高中数学面面垂直的判定课件
合集下载
平面与平面垂直的判定定理(课件)

那么判定两平面互相 垂直(面面垂直), 除了定义外,还有其 他方的判定方法吗?
问题探究
问题:观察建筑工地,我们常看到建筑师傅通常用一 条系有重物的线(铅垂线)来检测所砌的墙和地面是 否垂直,如图所示,建筑师傅只用这样一条线来检测 所砌的墙面和地面垂直,可靠吗?这样砌得的墙真的 与地面垂直吗?为什么?
AB为⊙O的直径,所以,∠BCA=90°,
即BC⊥CA.
C
又因为PA与AC是△PAC所在面内的两条 A
相交直线,所以,BC⊥平面PAC,
O
B
又因为BC在平面PBC内,
所以平面PAC⊥平面PBC.
定理的应用
跟踪训练1 已知 ABCD是正方形,O是正方形的中心,PO⊥平面
ABCD , E是PC的中点,求证:平面PAC⊥平面BDE.
4.若m⊥α,m ,则α⊥β.( √ )
定理的理解
二、填空题:
1.过平面α的一条垂线可作_无__数__个平面 与平面α垂直.
2.过一点可作无__数__个平面与已知平面垂直. 3.过平面α的一条斜线,可作__一__个平
面与平面α垂直. 4.过平面α的一条平行线可作_一___个平
面与α垂直.
定理的应用
例1 如图,AB是⊙O的直径, PA垂直于 ⊙O所在的平面,C是圆周上不同于A, B 的任意一点,求证:平面PAC⊥平面PBC.
P
分析:
线线垂直→ 线面垂直 →面面垂直
C
A
O
B
定理的应用
证明:设⊙O所在平面为α,由已知条件, PA⊥α,BC在α内,所以,PA⊥BC,
因为,点C是圆周上不同于A,B的任意一点P,
A
所以AO⊥BD、CO⊥BD;
B
问题探究
问题:观察建筑工地,我们常看到建筑师傅通常用一 条系有重物的线(铅垂线)来检测所砌的墙和地面是 否垂直,如图所示,建筑师傅只用这样一条线来检测 所砌的墙面和地面垂直,可靠吗?这样砌得的墙真的 与地面垂直吗?为什么?
AB为⊙O的直径,所以,∠BCA=90°,
即BC⊥CA.
C
又因为PA与AC是△PAC所在面内的两条 A
相交直线,所以,BC⊥平面PAC,
O
B
又因为BC在平面PBC内,
所以平面PAC⊥平面PBC.
定理的应用
跟踪训练1 已知 ABCD是正方形,O是正方形的中心,PO⊥平面
ABCD , E是PC的中点,求证:平面PAC⊥平面BDE.
4.若m⊥α,m ,则α⊥β.( √ )
定理的理解
二、填空题:
1.过平面α的一条垂线可作_无__数__个平面 与平面α垂直.
2.过一点可作无__数__个平面与已知平面垂直. 3.过平面α的一条斜线,可作__一__个平
面与平面α垂直. 4.过平面α的一条平行线可作_一___个平
面与α垂直.
定理的应用
例1 如图,AB是⊙O的直径, PA垂直于 ⊙O所在的平面,C是圆周上不同于A, B 的任意一点,求证:平面PAC⊥平面PBC.
P
分析:
线线垂直→ 线面垂直 →面面垂直
C
A
O
B
定理的应用
证明:设⊙O所在平面为α,由已知条件, PA⊥α,BC在α内,所以,PA⊥BC,
因为,点C是圆周上不同于A,B的任意一点P,
A
所以AO⊥BD、CO⊥BD;
B
最新高二数学《2.3.2面面垂直的判定》课件

无数 1.过平面α的一条垂线可作_____ 个平面与平面α垂直. 无数 个平面与已知平面垂直. 2.过一点可作_____ 1 个平面与平面α垂 3.过平面α的一条斜线,可作____ 直. 1个平面与α垂直. 4.过平面α的一条平行线可作____
三、如右图: A是ΔBCD所在平面外一点,AB=AD, ∠ABC=∠ADC=90°,E是BD的中点, 求证:平面AEC⊥平面ABD A
一、二面角的定义:
五、二面角的计算:
一“作”二“证”三“计算”
22
• 例1:《优化设计》P42.例1.
