项错误; B 、a=1,b=﹣1,c=1,b 2﹣4ac=1﹣4=﹣3<0,没有实数根,故此选项正确;C 、a=1,b=2,c=1,b 2﹣4ac=4﹣4=0,有两个相等的实数根,故此选项错误;D 、a=1,b=0,c=﹣1,b 2﹣4ac=4>0,有两个不相等的实数根,故此选项错误;故选:B .9.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60﹣x=20%(120+x )B .60+x=20%×120C .180﹣x=20%(60+x )D .60﹣x=20%×120【解答】解:设把x 公顷旱地改为林地,根据题意可得方程:60﹣x=20%(120+x ).故选:A .【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.10.如图,已知直线l :y=2x ,分别过x 轴上的点A 1(1,0)、A 2(2,0)、…、A n (n ,0),作垂直于x 轴的直线交l 于点B 1、B 2、…、B n ,将△OA 1B 1,四边形A 1A 2B 2B 1、…、四边形A n ﹣1A n B n B n ﹣1的面积依次记为S 1、S 2、…、S n ,则S n =( )A .n 2B .2n +1C .2nD .2n ﹣1【解答】解:观察,得出规律:S 1=OA 1•A 1B 1=1,S 2=OA 2•A 2B 2﹣OA 1•A 1B 1=3,S 3=OA 3•A 3B 3﹣OA 2•A 2B 2=5,S 4=OA 4•A 4B 4﹣OA 3•A 3B 3=7,…,∴S n=2n﹣1.故选D.二、填空题(共6小题,每小题4分,满分24分)11.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是s=0.2,s=0.5,则设两人中成绩更稳定的是甲(填“甲”或“乙”)【解答】解:∵S甲2=0.2,S乙2=0.5,则S甲2<S乙2,可见较稳定的是甲.故答案为:甲.12.计算:(2)2=28.【解答】解:原式=22×()2=28.故答案为:28.13.分解因式:mn2+2mn+m=m(n+1)2.【解答】解:mn2+2mn+m=m(n2+2n+1)=m(n+1)2.故答案为:m(n+1)2.14.写出一个y关于x的二次函数的解析式,且它的图象的顶点在y轴上:y=x2(答案不唯一).【解答】解:由题意可得:y=x2(答案不唯一).故答案为:y=x2(答案不唯一).15.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有3条.【解答】解:这样的直线PQ(不同于EF)有3条,①如图1,过O作PQ⊥EF,交AD于P,BC于Q,则PQ=EF;②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.16.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是①②④.【解答】解:①∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴CP=CD=CQ,∴①正确;②∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴∠ACP=∠ACD,∠BCQ=∠BCD,∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,∴∠PCQ=360°﹣(∠ACP+BCQ+∠ACB)=360°﹣(120°+120°)=120°,∴∠PCQ的大小不变;∴②正确;③如图,过点Q作QE⊥PC交PC延长线于E,∵∠PCQ=120°,∴∠QCE=60°,在Rt△QCE中,tan∠QCE=,∴QE=CQ×tan∠QCE=CQ×tan60°=CQ,∵CP=CD=CQ∴S△PCQ=CP×QE=CP×CQ=CD2,∴CD最短时,S△PCQ最小,即:CD⊥AB时,CD最短,过点C作CF⊥AB,此时CF就是最短的CD,∵AC=BC=4,∠ACB=120°,∴∠ABC=30°,∴CF=BC=2,即:CD最短为2,∴S△PCQ最小=CD2=×22=2,∴③错误,④∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形.∴④正确,故答案为:①②④.三、解答题(共9小题,满分86分)17.计算:(2π)0+|﹣6|﹣.【解答】解:原式=1+6﹣2=5.18.解分式方程:=.【解答】解:去分母得,3(1+x)=4x,去括号得,3+3x=4x,移项、合并得,x=3,检验:把x=3代入x(x+1)=3×4=12≠0,∴x=3是原方程的解.19.解不等式组:.【解答】解:由①得,x<3,由②得,x>1,故不等式组的解集为:1<x<3.20.国务院办公厅在2015年3月16日发布了《中国足球发展改革总统方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图),请根据图中提供的信息,解答下列问题:(1)被调查的学生共有300人.(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为108度;(3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率的是多少?【解答】解:(1)由题意可得,被调查的学生有:60÷20%=300(人),故答案为:300;(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为:360°×=108°,故答案为:108;(3)由题意可得,从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是:=0.4,即从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是0.4.21.如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【解答】解:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴=,∴DE===422.如图,PA,PB是⊙O的切线,A,B为切点,点C在PB上,OC∥AP,CD⊥AP于D(1)求证:OC=AD;(2)若∠P=50°,⊙O的半径为4,求四边形AOCD的周长(精确到0.1)【解答】(1)证明:∵PA切⊙O于点A,∴OA⊥PA,即∠OAD=90°,∵OC∥AP,∴∠COA=180°﹣∠OAD=180°﹣90°=90°,∵CD∥PA,∴∠CDA=∠OAD=∠COA=90°,∴四边形AOCD是矩形,∴OC=AD.(2)解:∵PB切⊙O于等B,∴∠OBP=90°,∵OC∥AP,∴∠BCO=∠P=50°,在RT△OBC中,sin∠BCO=,OB=4,∴OC=≈5.22,∴矩形OADC的周长为2(OA+OC)=2×(4+5.22)=18.4.23.已知正比例函数y1=ax(a≠0)与反比例函数y2=(k≠0)的图象在第一象限内交于点A(2,1)(1)求a,k的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答y1>y2时x的取值范围.【解答】解:(1)将A(2,1)代入正比例函数解析式得:1=2a,即a=,故y1=x;将A(2,1)代入双曲线解析式得:1=,即k=2,故y2=;(2)如图所示:由图象可得:当y1>y2时,﹣2<x<0或x>2.24.(12分)(2016•南平)已知,抛物线y=ax2(a≠0)经过点A(4,4),(1)求抛物线的解析式;(2)如图1,抛物线上存在点B,使得△AOB是以AO为直角边的直角三角形,请直接写出所有符合条件的点B的坐标:B(﹣4,4)或(﹣8,16).(3)如图2,直线l经过点C(0,﹣1),且平行与x轴,若点D为抛物线上任意一点(原点O除外),直线DO交l于点E,过点E作EF⊥l,交抛物线于点F,求证:直线DF一定经过点G(0,1).【解答】解:(1)∵抛物线y=ax2(a≠0)经过点A(4,4),∴16a=4,∴a=,∴抛物线的解析式为y=x2,(2)存在点B,使得△AOB是以AO为直角边的直角三角形,理由:如图1,∵使得△AOB是以AO为直角边的直角三角形∴直角顶点是点O,或点A,①当直角顶点是点O时,过点O作OB⊥OA,交抛物线于点B,∵点A(4,4),∴直线OA解析式为y=x,∴直线OB解析式为y=﹣x,∵,∴(舍)或,∴B(﹣4,4),②当直角顶点为点A,过点A作AB⊥OA,由①有,直线OA的解析式为y=x,∵A(4,4),∴直线AB解析式为y=﹣x+8,∵,解得(舍)或,∴B(﹣8,16),∴满足条件的点B(﹣4,4)或(﹣8,16);故答案为B(﹣4,4)或(﹣8,16);(3)证明:设点D(m,m2),∴直线DO解析式为y=x,∵l∥x轴,C(0,﹣1),令y=﹣1,则x=﹣,∴直线DO与l交于E(﹣,﹣1),∵EF⊥l,l∥x轴,∴F横坐标为﹣,∵点F在抛物线上,∴F(﹣,)设直线DF解析式为y=kx+b,∴,∴,∴直线DF解析式为y=x+1,∴点G(0,1)满足直线DF解析式,∴直线DF一定经过点G.25.已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF 分别交射线DA于点H、G.①求证:PG=PF;②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:DG+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD=DP,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF=DP;(2)不成立,数量关系式应为:DG﹣DF=DP,如图,过点P作PH⊥PD交射线DA于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG和△DPF中,∵∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF=DP.。
【精编】2016年福建省南平市建阳市数学中考模拟试卷与解析

2016年福建省南平市建阳市中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.2.(4分)如图所示的几何体的主视图是()A.B.C.D.3.(4分)下列图案中,不是中心对称图形的是()A. B. C.D.4.(4分)我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,325.(4分)某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条6.(4分)下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.(4分)下列计算正确的是()A.a2•a3=a6 B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab8.(4分)不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<59.(4分)直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)10.(4分)如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)写出一个第二象限内的点的坐标:(,).12.(4分)想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是.(填“全面调查”或“抽样调查”)13.(4分)计算:=.14.(4分)分解因式:3a2﹣6a+3=.15.(4分)已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为.16.(4分)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.(8分)计算:×(﹣2)2﹣2tan45°+(﹣2016)0.18.(8分)先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.19.(8分)解分式方程:=.20.(8分)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.21.(8分)2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?22.(10分)如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)23.(10分)2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.24.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.25.(14分)如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?2016年福建省南平市建阳市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(4分)﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【解答】解:﹣2016的绝对值是:2016.故选:B.2.(4分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.3.