问题:
如何检测所砌的墙面和地面是否垂直?
一、两个平面垂直的定义
1.平面与平面垂直的定义 如果两个平面所成的二面角是直角(即成直二面角),就 说这两个平面互相垂直. 2.两个平面垂直的判定定理 提出问题:如果你是一个质检员,你怎样去检测、判断建 筑中的一面墙和地面是否垂直呢?
平面与平面垂直的判定
平面与平面所成的角
二面角的平面角 A b l
a
三要素:1、角的顶点在二面角的棱上; 2、角的两边分别在表示二面角的两个半平面上内; 3、角的两边分别与二面角的棱垂直。
从一条直线出发的两个半 1、二面角的平面角 平面所组成的图形叫做二 必须满足三个条件 1、根据定义作出来 面角。这条直线叫做二面 2、二面角的平面角 角的棱。这两个半平面叫 2、利用直线和平面垂 的大小与 其顶点 做二面角的面。 直作出来 在棱上的位置无关 3、借助三垂线定理或 二、二面角的表示方法: 3、二面角的大小用 其逆定理作出来 1、找到或作出二面角的平面角 它的平面角的大 三、二面角的平面角: 2、证明 1中的角就是所求的 角 小来度量 3、计算所求的角 二 面 角 -AB- 二 四、二面角的平面角的作法: 面 角 C-AB- D 二 面 角 - l-
三、如右图: A是ΔBCD所在平面外一点,AB=AD, ∠ABC=∠ADC=90°,E是BD的中点, 求证:平面AEC⊥平面ABD A
一、二面角的定义:
五、二面角的计算:
一“作”二“证”三“计算”
22
• 例1:《优化设计》P42.例1.
问题:
如何检测所砌的墙面和地面是否垂直?
一、两个平面垂直的定义
1.平面与平面垂直的定义 如果两个平面所成的二面角是直角(即成直二面角),就 说这两个平面互相垂直. 2.两个平面垂直的判定定理 提出问题:如果你是一个质检员,你怎样去检测、判断建 筑中的一面墙和地面是否垂直呢?
平面与平面垂直的判定
平面与平面所成的角
二面角的平面角 A b l
a
三要素:1、角的顶点在二面角的棱上; 2、角的两边分别在表示二面角的两个半平面上内; 3、角的两边分别与二面角的棱垂直。
从一条直线出发的两个半 1、二面角的平面角 平面所组成的图形叫做二 必须满足三个条件 1、根据定义作出来 面角。这条直线叫做二面 2、二面角的平面角 角的棱。这两个半平面叫 2、利用直线和平面垂 的大小与 其顶点 做二面角的面。 直作出来 在棱上的位置无关 3、借助三垂线定理或 二、二面角的表示方法: 3、二面角的大小用 其逆定理作出来 1、找到或作出二面角的平面角 它的平面角的大 三、二面角的平面角: 2、证明 1中的角就是所求的 角 小来度量 3、计算所求的角 二 面 角 -AB- 二 四、二面角的平面角的作法: 面 角 C-AB- D 二 面 角 - l-
高中数学:面面垂直判定课件共20张PPT

二面角的平面角:
(1)二面角D’-AB-D和A’-AB-D;
(2)二面角C’-BD-C和C’-BD-A.