(4分)下列图案中,不是中心对称图形的是()A. B. C.D.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.4.(4分)我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.5.(4分)某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.6.(4分)下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.(4分)下列计算正确的是()A.a2•a3=a6 B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.8.(4分)不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.9.(4分)直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A10.(4分)如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.(4分)写出一个第二象限内的点的坐标:(﹣1,1).【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).12.(4分)想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.13.(4分)计算:=x.【解答】解:===x.故答案为x.14.(4分)分解因式:3a2﹣6a+3=3(a﹣1)2.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.15.(4分)已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为4.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.16.(4分)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.(8分)计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.18.(8分)先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.19.(8分)解分式方程:=.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.20.(8分)如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.21.(8分)2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=20;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.22.(10分)如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.23.(10分)2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.24.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【解答】方法一:解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15|①若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;②若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m1=3+,m2=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=﹣x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴K PC×K DD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)25.(14分)如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt△AHB中,AB=6,∠B=60°,∴AH=AB•sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD为矩形,∴CD=AH=,∵,∴∠CAD=30°,∵EF∥AC,∴∠1=∠CAD=30°;(2)若点G恰好在BC上,如图2,由对折的对称性可知Rt△FGE≌Rt△FDE,∴GE=DE=x,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG是直角三角形,∴∠EGC=30°,∴在Rt△CEG中,EC=EG=x,由DE+EC=CD 得,∴x=;(3)分两种情形:第一种情形:当时,如图3,在Rt△DEF中,tan∠1=tan30°=,∴DF=x÷=x,∴y=S△EGF=S△EDF===,∵>0,对称轴为y轴,∴当,y随x的增大而增大,∴当x=时,y最大值=×=;第二种情形:当<x≤时,如图4,设FG,EG分别交BC于点M、N,(法一)∵DE=x,∴EC=,NE=2,∴NG=GE﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG•tan30°=,∴=∴y=S△EGF ﹣S△MNG==∵,对称轴为直线,∴当<x≤时,y有最大值,且y随x的增大而增大,∴当时,=,综合两种情形:由于<;∴当时,y的值最大,y的最大值为.。
南平中考数学试题及答案5-中考 (2).doc

:2016年南平中考数学试题及答案第5页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
中考数学一模试卷(含解析)46

福建省南平市延平区2016年中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列图形中,既是中心对称,又是轴对称图形的是()A.B. C.D.2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球 B.摸出的2个球有一个是白球C.摸出的2个球都是黑球 D.摸出的2个球有一个黑球3.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2﹣3 B.y=(x+2)2+3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣34.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A.B.C.D.5.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A.B.C.D.6.如图,四边形ABCD为⊙O的内接四边形,已知∠ADC=130°,则∠AOC的度数为()A.50° B.80° C.100°D.130°7.下列各组中的两个图形,不一定相似的是()A.有一个角是120°的两个等腰三角形B.两个等边三角形C.两个直角三角形D.两个等腰直角三角形8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm9.在某一时刻,测得一根高为1.2m的木棍的影长为2m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.15m B. m C.60 m D.24m10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②b=﹣2a;③b2+4ac>0;④4a+2b+c<0.其中结论正确的是()A.①② B.①②③C.①②③④ D.②③④二、填空题(本题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.方程x(x﹣4)=0的解是.12.如图,在△ABC中,点D在AB上,点E在AC上,且DE∥BC,AD=3,AB=4,AC=6,则EC= .13.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O 的半径为.14.如图,△ABC与△DEF是位似图形,位似比为2:3,则△ABC与△DEF的面积比为.15.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是.16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是.17.如图,Rt△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于点D,则阴影部分面积为.18.如图,一次函数y=x+3的图象与轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△DCE≌△CDF;②△AOB∽△FOE;③△CEF与△DEF的面积相等;④AC=BD.其中正确的有.(只填写序号)三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(1)计算:tan30°sin60°+cos230°﹣sin245°tan45°(2)已知:Rt△ABC中,∠C=90°,AC=,BC=,解这个直角三角形.20.在如图的方格纸中,每个小方格都是边长为 1 个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC绕点O顺时针旋转90°后的△A1B1C1,(2)求点A旋转到A1所经过的路线长.21.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.(1)求证:△ADC∽△ACB;(2)若AC=4,BC=3,求AD的长.22.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=的图象上.23.如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.(2)若cosB=,BP=6,AP=1,求QC的长.24.如图,反比例函数y=(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连结OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2.(1)填空:①点B坐标为;②S1S2(填“>”、“<”、“=”);(2)当S1+S2=2时,求: k的值及点D、E的坐标; 试判断△ODE的形状,并求△ODE的面积.25.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点M是线段OB上的一个动点,过点M作PF∥DE交线段BC于点P,交抛物线于点F,设点M坐标为(m,0),求线段PF的长(用含m的代数式表示);并求出当m为何值时,四边形PEDF为平行四边形?26.如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD 上,连接FC.(1)求证:△ADG≌△ABE;(2)图1中,当点E由B向C运动时,∠FCN的大小总保持不变,请求出∠FCN的大小;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.2016年福建省南平市延平区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列图形中,既是中心对称,又是轴对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球 B.摸出的2个球有一个是白球C.摸出的2个球都是黑球 D.摸出的2个球有一个黑球【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、只有一个白球,故A是不可能事件,故A正确;B、摸出的2个球有一个是白球是随机事件,故B错误;C、摸出的2个球都是黑球是随机事件,故C错误;D、摸出的2个球有一个黑球是随机事件,故D错误;故选:A.【点评】本题考查了可能性的大小,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.y=(x+2)2﹣3 B.y=(x+2)2+3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=(x+2)2﹣3.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A.B.C.D.【分析】根据互余两角的三角函数关系进行解答.【解答】解:在Rt△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA=,∴cosB=.故选:B .【点评】本题考查了互余两角的三角函数关系,熟记关系式是解题的关键.在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=cos (90°﹣∠A );②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin (90°﹣∠A );也可以理解成若∠A+∠B=90°,那么sinA=cosB 或sinB=cosA .5.