D’
C’
A’
B’
D
C
A
OB
两平面垂直
1、定义:两个平面相交,如果它们所成的 二面角是直二面角,则两个平面垂直
记作α⊥β
性质: 1、凡是直二面角都相等
2、两个平面相交,可引成四个二面角,如 果其中有一个是直二面角,那么其他各个 二面角都是直二面角
1)角的顶点在棱上
2)角的两边分别在两个面内
3)角的边都要垂直于二面角的棱
A O
l
B
10
二面角的大小 二面角的大小可以用它的平面角来
度量.即二面角的平面角是多少度,就 说这个二面角是多少度. ① 两个半平面重合:二面A角是 0o; ② 两个半平面合成一个平面:180o;
二面角的范围:[ 0o, 180o ]. B
③ 平面角是直角的二面角叫直二面角.
O
在正方体ABCD-A’B’C’D’中,找出下列二面角 的平面角:
(1)二面角D’-AB-D和A’-AB-D;
(2)二面角C’-BD-C和C’-BD-A.
在正方体ABCD-A’B’C’D’中,找出下列
二面角的平面角:
(1)二面角D’-AB-D和A’-AB-D;
2、判定定理:
若一个平面经过另一个平面的一条垂线, 则这两个平面互相垂直
D
A
C
B
线面垂直
面面垂直
2、判定定理:
如果一个平面经过另一个平面的一 条垂线,那么这两个平面互相垂直
符号表示:
l l
α β
αβ
l
线线垂直 线面垂直
人教A版必修二高一数学《2.3.2面面垂直的判定》课件

线线垂直
线面垂直
面面垂直
例2:如图,AB是⊙O的直径,PA垂直⊙O所在 的平面,C是圆周上不同于A,B的任意一点. 求证:平面PAC⊥平面PBC. P
证明:设⊙O所在的平面为,由已知
PA BC PA BC
∵AB是⊙O的直径
∴∠ACB=90°即BC⊥AC
A
C
·O
B
又PA AC A PA 平面PAC AC 平面PAC BC 平面PAC
∪
√
二、填空题: 1.过平面α的一条垂线可作__无__数_个平面与平面α垂直.
2.过一点可作_无__数__个平面与已知平面垂直.
3.过平面α的一条斜线,可作___1_个平面与平面α垂
直.
4.过平面α的一条平行线可作___1_个平面与α垂直.
3、已知AB⊥平面BCD,BC⊥CD,你能发现哪些平 面互相垂直,为什么?
一、两个平面垂直的定义
[情境[问探题索]研究] (1)竖电1.线平杆面时与,平电面线垂杆直所的在定的义直线与地面应满足怎样的位置呢?
(2)如为果了两让个一平面墙所砌成得的稳二固面,角不是易直倒角塌(,即墙成面直所二在面的角平)面,与就 地面说又这应两该个满平足面怎互样相的垂位直置.关系呢?
容易2得.出两结个论平:面电垂线直杆的与判地定面定应理该垂直,否则容易倾倒;如果 墙面发生提倾出斜问,题墙:就如容果易你倒是塌一,个所质以检砌员墙,时你,怎不样能去让检墙测面、倾判斜断.建
三、二面其角逆12、、定的找证理到明平作1或出中面作来的出角角二就:面是角所的求3它小平、的的来面二角平度角面面量角角的的大大小用
二二面面四角角C、--二AABB--面D角3、的计算平所面求的角角的作法:
高中数学2.3.3线面垂直_面面垂直的性质定理优秀课件

【答案】 B
4.设两个平面互相垂直,则( ) A.一个平面内的任何一条直线垂直于另一个平面 B.过交线上一点垂直于一个平面的直线必在另一平 面内 C.过交线上一点垂直于交线的直线,必垂直于另一 个平面 D.分别在两个平面内的两条直线互相垂直
【答案】 B
C
D
B
A
思考:如果直线a,b都垂直于平面α,
由观察可知a//b,从理论上如何证明这 个结论?
a b b’
c
α
O
直线与平面垂直的性质定理
垂直于同一个平面的两条直线平行。
ab
用符号表示?
α
作用: ①证明线线平行 ②作平行线
2.直线与平面垂直的其他性质: (1)如果一条直线垂直于一个平面,那么这条直线垂直 于这个平面内的任意一条直线. (2)垂直于同一条直线的两个平面互相平行. (3)两条平行直线中的一条垂直于一个平面,另一条也 垂直于这个平面.
练习一
❖ 1.判断以下命题正确的选项是_______ ❖ (1)垂直于同一条直线的两个平面互相平行 ❖ (2)垂直于同一个平面的两条直线互相平行 ❖ (3)一条直线在平面内,另一条直线与这个平面垂直,那
么这两条直线互相垂直.
2 .已知 a ,b 和 直 平 ,且 线 a 面 ba, ,则 b 与 的
AB ?⊥
在内引直线BE⊥ CD, 垂足为B,
则∠ ABE是二面角-CD- 的
平面角, 由 ⊥ 知,
AB⊥ BE,又BE与CD
是 内的两条
相交直线.
C
E
D
BA
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与 另一个平面垂直
简记为:面面垂直,那么线面垂直.
4.设两个平面互相垂直,则( ) A.一个平面内的任何一条直线垂直于另一个平面 B.过交线上一点垂直于一个平面的直线必在另一平 面内 C.过交线上一点垂直于交线的直线,必垂直于另一 个平面 D.分别在两个平面内的两条直线互相垂直
【答案】 B
C
D
B
A
思考:如果直线a,b都垂直于平面α,
由观察可知a//b,从理论上如何证明这 个结论?
a b b’
c
α
O
直线与平面垂直的性质定理
垂直于同一个平面的两条直线平行。
ab
用符号表示?
α
作用: ①证明线线平行 ②作平行线
2.直线与平面垂直的其他性质: (1)如果一条直线垂直于一个平面,那么这条直线垂直 于这个平面内的任意一条直线. (2)垂直于同一条直线的两个平面互相平行. (3)两条平行直线中的一条垂直于一个平面,另一条也 垂直于这个平面.
练习一
❖ 1.判断以下命题正确的选项是_______ ❖ (1)垂直于同一条直线的两个平面互相平行 ❖ (2)垂直于同一个平面的两条直线互相平行 ❖ (3)一条直线在平面内,另一条直线与这个平面垂直,那
么这两条直线互相垂直.
2 .已知 a ,b 和 直 平 ,且 线 a 面 ba, ,则 b 与 的
AB ?⊥
在内引直线BE⊥ CD, 垂足为B,
则∠ ABE是二面角-CD- 的
平面角, 由 ⊥ 知,
AB⊥ BE,又BE与CD
是 内的两条
相交直线.
C
E
D
BA
平面与平面垂直的性质定理
两个平面垂直,则一个平面内垂直于交线的直线与 另一个平面垂直
简记为:面面垂直,那么线面垂直.
人教版高中数学必修二.线面垂直、面面垂直的性质定理教学课件 共18张PP

1、线面垂直的性质:面面垂直的性质:
2、会利用“转化思想”解决垂直问题
β A
B
线面垂直 α a
面面垂直
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
线线平行 3、用条件想性质: 证结果想判定:
4、如何举反例?满足条件的线、面 转动
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
四.知识应用
1、判断下列命题是否正确:正确的是:①④ ①平行于同一条直线的两条直线互相平行;
②垂直于同一条直线的两条直线互相平行;
③平行于同一个平面的两条直线互相平行;
④垂直于同一个平面的两条直线互相平行.
2、a,b表示线, 表示面,正确的是 (3)(4)
(1)a ,ab,则 b/ / (2)a/ /,a b,则 b
证明:假设 a与b不平行.记直线b
和α的交点为o,则可过o作 b’∥a
a
b b’ ∵a⊥α,
α
o
∴b’⊥α.
反证法
∴过点o的两条直线 b和b’都 垂直平面α,这是不可能的,
∴a∥b.