函数y=x+m 与(m ≠0)在同一坐标系内的图象可以是( )A .B .C .D .【分析】先根据一次函数的性质判断出m 取值,再根据反比例函数的性质判断出m 的取值,二者一致的即为正确答案.【解答】解:A 、由函数y=x+m 的图象可知m <0,由函数y=的图象可知m >0,相矛盾,故错误;B 、由函数y=x+m 的图象可知m >0,由函数y=的图象可知m >0,正确;C 、由函数y=x+m 的图象可知m >0,由函数y=的图象可知m <0,相矛盾,故错误;D 、由函数y=x+m 的图象可知m=0,由函数y=的图象可知m <0,相矛盾,故错误. 故选B .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.如图,四边形ABCD 为⊙O 的内接四边形,已知∠ADC=130°,则∠AOC 的度数为( )A.50° B.80° C.100°D.130°【分析】先依据内接四边形的性质求得∠B的度数,然后再依据圆周角定理求得∠AOC的度数即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠B+∠D=180°,∴∠B=180°﹣130°=50°,∴∠AOC=2∠B=100°.故选:C.【点评】本题主要考查的是圆内接四边形的性质、圆周角定理的应用,求得∠B的度数是解题的关键.7.下列各组中的两个图形,不一定相似的是()A.有一个角是120°的两个等腰三角形B.两个等边三角形C.两个直角三角形D.两个等腰直角三角形【分析】根据等腰三角形的性质和相似三角形的判定方法对A进行判断;根据等边三角形的性质和相似三角形的判定方法对B进行判断;利用反例对C进行判断;根据等腰直角三角形的性质和相似三角形的判定方法对D进行判断.【解答】解:A、有一个角是120°的两个等腰的三组角分别对应相等,所以这两个三角形相似;B、两个等边三角形的各内角都为60°,所以两等边三角形相似;C、含30度的直角三角形和等腰直角三角形不相似,所以两直角三角形不一定相似;D、两个等腰直角的三组角分别对应相等,所以两个等腰直角三角形相似.故选C.【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.8.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.【点评】此题主要考查了线段垂直平分线的性质以及解直角三角形等知识,得出AD=BD,进而用CD表示出BD是解决问题的关键.9.在某一时刻,测得一根高为1.2m的木棍的影长为2m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.15m B. m C.60 m D.24m【分析】根据同时同地物高与影长成正比列出比例式求解即可.【解答】解:设旗杆的高度为xm,由题意得, =,解得x=15,答:这根旗杆的高度为15m.故选A.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②b=﹣2a;③b2+4ac>0;④4a+2b+c<0.其中结论正确的是()A.①② B.①②③C.①②③④ D.②③④【分析】由抛物线的开口方向判断的a符号,由对称轴的位置判断b的符号,由抛物线与y 轴的交点判断c的符号,根据抛物线与x轴交点情况确定b2﹣4ac的符号,根据抛物线的对称性确定4a+2b+c的符号.【解答】解:图象开口向上,与y轴交于负半轴,对称轴在y轴右侧,能得到:a>0,c<0,﹣>0,b<0,∴abc>0,①正确;对称轴为x=﹣=1,则b=﹣2a,②正确;图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,③正确;∵x=0时,y>0,对称轴是x=1,∴x=2时,y>0,即4a+2b+c>0,④错误,故选:B.【点评】本题考查的是二次函数的图象与系数的关系,由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,根据抛物线与x轴交点情况确定b2﹣4ac与0的关系.二、填空题(本题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.方程x(x﹣4)=0的解是x1=0,x2=4 .【分析】根据方程即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣4)=0,x=0,x﹣4=0,x1=0,x2=4,故答案为:x1=0,x2=4.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.12.如图,在△ABC中,点D在AB上,点E在AC上,且DE∥BC,AD=3,AB=4,AC=6,则EC= .【分析】先求得BD的长,然后依据平行线分线段成比例定理求解即可.【解答】解:∵AD=3,AB=4,∴BD=1.∵DE∥BC,∴=,即.∴EC=.故答案为:.【点评】本题主要考查的是平行线分线段成比例定理,依据平行线分线段成比例定理列出比例式是解题的关键.13.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.【分析】连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.【点评】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.14.如图,△ABC与△DEF是位似图形,位似比为2:3,则△ABC与△DEF的面积比为4:9 .【分析】由△ABC与△DEF是关于点O的位似图形,且位似比为2:3,又由相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的面积比.【解答】解:∵△ABC与△DEF是关于点O的位似图形,△ABC与△DEF的位似比为:2:3,∴△ABC与△DEF的相似比为:2:3,∴△ABC与△DEF的面积比为:4:9.故答案为:4:9.【点评】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.15.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是m>2 .【分析】先根据反比例函数的性质得出关于m的不等式,求出m的取值范围即可.【解答】解:∵函数y=的图象在每一象限内y的值随x值的增大而减小,∴m﹣2>0,解得m>2.故答案为:m>2.【点评】本题考查的是反比例函数的性质,熟知反比例函数在每一象限内的增减性是解答此题的关键.16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是20% .【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1﹣x)元,第二次在第一次降价后的基础上再降,变为100(x﹣1)(x﹣1),即100(x﹣1)2元,从而列出方程,求出答案.【解答】解:设每次降价的百分率为x,第二次降价后价格变为100(1﹣x)2元.根据题意,得100(1﹣x)2=64,即(1﹣x)2=0.64,解得x1=1.8,x2=0.2.因为x=1.8不合题意,故舍去,所以x=0.2.即每次降价的百分率为0.2,即20%.故答案为:20%.【点评】考查了一元二次方程的应用,此题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍.17.如图,Rt△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于点D,则阴影部分面积为﹣1 .【分析】图中S阴影=S半圆﹣S△ABD.根据等腰直角△ABC、圆周角定理可以推知S△ABD=S△ABC=1.则所以易求图中的半圆的面积.【解答】解:如图,∵Rt△ABC中,∠BAC=90°,AB=AC=2,∴BC=AC=2,S△ABC=AC×AB=×2×2=2.又∵AB是圆O的直径,∴∠ADB=90°,即AD⊥BC,∴AD是斜边BC上的中线,∴S△ABD=S△ABC=1.∴S阴影=S半圆﹣S△ABD=π×12﹣1=﹣1.故答案是:﹣1.【点评】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.18.如图,一次函数y=x+3的图象与轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C、D两点作y轴、x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△DCE≌△CDF;②△AOB∽△FOE;③△CEF与△DEF的面积相等;④AC=BD.其中正确的有①②③④.(只填写序号)【分析】先求出A、B、C、D四点坐标,再由DF⊥x轴,CE⊥y轴即可得出CE及DF的长,故可得出①正确;利用待定系数法求出直线EF的解析式,根据解析式的系数可判断出AB∥EF,再由相似三角形的判定定理可得出②正确;根据同底等高的三角形面积相等可知③正确;根据两点间的距离公式求出AC及BD的长可知④正确.【解答】解:∵一次函数y=x+3的图象与轴,y轴交于A,B两点,∴A(﹣3,0),B(0,3).∵与反比例函数y=的图象相交于C,D两点,∴,解得或,∴C(﹣4,﹣1),D(1,4).∵DF⊥x轴,CE⊥y轴,∴E(0,﹣1),F(1,0),∴CE=DF=4,CF=DE==.在DCE与△CDF中,∵∴△DCE≌△CDF(SSS),故①正确;设直线EF的解析式为y=mx+n(m≠0),∵E(0,﹣1),F(1,0),∴,解得,∴直线EF的解析式为y=x﹣1.∵直线AB的解析式为:y=x+3,∴AB∥EF,∴∠FEO=∠ABO,∠EFO=∠BAO,∴△AOB∽△FOE,故②正确;∵EF∥AB,∴△CEF与△DEF同底等高,∴△CEF与△DEF的面积相等,故③正确;∵A(﹣3,0),B(0,3),C(﹣4,﹣1),D(1,4),∴AC==,BD==,∴AC=BD,即④正确.故答案为:①②③④.【点评】本题考查的是反比例函数函数综合题,涉及到一次函数图象上点的坐标特点、反比例函数与一次函数的交点问题、全等三角形及相似三角形的判定等知识,涉及面较广.三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(1)计算:tan30°sin60°+cos230°﹣sin245°tan45°(2)已知:Rt△ABC中,∠C=90°,AC=,BC=,解这个直角三角形.【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)根据勾股定理求出AB的长,由锐角三角函数定义求出∠A与∠B度数即可.【解答】解:(1)原式=×+﹣×1=+﹣=;(2)∵∠C=90°,AC=,BC=,∴AB==2,∵tanA===,∴∠A=60°,∴∠B=30°.【点评】此题考查了实数的运算,以及解直角三角形,熟练掌握运算法则是解本题的关键.20.在如图的方格纸中,每个小方格都是边长为 1 个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出△ABC绕点O顺时针旋转90°后的△A1B1C1,(2)求点A旋转到A1所经过的路线长.【分析】(1)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可.(2)点A旋转到A1所经过的路线是半径为OA,圆心角是90度的扇形的弧长.【解答】解:(1)所画图形如下所示:(2)连接OA,OA1,,点A旋转到A1所经过的路线长为.【点评】本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.21.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.(1)求证:△ADC∽△ACB;(2)若AC=4,BC=3,求AD的长.【分析】(1)根据有两组角对应相等的两个三角形相似进行证明;(2)根据勾股定理得到AB==5,根据相似三角形的性质列比例式即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠ADC=∠ADB=90°,∵∠A=∠A,∴△ADC∽△ACB;(2)解:在Rt△ABC中;AC=4,BC=3,∴AB==5,∵△ADC∽△ACB∴,即,∴AD=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.22.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y=的图象上.【分析】(1)由在一个不透明的口袋里装有分别标有数字1、2、3、4四个小球,小球除数字不同外,其它无任何区别,直接利用概率公式求解即可求得答案;(2)列表得出所有等可能的情况数,找出点(x,y)落在函数y=的图象上的情况数,即可求出所求的概率.【解答】解:(1)∵在一个不透明的口袋里装有分别标有数字1、2、3三个小球,小球除数字不同外,其它无任何区别,∴从中任取一球,球上的数字为偶数的概率是:;(2)列表得:则点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),积为3的有2种,所以点A(x,y)在函数y=的图象上概率为:.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.正确的列表或树状图是解答本题的关键,难度不大.23.如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.(2)若cosB=,BP=6,AP=1,求QC的长.