线面垂直的性质定理:
垂直于同一个平面的两条直线平行
符号语言? a ,b a//bBiblioteka 简述: 线面垂直 如何证明?
线线平行
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
人教版高中数学必修二2.3.3-2.3.4线 面垂直 、面面 垂直的 性质定 理教学 课件 共18张PP
•
1.边塞诗的作者大多一些有切身边塞 生活经 历和军 旅生活 体验的 作家, 以亲历 的见闻 来写作 ;另一 些诗人 用乐府 旧题来 进行翻 新创作 。于是 ,乡村 便改变 成了另 一种模 样。正 是由于 村民们 的到来 ,那些 山山岭 岭、沟 沟坪坪 便也同 时有了 名字, 成为村 民们最 朴素的 方位标 识.
课件1:线面、面面垂直的判定与性质

(1)利用定义:两个平面相交,所成的二面角是直二面角;
(2)判定定理:a⊂α,a⊥β⇒α⊥β.
[练一练] 1.(2014·南通期末)已知直线 l⊥平面 α,直线 m⊂平面 β.给出
下列命题: (1)α∥β⇒l⊥m;(2)α⊥β⇒l∥m;(3)l∥m⇒α⊥β;(4)l⊥
m⇒α∥β. 其中正确的命题是________(填序号). 解析:(1)正确;(2)中 l 与 m 还可以是异面或相交的位置
与平面 M 垂直”的________条件(填“充分不必要”, “必要不充分”,“充要”或“既不充分也不必要”). 解析:根据直线与平面垂直的定义知“直线 a 与平面 M 的无数条直线都垂直”不能推出“直线 a 与平面 M 垂直”, 反之可以,所以应该是必要不充分条件.
答案:必要不充分
2.(2014·盐城摸底)设 m,n 是两条不同的直线,α 是一个平面,
[典例] (2014·连云港期末)如图,在直三棱柱
ABC-A1B1C1 中,AB=AC,D 为 BC 的中点,E 为 BD 的中点,F 在 AC1 上,且 AC1=4AF.求证:
(1)平面 ADF⊥平面 BCC1B1; (2)EF∥平面 ABB1A1.
[证明] (1)在直三棱柱 ABC-A1B1C1 中,CC1⊥平 面 ABC,而 AD⊂平面 ABC,所以 CC1⊥AD.
[类题通法] 解决此类问题常用的方法有
(1)依据定理条件才能得出结论的,可结合符合题意的图形
作出判断; (2)否定命题时只需举一个反例; (3)寻找恰当的特殊模型(如构造长方体)进行筛选.
[典例] (2013·重庆高考)如图,四棱锥 P -ABCD 中,PA⊥底面 ABCD,PA=2 3,BC
=CD=2,∠ACB=∠ACD=π3. (1)求证:BD⊥平面 PAC; (2)若侧棱 PC 上的点 F 满足 PF=7FC,求三棱锥 P
(2)判定定理:a⊂α,a⊥β⇒α⊥β.
[练一练] 1.(2014·南通期末)已知直线 l⊥平面 α,直线 m⊂平面 β.给出
下列命题: (1)α∥β⇒l⊥m;(2)α⊥β⇒l∥m;(3)l∥m⇒α⊥β;(4)l⊥
m⇒α∥β. 其中正确的命题是________(填序号). 解析:(1)正确;(2)中 l 与 m 还可以是异面或相交的位置
与平面 M 垂直”的________条件(填“充分不必要”, “必要不充分”,“充要”或“既不充分也不必要”). 解析:根据直线与平面垂直的定义知“直线 a 与平面 M 的无数条直线都垂直”不能推出“直线 a 与平面 M 垂直”, 反之可以,所以应该是必要不充分条件.