【分析】(1)连结OC,由OC=OB得∠2=∠B,DQ=DC得∠1=∠Q,根据QP⊥PB得到∠Q+∠B=90°,则∠1+∠2=90°,再利用平角的定义得到∠DCO=90°,然后根据切线的判定定理得到CD为⊙O的切线;(2)连结AC,由AB为⊙O的直径得∠ACB=90°,根据余弦的定义得cosB===,可计算出BC=,在Rt△BPQ中,利用余弦的定义得cosB==,可计算出BQ=10,然后利用QC=BQ﹣BC进行计算即可.【解答】解:(1)CD与⊙O相切.理由如下:连结OC,如图,∵OC=OB,∴∠2=∠B,∵DQ=DC,∴∠1=∠Q,∵QP⊥PB,∴∠BPQ=90°,∴∠Q+∠B=90°,∴∠1+∠2=90°,∴∠DCO=180°﹣∠1﹣∠2=90°,∴OC⊥CD,而OC为⊙O的半径,∴CD为⊙O的切线;(2)连接AC,如图,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,cosB===,而BP=6,AP=1,∴BC=,在Rt△BPQ中,cosB==,∴BQ==10,∴QC=BQ﹣BC=10﹣=.【点评】本题考查了切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查圆周角定理的推论以及解直角三角形.24.如图,反比例函数y=(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连结OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2.(1)填空:①点B坐标为(4,2);②S1= S2(填“>”、“<”、“=”);(2)当S1+S2=2时,求: k的值及点D、E的坐标; 试判断△ODE的形状,并求△ODE的面积.【分析】(1)①根据OA=2,OC=4可直接得到点B坐标;②根据反比例函k的意义可知S1、S2都等于|k|,即可得到答案;(2)根据当S1+S2=2时,由(1)得出S1=S2=1,进而得出BD,BE的长,进而得出DO2+DE2=OE2,△ODE是直角三角形,进而得出三角形面积.【解答】解:(1)①根据长方形OABC中,OA=2,OC=4,则点B坐标为(4,2),②∵反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,利用△OAD、△OCE的面积分别为S1=ADAO,S2=COEC,xy=k,得出,S1=ADAO=k,S2=COEC=k,∴S1=S2;(2)当S1+S2=2时,∵S1=S2,∴S1=S2=1,∵S1=ADAO=AD×2=1,∴AD=1,∵S2=COEC=×4×EC=1,∴EC=,∵OA=2,OC=4,∴BD=4﹣1=3,BE=2﹣=,∴DO2=AO2+AD2=4+1=5,DE2=DB2+BE2=9+=,OE2=CO2+CE2=16+=,∴DO2+DE2=OE2,∴△ODE是直角三角形,∵DO2=5,∴DO=,∵DE2=,∴DE=,∴△ODE的面积为:×DO×DE=××=,故答案为:(1)①(4,2);②=.【点评】此题主要考查了反比函数的综合应用以及勾股定理的应用以及三角形面积求法,利用数形结合在一起,得出BD,EB长是分析解决问题的关键.25.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点M是线段OB上的一个动点,过点M作PF∥DE交线段BC于点P,交抛物线于点F,设点M坐标为(m,0),求线段PF的长(用含m的代数式表示);并求出当m为何值时,四边形PEDF为平行四边形?【分析】(1)通过加方程﹣x2+2x+3=0可得A点和B点坐标,再计算自变量为0时的函数值可得到C点坐标,然后利用对称性可确定抛物线的对称轴;(2)先利用待定系数法求出直线BC的函数关系式为y=﹣x+3,再确定E(1,2),D(1,4),设M(m,0)(0<m<3),则可表示出P(m,﹣m+3),F(m,﹣m2+2m+3),接着计算出DE=2,PF=m2+3m,然后利用平行四边形的判定方法得到﹣m2+3m=2,再解方程求出m即可.【解答】解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),当x=0时,y=﹣x2+2x+3=3,则C(0,3);抛物线的对称轴是直线x=1;(2)设直线BC的函数关系式为y=kx+b,把B(3,0),C(0,3)分别代入得,解得k=﹣1,b=3,∴直线BC的函数关系式为y=﹣x+3,∵对称轴是直线x=1,∴E(1,2),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),设M(m,0)(0<m<3),则P(m,﹣m+3),F(m,﹣m2+2m+3),∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形,即﹣m2+3m=2,解得m1=2,m2=1(不合题意,舍去),∴当m=2时,四边形PEDF为平行四边形.【点评】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键是用m点的横坐标分别表示出P、F点的坐标.26.如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD 上,连接FC.(1)求证:△ADG≌△ABE;(2)图1中,当点E由B向C运动时,∠FCN的大小总保持不变,请求出∠FCN的大小;(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.【分析】(1)根据正方形、矩形的性质以及同角的余角相等得到∠BAE=∠DAG,根据全等三角形的判定定理证明△BAE≌△DAG;(2)作FH⊥MN于H,证明△EHF≌△ABE,得到FH=BE,根据等腰直角三角形的性质求出∠FCN的度数;(3)作FP⊥MN于P,证明△EFP≌△AGD,得到EP=AD=BC=b,证明△EFP∽△AEB,根据相似三角形的性质和正切的概念解答即可.【解答】(1)证明:∵四边形ABCD是正方形,四边形AEFG是矩形,∴AB=AD,∠BAD=∠EAG=∠ABE=∠ADG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,在△ADG和△ABE中,∴△BAE≌△DAG(AAS);(2)∠FCN=45°.理由如下:作FH⊥MN于H,∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠FEH=∠BAE,∵∠EBA=∠FHE=90°,∠BAE=∠FEH,∵Rt△BAE≌Rt△DAG,∴AE=AG=EF,在△EHF和△ABE中,,∴△EHF≌△ABE(AAS),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∵∠FHC=90°,∴∠FCH=45°;(3)当点E由B向C运动时,∠FCN的大小总保持不变.理由如下:如图(2)作FP⊥MN于P.由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)易得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∴∠GDA=∠EHF=∠EBA=90°,在△EFH和△AGD中,,∴△EFP≌△AGD(AAS),∴EP=AD=BC=b,CP=BE,∵∠BAE=∠FEP,∠ABE=∠FPE,∴△EFP∽△AEB,∴,∵在Rt△FEH中,tan∠FCN=,∴当点E沿射线CN运动时,tan∠FCN=.【点评】本题考查的是正方形和矩形的性质、相似三角形的判定和性质、全等三角形的判定和性质,掌握相似三角形的判定定理和性质定理、全等三角形的判定定理和性质定理是解题的关键.。
中考数学模拟试卷含解析201

2016年福建省南平市剑津片区中考数学模拟试卷一、选择题:(本大题10个小题,每小题4分,共40分,其中只有一个是正确的选项,请在答题卡相应位置填涂)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x63.函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣34.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70° B.80° C.90° D.100°5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查6.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60° B.50° C.40° D.30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.8.某公司销售部有销售人员27人,销售部为了制定某种商品的销售定额,统计了这27人某月的销售情况如下表:则该公司销售人员这个月销售量的中位数是()销售量(单位:件)500 450 400 350 300 200人数(单位:人) 1 4 4 6 7 5A.400件B.375件C.350件D.300件9.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP 的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.10.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤二、填空题:(本大题6个小题,每小题4分,共24分,请将答案填在答题卡相应位置)11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7 840 000万元.那么7 840 000万元用科学记数法表示为×106万元.12.分解因式:x2﹣4= (x+2)(x﹣2).13.已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5 .14.若点(﹣2,1)在反比例函数的图象上,则该函数的图象位于第二、四象限.15.已知,函数y=(k﹣1)x+k2﹣1,当k ≠1 时,它是一次函数.16.正方形A1B1C1O,A2B2C2C1,…按如图所示的方式放置.点A1,A2…和点C1,C2…分别在直线y=x+1和x轴上,则A4的坐标是(7,8);B n的坐标是(2n﹣1,2n﹣1).三、解答题:(本大题9个小题,共86分,请在答题卡相应位置作答)17.计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.18.解分式方程: =3+.19.先化简,再求值:,其中x=﹣3.20.已知如图所示,E、F是四边形ABCD对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.21.某校初三(7)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如表:自选项目人数频率立定跳远9三级蛙跳12 a一分钟跳绳8投掷实心球 b推铅球 5合计50 1(1)求a、b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,用树状图或列表法求所抽取的两名学生恰好是两名女生的概率.22. A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.乙车以60千米/时的速度匀速行驶.(1)求y关于x的表达式;(2)两车相遇前,设两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)行驶时间为多少时,两车相距150千米?23.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.24.(12分)(2015•南平校级模拟)已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B 两点(点A在点B的左侧),点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC 交BC于点Q,当△CPQ的面积最大时,求点P的坐标.25.如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在相似关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠A BP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S 关于x的函数关系式.2016年福建省南平市剑津片区中考数学模拟试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分,其中只有一个是正确的选项,请在答题卡相应位置填涂)1.﹣5的相反数是()A.5 B.﹣5 C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x6【考点】整式的除法;同底数幂的除法.【分析】根据单项式除单项式的法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:2x3÷x2=2x.故选B.【点评】本题比较容易,考查整式的除法和同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣3【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:x+3≠0,解得:x≠﹣3.故选C.【点评】求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.4.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70° B.80° C.90° D.100°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】在题中∠AEC和∠DEB为对顶角相等,∠DEB和∠D为同旁内角互补,据此解答即可.【解答】解:∵AB∥DF,∴∠D+∠DEB=180°,∵∠DEB与∠AEC是对顶角,∴∠DEB=100°,∴∠D=180°﹣∠DEB=80°.故选B.【点评】本题比较容易,考查平行线的性质及对顶角相等.5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查【考点】全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查一批新型节能灯泡的使用寿命,有破坏性,故得用抽查方式,故错误;B、调查长江流域的水污染情况,工作量大,得用抽查方式,故错误;C、调查重庆市初中学生的视力情况,工作量大,得用抽查方式,故错误;D、为保证“神舟7号”的成功发射,对零件全面检查十分重要,故进行普查检查,故正确.故选D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.6.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60° B.50° C.40° D.30°【考点】圆周角定理.【分析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=∠BOC=40°.【解答】解:∵∠BOC=80°,∴∠A=∠BOC=40°.故选C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面看可得到第一层为2个正方形,第二层左面有一个正方形.故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.某公司销售部有销售人员27人,销售部为了制定某种商品的销售定额,统计了这27人某月的销售情况如下表:则该公司销售人员这个月销售量的中位数是()销售量(单位:件)500 450 400 350 300 200人数(单位:人) 1 4 4 6 7 5A.400件B.375件C.350件D.300件【考点】中位数.【专题】应用题.【分析】根据中位数的定义求解.有27个数据,第14个数就是中位数.【解答】解:27个数据的中位数应是这组数据从小到大依次排列后的第14个数,应是350.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP 的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.【考点】动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.【点评】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.10.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形.【专题】压轴题;动点型.【分析】解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE 取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.【解答】解:连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).故选:B.【点评】此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,考查知识点较多,综合性强,能力要求全面,难度较大.但作为选择题可采用排除法等特有方法,使此题难度稍稍降低一些.二、填空题:(本大题6个小题,每小题4分,共24分,请将答案填在答题卡相应位置)11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7 840 000万元.那么7 840 000万元用科学记数法表示为×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:根据题意7 840 000=×106万元.【点评】科学记数法是指把一个数写成a×10n(其中1≤|a|<10,n是整数)的形式,其中10的指数就是原数的整数位数减去1.12.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.13.已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5 .【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,可直接得出结果.【解答】解:因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC:S△DEF=4:25=()2,所以△ABC与△DEF的相似比为2:5.【点评】本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.14.若点(﹣2,1)在反比例函数的图象上,则该函数的图象位于第二、四象限.【考点】反比例函数图象上点的坐标特征.【分析】先根据函数的解析式确定k=xy=﹣2,再根据函数图象与系数的特点进行解答.【解答】解:∵点(﹣2,1)在反比例函数的图象上,∴k=(﹣2)×1=﹣2<0,∴该函数的图象位于第二、四象限.【点评】反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.15.已知,函数y=(k﹣1)x+k2﹣1,当k ≠1 时,它是一次函数.【考点】一次函数的定义.【分析】根据一次函数的定义,令k﹣1≠0即可.【解答】解:根据一次函数定义得,k﹣1≠0,解得k≠1.故答案为:≠1.【点评】本题主要考查了一次函数的定义,解题关键是掌握一次函数的定义条件:一次函数y=kx+b 的定义条件是:k、b为常数,k≠0,自变量次数为1.16.正方形A1B1C1O,A2B2C2C1,…按如图所示的方式放置.点A1,A2…和点C1,C2…分别在直线y=x+1和x轴上,则A4的坐标是(7,8);B n的坐标是(2n﹣1,2n﹣1).【考点】一次函数综合题.【专题】探究型.【分析】先根据一次函数的性质求出A1,A2,A3;B1,B2,B3的B坐标,找出规律即可得出结论.【解答】解:∵点A1是直线y=x+1与y轴的交点,∴A1(0,1),∵四边形A1B1C1O是正方形,∴B1(1,1),∵点A2在直线y=x+1上,∴A2(1,2),同理可得,A3(3,4),B2(3,2),B3(7,4),∴前三个正方形的边长=1+2+4=7,∴A4(7,8),∵B1(1,1),B2(3,2),B3(7,4),∴B n的坐标是(2n﹣1,2n﹣1).故答案为:(7,8),(2n﹣1,2n﹣1).【点评】本题考查的是一次函数综合题,涉及到正方形的性质、一次函数的性质等相关知识,难度不大.三、解答题:(本大题9个小题,共86分,请在答题卡相应位置作答)17.计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.【考点】负整数指数幂;绝对值;有理数的乘方;算术平方根;零指数幂.【专题】计算题.【分析】根据绝对值、负整数指数幂、零指数幂、算术平方根、有理数的乘方等知识点进行解答.【解答】解:原式=2+3×1﹣3+1=3.【点评】本题主要考查绝对值、负指数幂、零次幂、算术平方根、(﹣1)的偶次方的计算与化简,比较简单.18.解分式方程: =3+.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=3x﹣9﹣x,解得:x=5,经检验x=5是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.先化简,再求值:,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.最后把数代入求值.【解答】解:原式===;当x=﹣3时,原式=.【点评】考查分式的化简与求值,主要的知识点是因式分解、通分、约分等,难度不大,此题学生完成较好.20.已知如图所示,E、F是四边形ABCD对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)首先根据平行线的性质可得∠DFA=∠BEC,再加上AF=CE,DF=BE可利用SAS定理证明△AFD≌△CEB;(2)首先根据△AFD≌△CEB可得AD=BC,∠DAC=∠ECB,然后证明AD∥CB,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)四边形ABCD是平行四边形,∵△AFD≌△CEB,∴AD=BC,∠DAC=∠ECB,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题主要考查平行四边形的判定,全等三角形的判定与性质,关键是掌握一组对边平行且相等的四边形是平行四边形.21.某校初三(7)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如表:自选项目人数频率立定跳远9三级蛙跳12 a一分钟跳绳8投掷实心球 b推铅球 5合计50 1(1)求a、b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,用树状图或列表法求所抽取的两名学生恰好是两名女生的概率.【考点】列表法与树状图法;统计表;扇形统计图.【专题】计算题.【分析】(1)利用频率公式计算a和b的值;(2)用“一分钟跳绳”所占的百分比乘以360°即可;(3)先画树状图展示所有20种等可能的结果数,再找出抽取的两名学生恰好是两名女生的结果数,然后根据概率公式求解.【解答】解:(1)a=12÷50=,b=50×=16;(2)“一分钟跳绳”对应扇形的圆心角的度数=×360°=°;(3)画树状图为:共有20种等可能的结果数,其中抽取的两名学生恰好是两名女生的结果数为2,所以抽取的两名学生恰好是两名女生的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.22.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城.甲车距B城高速公路入口处的距离y (千米)与行驶时间x(时)之间的关系如图.乙车以60千米/时的速度匀速行驶.(1)求y关于x的表达式;(2)两车相遇前,设两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)行驶时间为多少时,两车相距150千米?【考点】一次函数的应用.【分析】(1)根据题意可以知道y与x的函数符合一次函数,从而可以设出函数解析式,根据函数图象经过点(0,300)、(2,120)可以解答本题;(2)根据函数图象可以求得甲车的速度,从而可以得到两车相距的路程为s(千米)关于x的表达式;(3)根据题意可知分两种情况,一种是相遇前,一种是相遇后,从而可以解答本题.【解答】解:(1)设y与x的函数关系式为:y=kx+b,,解得,,即y与x的函数关系式为:y=﹣90x+300;(2)由图可知,甲车的速度为:(300﹣120)÷2=90千米/时,∴s=300﹣(90+60)x,(0≤x<2);(3)相遇前,(90+60)x=150,得x=1,相遇后,(90+60)x=300+150,得x=3,即行驶时间为1小时或3小时时,两车相距150千米.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.【考点】切线的判定.【分析】(1)相切.连接OD,证OD⊥CD即可.根据圆周角定理,∠AOD=90°,又AB∥CD,可得∠ODC=90°,得证;(2)连接BE,则∠AEB=90°,∠ADE=∠ABE.在△ABE中根据三角函数定义求解.【解答】解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.【点评】此题考查了切线的判定及三角函数等知识点,难度不大.24.(12分)(2015•南平校级模拟)已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B 两点(点A在点B的左侧),点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC 交BC于点Q,当△CPQ的面积最大时,求点P的坐标.【考点】二次函数综合题.【分析】(1)首先求出x2﹣4x﹣12=0的两根,进而求出点A和点B的坐标,利用待定系数法列出a 和b的二元一次方程组,求出a和b的值,即可求出二次函数的解析式;(2)设点P的横坐标为m,则0<m<6,连接AQ,用m表示出△CPQ的面积,利用二次函数的性质,求出当△CPQ的面积最大时,点P的坐标.【解答】解:(1)由x2﹣4x﹣12=0,解得x=﹣2或x=6,点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根,故A(﹣2,0)、B(6,0),则,解得.故二次函数y=﹣x2+2x+6,顶点坐标(2,8);(2)设点P的横坐标为m,则0<m<6,连接AQ,直线BC的解析式为y=﹣x+6,直线AC的解析式为y=3x+6,设Q点坐标为(a,6﹣a),由PQ∥AC,可知,解得a=,6﹣a=(6﹣m),S△CPQ=S△APQ=(m+2)•(6﹣m),=﹣( m2﹣4m﹣12)=﹣(m﹣2)2+6,当m=2时,S最大=6,所以,当△CPQ的面积最大时,点P的坐标是(2,0).