答案:必要不充分
2.(2014·盐城摸底)设 m,n 是两条不同的直线,α 是一个平面,
[典例] (2014·连云港期末)如图,在直三棱柱
ABC-A1B1C1 中,AB=AC,D 为 BC 的中点,E 为 BD 的中点,F 在 AC1 上,且 AC1=4AF.求证:
(1)平面 ADF⊥平面 BCC1B1; (2)EF∥平面 ABB1A1.
[证明] (1)在直三棱柱 ABC-A1B1C1 中,CC1⊥平 面 ABC,而 AD⊂平面 ABC,所以 CC1⊥AD.
[类题通法] 解决此类问题常用的方法有
(1)依据定理条件才能得出结论的,可结合符合题意的图形
作出判断; (2)否定命题时只需举一个反例; (3)寻找恰当的特殊模型(如构造长方体)进行筛选.
[典例] (2013·重庆高考)如图,四棱锥 P -ABCD 中,PA⊥底面 ABCD,PA=2 3,BC
=CD=2,∠ACB=∠ACD=π3. (1)求证:BD⊥平面 PAC; (2)若侧棱 PC 上的点 F 满足 PF=7FC,求三棱锥 P
面面垂直课件

5 P
3 60
E
B
0
a
A
例 • 已知在一个60°的二面角的棱上有两点A、
B,AC、BD分别是在这个二面角度两个面 内,且垂直于AB的线段,又知AB=4cm, AC=6cm,BD=8cm,求CD的长。
C A D B
能力·思维·方法
例.如图,已知A1B1C1—ABC是正三棱柱,D是AC的中点. (1)证明AB1∥平面DBC1. (2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二 面角α的度数. A A1
∠A O B
B1 B
?
l
O1
∠A1O1B1 平面角是直角的二面角 叫做直二面角
A A1
O
9
⑵二面角的平面角的取 值范围是 [0 ,180 ]
以二面角的棱上任意一点为端点,在 两个面内分别作垂直于棱的两条射线,这 两条射线所成的角叫做二面角的平面角。 二面角的平面角必须满足:
注意:
A
1)角的顶点在棱上 2)角的两边分别在两个面内 3)角的边都要垂直于二面角的棱
。
C
B
D
E
即AB⊥BE ∴AB⊥ β .
又∵CD∩BE=B,
性质定理:
如果两个平面相互垂直,那么在一个平面内垂 直于它们交线的直线垂直于另一个平面.
已知 : , P , P a, a .求证 : a .
例2.求证:如果两个平面互相垂直,那么经过第 一个平面内的一点垂直于第二个平面的直线必 在第一个平面内.
P
b a b
a
P
c
c
本课小结:
定义:如果两个平面相交所成的二面角是直二面角,那么我们称这两个平面相 互垂直.
3 60
E
B
0
a
A
例 • 已知在一个60°的二面角的棱上有两点A、
B,AC、BD分别是在这个二面角度两个面 内,且垂直于AB的线段,又知AB=4cm, AC=6cm,BD=8cm,求CD的长。
C A D B
能力·思维·方法
例.如图,已知A1B1C1—ABC是正三棱柱,D是AC的中点. (1)证明AB1∥平面DBC1. (2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二 面角α的度数. A A1
∠A O B
B1 B
?
l
O1
∠A1O1B1 平面角是直角的二面角 叫做直二面角
A A1
O
9
⑵二面角的平面角的取 值范围是 [0 ,180 ]
以二面角的棱上任意一点为端点,在 两个面内分别作垂直于棱的两条射线,这 两条射线所成的角叫做二面角的平面角。 二面角的平面角必须满足:
注意:
A
1)角的顶点在棱上 2)角的两边分别在两个面内 3)角的边都要垂直于二面角的棱
。
C
B
D
E
即AB⊥BE ∴AB⊥ β .
又∵CD∩BE=B,
性质定理:
如果两个平面相互垂直,那么在一个平面内垂 直于它们交线的直线垂直于另一个平面.
已知 : , P , P a, a .求证 : a .
例2.求证:如果两个平面互相垂直,那么经过第 一个平面内的一点垂直于第二个平面的直线必 在第一个平面内.