【点评】本题主要考查了二次函数的综合题,此题涉及到待定系数法求二次函数解析式、二次函数的图象以及三角形面积的计算,解答本题的关键是正确求出二次函数的解析式,此题难度不大.25.如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在相似关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S 关于x的函数关系式.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;旋转的性质.【专题】综合题;压轴题.【分析】(1)通过证明∠PAE=∠EBF,结合公共角证明即可;(2)根据AA易得:△BEF∽△AEP,结合一组对应边相等的相似图形全等,最后根据全等三角形的性质可知;(3)连接BD,交A1B1于点G,过点A1作A1H⊥AC于点H.根据三角形的面积公式可得S关于x的函数关系式.【解答】解:(1)相似由题意得:∠APA1=∠BPB1=α,AP=A1P,BP=B1P,则∠PAA1=∠PBB1=,∵∠PBB1=∠EBF,∴∠PAE=∠EBF,又∵∠BEF=∠AEP,∠EBF=∠EAP,∴△BEF∽△AEP;(2)存在,理由如下:∵∠PAE=∠EBF,∠AEP=∠BEF,∴△BEF∽△AEP,若要使得△BEF≌△AEP,只需要满足BE=AE即可,∴∠BAE=∠ABE,∵∠BAC=60°,∴∠BAE=,∵∠ABE=β,∠BAE=∠ABE,∴,即α=2β+60°;(3)连接BD,交A1B1于点G,过点A1作A1H⊥AC于点H.∵∠B1A1P=∠A1PA=60°,∴A1B1∥AC,由题意得:AP=A1P=2+x,∠A=60°,∴△PAA1是等边三角形,∴A1H=sin60°A1P=,在Rt△ABD中,BD=,∴BG=,∴(0≤x<2).【点评】此题主要考查了等边三角形的性质、相似三角形的判定与性质及全等三角形的判定及性质;利用等边三角形的性质去探究相似三角形和全等三角形,利用相似三角形和全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.。
【初中数学】2016年福建省南平市剑津片区中考数学模拟试卷(解析版) 人教版

2016年福建省南平市剑津片区中考数学模拟试卷一、选择题:(本大题10个小题,每小题4分,共40分,其中只有一个是正确的选项,请在答题卡相应位置填涂)1.﹣5的相反数是()A.5 B.﹣5 C.D.2.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x63.函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣34.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70° B.80° C.90° D.100°5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查6.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60° B.50° C.40° D.30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.8.某公司销售部有销售人员27人,销售部为了制定某种商品的销售定额,统计了这27人某月的销售情况如下表:则该公司销售人员这个月销售量的中位数是()A.400件B.375件C.350件D.300件9.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.10.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤二、填空题:(本大题6个小题,每小题4分,共24分,请将答案填在答题卡相应位置)11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7 840 000万元.那么7 840 000万元用科学记数法表示为7.84×106万元.12.分解因式:x2﹣4= (x+2)(x﹣2).13.已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为2:5 .14.若点(﹣2,1)在反比例函数的图象上,则该函数的图象位于第二、四象限.15.已知,函数y=(k﹣1)x+k2﹣1,当k ≠1 时,它是一次函数.16.正方形A1B1C1O,A2B2C2C1,…按如图所示的方式放置.点A1,A2…和点C1,C2…分别在直线y=x+1和x轴上,则A4的坐标是(7,8);Bn的坐标是(2n﹣1,2n﹣1).三、解答题:(本大题9个小题,共86分,请在答题卡相应位置作答)17.计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.18.解分式方程: =3+.19.先化简,再求值:,其中x=﹣3.20.已知如图所示,E、F是四边形ABCD对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.21.某校初三(7)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如表:(1)求a、b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,用树状图或列表法求所抽取的两名学生恰好是两名女生的概率.22. A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.乙车以60千米/时的速度匀速行驶.(1)求y关于x的表达式;(2)两车相遇前,设两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)行驶时间为多少时,两车相距150千米?23.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.24.(12分)(2015•南平校级模拟)已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.25.如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1 P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF 与△AEP 始终存在 相似 关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E 、F 与点B 重合.已知AB=4,设DP=x ,△A 1BB 1的面积为S ,求S 关于x 的函数关系式.2016年福建省南平市剑津片区中考数学模拟试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分,其中只有一个是正确的选项,请在答题卡相应位置填涂)1.﹣5的相反数是()A.5 B.﹣5 C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x6【考点】整式的除法;同底数幂的除法.【分析】根据单项式除单项式的法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:2x3÷x2=2x.故选B.【点评】本题比较容易,考查整式的除法和同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.函数y=的自变量x的取值范围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣3【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:x+3≠0,解得:x≠﹣3.故选C.【点评】求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.4.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70° B.80° C.90° D.100°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】在题中∠AEC和∠DEB为对顶角相等,∠DEB和∠D为同旁内角互补,据此解答即可.【解答】解:∵AB∥DF,∴∠D+∠DEB=180°,∵∠DEB与∠AEC是对顶角,∴∠DEB=100°,∴∠D=180°﹣∠DEB=80°.故选B.【点评】本题比较容易,考查平行线的性质及对顶角相等.5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中学生的视力情况D.为保证“神舟7号”的成功发射,对其零部件进行普查检查【考点】全面调查与抽样调查.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查一批新型节能灯泡的使用寿命,有破坏性,故得用抽查方式,故错误;B、调查长江流域的水污染情况,工作量大,得用抽查方式,故错误;C、调查重庆市初中学生的视力情况,工作量大,得用抽查方式,故错误;D、为保证“神舟7号”的成功发射,对零件全面检查十分重要,故进行普查检查,故正确.故选D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.6.如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60° B.50° C.40° D.30°【考点】圆周角定理.【分析】根据同弧所对的圆周角等于圆心角的一半可得:∠A=∠BOC=40°.【解答】解:∵∠BOC=80°,∴∠A=∠BOC=40°.故选C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A .B .C .D .【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面看可得到第一层为2个正方形,第二层左面有一个正方形. 故选A .【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.某公司销售部有销售人员27人,销售部为了制定某种商品的销售定额,统计了这27人某月的销售情况如下表:则该公司销售人员这个月销售量的中位数是( )A .400件B .375件C .350件D .300件【考点】中位数. 【专题】应用题.【分析】根据中位数的定义求解.有27个数据,第14个数就是中位数.【解答】解:27个数据的中位数应是这组数据从小到大依次排列后的第14个数,应是350. 故选C .【点评】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.在长方形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B→C→D 做匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致为( )A .B .C .D .【考点】动点问题的函数图象.【分析】运用动点函数进行分段分析,当P 在BC 上与CD 上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P 从点B 出发,P 点在BC 上时,BP=x ,AB=2,∴△ABP 的面积S=×AB ×BP=×2x=x ;动点P 从点B 出发,P 点在CD 上时,△ABP 的高是1,底边是2,所以面积是1,即s=1; ∴s=x 时是正比例函数,且y 随x 的增大而增大, s=1时,是一个常数函数,是一条平行于x 轴的直线. 所以只有C 符合要求. 故选C .【点评】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.10.如图,在等腰Rt △ABC 中,∠C=90°,AC=8,F 是AB 边上的中点,点D ,E 分别在AC ,BC 边上运动,且保持AD=CE .连接DE ,DF ,EF .在此运动变化的过程中,下列结论: ①△DFE 是等腰直角三角形; ②四边形CDFE 不可能为正方形, ③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变; ⑤△CDE 面积的最大值为8. 其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形. 【专题】压轴题;动点型.【分析】解此题的关键在于判断△DEF 是否为等腰直角三角形,作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF 是等腰直角三角形DE=DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值4,故③错误,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积,由③可知⑤是正确的.故只有①④⑤正确. 【解答】解:连接CF ; ∵△ABC 是等腰直角三角形, ∴∠FCB=∠A=45°,CF=AF=FB ; ∵AD=CE ,∴△ADF ≌△CEF (SAS ); ∴EF=DF ,∠CFE=∠AFD ; ∵∠AFD+∠CFD=90°, ∴∠CFE+∠CFD=∠EFD=90°,∴△EDF 是等腰直角三角形(故①正确).当D 、E 分别为AC 、BC 中点时,四边形CDFE 是正方形(故②错误). ∵△ADF ≌△CEF ,∴S △CEF =S △ADF ∴S 四边形CEFD =S △AFC ,(故④正确).由于△DEF 是等腰直角三角形,因此当DE 最小时,DF 也最小;即当DF ⊥AC 时,DE 最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE 面积最大时,由④知,此时△DEF 的面积最小. 此时S △CDE =S 四边形CEFD ﹣S △DEF =S △AFC ﹣S △DEF =16﹣8=8(故⑤正确).故选:B.【点评】此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,考查知识点较多,综合性强,能力要求全面,难度较大.但作为选择题可采用排除法等特有方法,使此题难度稍稍降低一些.二、填空题:(本大题6个小题,每小题4分,共24分,请将答案填在答题卡相应位置)11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7 840 000万元.那么7 840 000万元用科学记数法表示为7.84×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:根据题意7 840 000=7.84×106万元.【点评】科学记数法是指把一个数写成a×10n(其中1≤|a|<10,n是整数)的形式,其中10的指数就是原数的整数位数减去1.12.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.13.已知△ABC 与△DEF 相似且面积比为4:25,则△ABC 与△DEF 的相似比为 2:5 . 【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,可直接得出结果. 【解答】解:因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,因为S △ABC :S △DEF =4:25=()2,所以△ABC 与△DEF 的相似比为2:5.【点评】本题比较容易,考查相似三角形的性质.利用相似三角形的性质时,要注意相似比的顺序,同时也不能忽视面积比与相似比的关系.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.14.若点(﹣2,1)在反比例函数的图象上,则该函数的图象位于第 二、四 象限.【考点】反比例函数图象上点的坐标特征.【分析】先根据函数的解析式确定k=xy=﹣2,再根据函数图象与系数的特点进行解答.【解答】解:∵点(﹣2,1)在反比例函数的图象上,∴k=(﹣2)×1=﹣2<0,∴该函数的图象位于第二、四象限. 【点评】反比例函数图象上点的坐标特征: 当k >0时,图象分别位于第一、三象限; 当k <0时,图象分别位于第二、四象限.15.已知,函数y=(k ﹣1)x+k 2﹣1,当k ≠1 时,它是一次函数. 【考点】一次函数的定义.【分析】根据一次函数的定义,令k ﹣1≠0即可. 【解答】解:根据一次函数定义得,k ﹣1≠0, 解得k ≠1. 故答案为:≠1.【点评】本题主要考查了一次函数的定义,解题关键是掌握一次函数的定义条件:一次函数y=kx+b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.16.正方形A 1B 1C 1O ,A 2B 2C 2C 1,…按如图所示的方式放置.点A 1,A 2…和点C 1,C 2…分别在直线y=x+1和x 轴上,则A 4的坐标是 (7,8) ;B n 的坐标是 (2n ﹣1,2n ﹣1) .【考点】一次函数综合题. 【专题】探究型.【分析】先根据一次函数的性质求出A 1,A 2,A 3;B 1,B 2,B 3的B 坐标,找出规律即可得出结论.【解答】解:∵点A 1是直线y=x+1与y 轴的交点, ∴A 1(0,1),∵四边形A 1B 1C 1O 是正方形, ∴B 1(1,1),∵点A 2在直线y=x+1上, ∴A 2(1,2),同理可得,A 3(3,4),B 2(3,2),B 3(7,4), ∴前三个正方形的边长=1+2+4=7, ∴A 4(7,8),∵B 1(1,1),B 2(3,2),B 3(7,4), ∴B n 的坐标是(2n ﹣1,2n ﹣1).故答案为:(7,8),(2n ﹣1,2n ﹣1).【点评】本题考查的是一次函数综合题,涉及到正方形的性质、一次函数的性质等相关知识,难度不大.三、解答题:(本大题9个小题,共86分,请在答题卡相应位置作答)17.计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.【考点】负整数指数幂;绝对值;有理数的乘方;算术平方根;零指数幂. 【专题】计算题.【分析】根据绝对值、负整数指数幂、零指数幂、算术平方根、有理数的乘方等知识点进行解答.【解答】解:原式=2+3×1﹣3+1=3.【点评】本题主要考查绝对值、负指数幂、零次幂、算术平方根、(﹣1)的偶次方的计算与化简,比较简单.18.解分式方程: =3+.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=3x﹣9﹣x,解得:x=5,经检验x=5是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.先化简,再求值:,其中x=﹣3.【考点】分式的化简求值.【专题】计算题.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.最后把数代入求值.【解答】解:原式===;当x=﹣3时,原式=.【点评】考查分式的化简与求值,主要的知识点是因式分解、通分、约分等,难度不大,此题学生完成较好.20.已知如图所示,E、F是四边形ABCD对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)首先根据平行线的性质可得∠DFA=∠BEC,再加上AF=CE,DF=BE可利用SAS定理证明△AFD≌△CEB;(2)首先根据△AFD≌△CEB可得AD=BC,∠DAC=∠ECB,然后证明AD∥CB,根据一组对边平行且相等的四边形是平行四边形可得结论.【解答】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)四边形ABCD是平行四边形,∵△AFD≌△CEB,∴AD=BC,∠DAC=∠ECB,∴AD∥BC,∴四边形ABCD是平行四边形.【点评】本题主要考查平行四边形的判定,全等三角形的判定与性质,关键是掌握一组对边平行且相等的四边形是平行四边形.21.某校初三(7)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如表:(1)求a、b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,用树状图或列表法求所抽取的两名学生恰好是两名女生的概率.【考点】列表法与树状图法;统计表;扇形统计图.【专题】计算题.【分析】(1)利用频率公式计算a和b的值;(2)用“一分钟跳绳”所占的百分比乘以360°即可;(3)先画树状图展示所有20种等可能的结果数,再找出抽取的两名学生恰好是两名女生的结果数,然后根据概率公式求解.【解答】解:(1)a=12÷50=0.24,b=50×0.32=16;(2)“一分钟跳绳”对应扇形的圆心角的度数=0.16×360°=57.6°;(3)画树状图为:共有20种等可能的结果数,其中抽取的两名学生恰好是两名女生的结果数为2,所以抽取的两名学生恰好是两名女生的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.22.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.乙车以60千米/时的速度匀速行驶.(1)求y关于x的表达式;(2)两车相遇前,设两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)行驶时间为多少时,两车相距150千米?【考点】一次函数的应用.【分析】(1)根据题意可以知道y与x的函数符合一次函数,从而可以设出函数解析式,根据函数图象经过点(0,300)、(2,120)可以解答本题;(2)根据函数图象可以求得甲车的速度,从而可以得到两车相距的路程为s(千米)关于x 的表达式;(3)根据题意可知分两种情况,一种是相遇前,一种是相遇后,从而可以解答本题.【解答】解:(1)设y与x的函数关系式为:y=kx+b,,解得,,即y与x的函数关系式为:y=﹣90x+300;(2)由图可知,甲车的速度为:(300﹣120)÷2=90千米/时,∴s=300﹣(90+60)x,(0≤x<2);(3)相遇前,(90+60)x=150,得x=1,相遇后,(90+60)x=300+150,得x=3,即行驶时间为1小时或3小时时,两车相距150千米.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.【考点】切线的判定.【分析】(1)相切.连接OD,证OD⊥CD即可.根据圆周角定理,∠AOD=90°,又AB∥CD,可得∠ODC=90°,得证;(2)连接BE,则∠AEB=90°,∠ADE=∠ABE.在△ABE中根据三角函数定义求解.【解答】解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.【点评】此题考查了切线的判定及三角函数等知识点,难度不大.24.(12分)(2015•南平校级模拟)已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.【考点】二次函数综合题.【分析】(1)首先求出x2﹣4x﹣12=0的两根,进而求出点A和点B的坐标,利用待定系数法列出a和b的二元一次方程组,求出a和b的值,即可求出二次函数的解析式;(2)设点P的横坐标为m,则0<m<6,连接AQ,用m表示出△CPQ的面积,利用二次函数的性质,求出当△CPQ的面积最大时,点P的坐标.【解答】解:(1)由x2﹣4x﹣12=0,解得x=﹣2或x=6,点A、点B的横坐标是方程x2﹣4x﹣12=0的两个根,故A (﹣2,0)、B (6,0),则,解得.故二次函数y=﹣x 2+2x+6,顶点坐标(2,8);(2)设点P 的横坐标为m ,则0<m <6,连接AQ ,直线BC 的解析式为y=﹣x+6,直线AC 的解析式为y=3x+6,设Q 点坐标为(a ,6﹣a ),由PQ ∥AC ,可知, 解得a=,6﹣a=(6﹣m ),S △CPQ =S △APQ =(m+2)•(6﹣m ),=﹣( m 2﹣4m ﹣12)=﹣(m ﹣2)2+6,当m=2时,S 最大=6,所以,当△CPQ 的面积最大时,点P 的坐标是(2,0).【点评】本题主要考查了二次函数的综合题,此题涉及到待定系数法求二次函数解析式、二次函数的图象以及三角形面积的计算,解答本题的关键是正确求出二次函数的解析式,此题难度不大.25.如图1,在等边△ABC 中,点D 是边AC 的中点,点P 是线段DC 上的动点(点P 与点C 不重合),连接BP .将△ABP 绕点P 按顺时针方向旋转α角(0°<α<180°),得到△A 1B 1P ,连接AA 1,射线AA 1分别交射线PB 、射线B 1B 于点E 、F .(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF 与△AEP 始终存在 相似 关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF 与△AEP 全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E 、F 与点B 重合.已知AB=4,设DP=x ,△A 1BB 1的面积为S ,求S 关于x 的函数关系式.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;旋转的性质.【专题】综合题;压轴题.【分析】(1)通过证明∠PAE=∠EBF ,结合公共角证明即可;(2)根据AA 易得:△BEF ∽△AEP ,结合一组对应边相等的相似图形全等,最后根据全等三角形的性质可知;(3)连接BD ,交A 1B 1于点G ,过点A 1作A 1H ⊥AC 于点H .根据三角形的面积公式可得S 关于x 的函数关系式.【解答】解:(1)相似由题意得:∠APA 1=∠BPB 1=α,AP=A 1P ,BP=B 1P ,则∠PAA 1=∠PBB 1=,∵∠PBB 1=∠EBF ,∴∠PAE=∠EBF ,又∵∠BEF=∠AEP ,∠EBF=∠EAP ,∴△BEF ∽△AEP ;(2)存在,理由如下:∵∠PAE=∠EBF ,∠AEP=∠BEF ,∴△BEF ∽△AEP ,若要使得△BEF ≌△AEP ,只需要满足BE=AE 即可,∴∠BAE=∠ABE ,∵∠BAC=60°,∴∠BAE=,∵∠ABE=β,∠BAE=∠ABE ,∴, 即α=2β+60°;(3)连接BD ,交A 1B 1于点G ,过点A 1作A 1H ⊥AC 于点H .∵∠B 1A 1P=∠A 1PA=60°,∴A 1B 1∥AC ,由题意得:AP=A 1P=2+x ,∠A=60°,∴△PAA 1是等边三角形,∴A 1H=sin60°A 1P=,在Rt △ABD 中,BD=,∴BG=,∴(0≤x <2).【点评】此题主要考查了等边三角形的性质、相似三角形的判定与性质及全等三角形的判定及性质;利用等边三角形的性质去探究相似三角形和全等三角形,利用相似三角形和全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题 第1页(共4页)2016年福建省南平市初中毕业、升学考试数 学 试 题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.3-的倒数等于A .3B .3-C .31 D .31-2.如图所示的几何体的左视图是3.如图,直线a ∥b ,直线c 与 a 、b 分别交于A 、B 两点, 若∠1 =46°,则∠2 = A .44° B .46° C .134° D .54° 4.下列事件是必然事件的是A .某种彩票中奖率是1%,则买这种彩票100张一定会中奖B .一组数据1,2,4,5的平均数是4C .三角形的内角和等于180°D .若a 是实数,则a >05.2016则这11名队员身高的众数和中位数分别是(单位:cm )A .180,182B .180,180C .182 ,182D .3,2 6.若正六边形的半径长为4,则它的边长等于 A .4 B .2 C .32 D .34 A . B . C . D .ab c12A B(第3题图)(第2题图)数学试题 第2页(共4页)7.下列运算正确的是 A .xy y x 523=+ B .532)(m m =C .1)1)(1(2-=-+a a aD .22=+bb 8.下列一元二次方程中,没有..实数根的是 A .0322=--x x B .012=+-x xC .0122=++x xD .12=x9.闽北某村原有林地120公顷,旱地60公顷.为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程为A .)120%(2060x x +=-B .120%2060⨯=+xC .)60%(20180x x +=-D .120%2060⨯=-x 10.如图,已知直线x y l 2=:,分别过x 轴上的点1A (1,0)、2A (2,0)、…、n A (n ,0),作垂直于x 轴的直线交l 于点1B 、2B 、…、n B ,将△11B OA 、四边形1221B B A A 、…、四边形11--n n n n B B A A 的面积依次记为1S 、2S 、…、n S ,则=n S A .2n B .12+n C .n 2 D .12-n二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是2.02=甲s ,5.02=乙s ,则这两人中成绩更稳定的是 .(填“甲”或“乙”) 12.计算:=2)72( .13.分解因式:m mn mn ++22= .14.写出一个y 关于x 的二次函数的解析式,且它的图象的顶点在y 轴上: .15.如图,正方形ABCD 中,点E 、F 分别为AB 、CD 上的点,且AB CF AE 31==,点O 为线段EF 的中点,过点O 作直线与正方形的一组对边分别交于P 、Q 两点,并且满足PQ=EF . 则这样的直线PQ (不同于EF )有 条. 16.如图,等腰△ABC 中,CA =CB =4,∠ACB =120°.点D在线段AB 上运动(不与A 、B 重合),将△CAD 与△CBD分别沿直线CA 、CB 翻折得到△CAP 与△CBQ . 给出下列结论:① CD =CP =CQ ;② ∠PCQ 的大小不变;③ △PCQ 面积的最小值为534;④ 当点D 在AB 的中点时,△PDQ 是等边三角形.其中所有正确结论的序号是 .(第15题图)ABCDPQ(第16题图)数学试题 第3页(共4页)三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答) 17.(8分)计算:()3086π2--+.18.(8分)解分式方程:xx +=143. 19.(8分)解不等式组:⎩⎨⎧<-<-②①. ,01062x x20.(8分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,一年过去了,为了了解足球知识的普及情况,某校举行“足球在身边”的专题调查活动,采取随机抽样的方法进行问卷调查,调查结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并将调查结果绘制成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题: (1)被调查的学生共有________人;(2)在扇形统计图中,表示“比较了解”的扇形的圆心角度数为________度; (3)从该校随机抽取一名学生,抽中的学生对足球知识是“基本了解”的概率是多少?21.(8分)如图,Rt △ABC 中,∠C =90°,AB =14,AC =7.D 是BC 上一点,BD =8,DE ⊥AB ,垂足为E . 求线段DE 的长.22.(10分)如图,P A ,PB 是⊙O 的切线,A ,B 为切点.点C 在PB 上,OC ∥AP ,CD ⊥AP 于D . (1)求证:OC=AD ;(2)若∠P =50°,⊙O 的半径为4.求四边形AOCD 的周长.(精确到0.1)人数了解不太了解了解了解 不太了解非常了解20%比较了解 基本了解906030(第20题图)120 ACDE(第21题图)(第22题图)A BCPOD(图1)(图2)数学试题 第5页(共4页)2016年福建省南平市初中毕业、升学考试数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分. (2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.B ; 6.A ; 7.C ; 8.B ; 9.A ; 10.D . 二、填空题(本大题共6小题,每小题4分,共24分)11.甲; 12.28; 13.2)1(+n m ;14.如2x y =(只要c bx ax y ++=2中0,0=≠b a 即可);15.3; 16.①②④. 三、解答题(本大题共9小题,共86分)17.解:原式=261-+ …………………………………………………………………6分 =5 …………………………………………………………………………8分 18.解:x x 4)1(3=+……………………………………………………………………3分x x 433=+ …………………………………………………………………4分343-=-x x ……………………………………………………………………5分3-=-x ……………………………………………………………………6分3=x ……………………………………………………………………7分检验:当3=x 时,0)1(≠+x x ∴原分式方程的解为3=x ……………8分 19.解:解不等式①得62<x ,3<x …………………………………………3分解不等式②得1-<-x ,1>x ……………………………………………6分 ∴不等式组的解集为:31<<x ……………………………………………8分20.解:(1)300 …………………………………………………………………2分(2)108 ……………………………………………………………………4分(3)∵被调查学生中“基本了解”的人数为:300-(60+90+30)=120(人)…5分占被调查学生人数的百分比:%40300120= ………………………………………6分 ∴抽中的学生对足球知识是“基本了解”的概率是:P=40%(或=52或0.4)……8分21.解法一:∵DE ⊥AB ,∴∠BED =90°………1分 又∠C =90°,∴∠BED =∠C ………………2分 又∠B =∠B ……………………………3分 ∴△BED ∽△BCA …………………………5分BCDE(第21题图)∴ACDEAB BD =………………………………7分 ∴41478=⨯=⋅=AB AC BD DE ……………8分解法二:在Rt △ABC 中,∠C =90°,sin B =21147==AB AC ……2分∴∠B =30° ……………………………………………5分 ∵DE ⊥AB ,∴∠BED =90° …………………………6分 ∴在Rt △BDE 中,482121=⨯==BD DE ………8分 22.(1)证法一::∵P A 切⊙O 于点A∴OA ⊥P A ,即∠OAD =90°…………………………1分 ∵OC ∥AP∴∠COA= 180°-∠OAD=180°-90°=90°…………2分 又∵CD ⊥P A∴∠CDA=∠OAD=∠COA=90°……………………3分 ∴四边形AOCD 为矩形……………………………4分 ∴OC=AD 证法二:∵P A 切⊙O ∴∠OAP=∠CPD=∴OA ∥CD ∵OC ∥AP ∴四边形AOCD ∴OC=AD (2)∵PB 切⊙O ∴∠OBP =90°∵OC ∥AP∴∠BCO=∠P =50°在Rt △OBC 中,sin ∠∴sin =∠=BCO OB OC ∴矩形OADC 2(OA+OC )≈223.解:(1)把点A (2x k y =2中得21=a ,(2由图象知,当y 1>y 224.(1)解:∵抛物线y =∴16a =4,解得41=a数学试题 第7页(共4页) ∴抛物线解析式为y 41=x 2…………………3分 (2)点B 的坐标为(-4,4)或(-8,16)……………7分(3)证明:设D (m ,41m 2),则直线DO 解析式为x m y 4=∵l ∥x 轴,且过点C (0,-1),令1-=y 时,mx 4-=∴直线DO 与l 交于点E (m4-,1-)……………8分又∵EF ⊥l ,l ∥x 轴,∴点F 横坐标为m 4-,∵点F 在抛物线y 41=x 2上, ∴点F 的坐标为(m 4-,24m)…………………9分解法一:设直线DF 解析式为:y =kx +b ,把D 、 F 坐标代入得⎪⎪⎩⎪⎪⎨⎧=+=+-44422m b mk m b k m 解得⎪⎩⎪⎨⎧=-=1442b m m k ……………………………………………10分 ∴直线DF 解析式为1442+-=x mm y ……………………………………………11分 则点G (0,1)满足直线DF 解析式.(注:考生若只求得b =1,有说明理由可得满分) ∴直线DF 一定经过点G ………………………………………………………12分 解法二: ∵G (0,1),设直线DG 解析式为:y =kx +1,把D (m ,41m 2)代入得 142+=km m ,解得m m k 442-=,∴直线DG 解析式为1442+-=x mm y …10分 当x =m4-时,代入直线DG 解析式得y=2241)4(44m m m m =+-⋅-……………11分 ∴点F 的坐标(m 4-,24m)满足直线DG 解析式∴直线DG 过点F ,根据两点确定一条直线∴直线DF 一定过点G . ………………………………………………………………12分 25.(1)①证法一:如图1,由已知:∠GPF=∠HPD =90°,∠ADC =90°, ∴∠GPH=∠FPD ………1分∵DE 平分∠ADC ,∴∠PDF=∠ADP=45°得到△HPD 为等腰直角三角形 …………………2分 ∴∠DHP=∠PDF=45°且PH=PD ………………3分 ABCDEF GHP (图1)yxlG C O DFE (图2)数学试题 第8页(共4页)∴△HPG ≌△DPF ………………………………4分 ∴PG=PF …………………………………………5分 证法二:如图2,①过点P 分别作PM 、PN 垂直于AD 、DC .垂足为M 、N ………1分 则∠PMG =∠PNF =90°,∵DE 平分∠ADC ,∴PM =PN ……………………2分 在矩形ABCD 中,∠ADC =90°∴四边形PNDM 为正方形,∴∠MPN =90° 由旋转可知∠GPF =∠HPD =90° ∴∠MPG +∠MPF =∠MPF +∠NPF =90°∴∠GPM =∠NPF ……………………………3分 ∴Rt △PMG ≌Rt △PNF ………………………4分 ∴PG =PF ………………………………………5分 ②结论:DP DF DG 2=+证法一:由①已证△HPD 为等腰直角三角形,△HPG ≌△DPF ………6分 ∴ HD=DP 2,HG = DF ……………………………………………………7分 ∴DG DF DG HG HD +=+=,∴DP DF DG 2=+ ………………8分证法二:∵∠HPD =∠GPF =90°,∴∠GPH=∠FPD 由①已证△PMG ≌△PNF ,∴∠PGM =∠PFN ,PG =PF∴∠PGH =∠PFD ,∴△HPG ≌△DPF …………………………………6分 ∴HG =DF ,PH=PD ,∴△HPD 为等腰直角三角形,∴ HD=DP 2…7分 ∴DG DF DG HG HD +=+=,∴DP DF DG 2=+ ………………8分(2)答:(1)中的结论不成立,数量关系式应为:DP DF DG 2=-……9分证法一:如图3,过点P 作PH ⊥PD 交射线DA 于点H∵PF ⊥PG ,∴∠GPF=∠HPD =90°,∴∠GPH=∠FPD …………10分 ∵DE 平分∠ADC 且在矩形ABCD 中,∠ADC =90°∴∠HDP=∠EDC=45°,得到△HPD 为等腰直角三角形 ………11分 ∴∠DHP=∠EDC=45°且PH=PD ,HD=DP 2…………………12分 ∴∠GHP=∠FDP=180°-45°=135°∴△HPG ≌△DPF ,∴HG =DF …………13分∴DH =DG -HG =DG -DF ,∴DP DF DG 2=-………14分 证法二:如图4,过点P 作PH ⊥PD 交射线DA 于点H ,过点P 分 别作PM 、PN 垂直于AD 、DC ,垂足为M 、N …………10分 ∵DE 平分∠ADC∴∠HDP=∠EDC=45°,得到△HPD 为等腰直角三角形.………11分 ∴ HD=DP 2……………………………12分 (图3)A B C D E FGPHA B CD FGPMN HABCD EF G HP (图2)MN。