P
b a b
a
P
c
c
本课小结:
定义:如果两个平面相交所成的二面角是直二面角,那么我们称这两个平面相 互垂直.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二面角
一、二面角的定义
α
从空间一直线出发的两个半 平面所组成的图形叫做二面角
ι
β
二、二面角的平面角
复 1、定义 2、求二面角的平面角方法
ι αβ
γP
B A
习
①点P在棱上 —定义法 ②点P在一个半平面上 —三垂线定理法
③点P在二面角内 —垂面法
ι
α
β
β
pβ
B
p
p
A
B
B
ι
α
A
O
ι
α
A
高中数学面面垂直的判定
高中数学面面垂直的判定
例1、如图,AB是 ⊙O的直径,PA垂直于⊙O所在 的平面,C是 圆周上不同于A,B的任意一点,求证: 平面PAC⊥平面PBC.
证明: 设已知⊙O平面为α
P A 面 ,B C 面
PABC 又AB为圆的直径
ACBC PABCACBC
PA ACA P A 面 P A C ,A C 面 P A C
学完一节课或一个内容,
应当及时小结,梳理知识
1、证明面面垂直的方法:
(1)证明二面角为直角 (2)用面面垂直的判定定理
2、线线垂直 线面垂直 面面垂直
高中数学面面垂直的判定
例3、已知PA ⊥平面ABCD,ABCD为矩形, PA = AD,M、N分别是AB、PC的中点, 求证:(1)MN // 平面PAD;
(2)平面PMC ⊥平面PDC
P
Q
AN D
M
B
C
高中数学面面垂直的判定
练习 1、已知△ABC中,O为AC中点, ∠ ABC=900,P 为△ABC所在平面外一点,PA=PB=PC,求证: 平面PAC ⊥平面ABC
2、PD ⊥面ABCD,四边形ABCD为正方形,在 所有的平面中共有多少对互相垂直的平面?
∪
求证:α⊥β.
α
A
C
B
β
E
∪
∪
证明:设α∩β=CD,则B∈CD.
∵AB⊥β,CD β,∴AB⊥CD. D 在平面β内过B点作直线BE⊥CD,则
∠ABE就是二面角α--CD--β的平面角, ∵AB⊥β,BE β,
∴AB⊥BE. ∴二面角α--CD--β是
直二面角,∴α⊥β.
高中数学面面垂直的判定
面面垂直的判定定理
与平面α垂直.
2.过一点可作_无__数__个平面与已知平面垂
直.
3.过平面α的一条斜线,可作__一__个平
面与平面α垂直.
4.过平面α的一条平行线可作___一_个平
面与α垂直.
高中数学面面垂直的判定
小练习
练 三、已知PD矩形平面ABCD所在平面, 才 图中互相垂直的平面有几对?
是
P
硬
道
理
D
C
A B
B C
( 2 ) 过 A 作 A E P C 于 E ,过 A 作 A F P B 于 F , 连 接 E F
问 此 图 形 中 有 多 少 直 角 三 角 形 ?
高中数学面面垂直的判定
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
高中数学面面垂直的判定
1.如果平面α内有一条直线垂直于平面β内的一条 直线,则α⊥β.( ×)
2.如果平面α内有一条直线垂直于平面β内的两条 直线,则α⊥β.( ×) 3. 如果平面α内的一条直线垂直于平面β内的两条 相交直线, 则α⊥β.( √ )
4.若m⊥α,m β,则α⊥β.( )√
高中数学面面垂直的判定
∪
二、填空题: 1.过平面α的一条垂线可作__无__数_个平面
3、二面角的范围: [0。,180。]
A 4、直二面角——
平面角为直角的二面角 叫做直二面角
B
高中数学面面垂直的判定
O
两个平面垂直的判定
高中数学面面垂直的判定
两个平面互相垂直
定义:一般地,如果两个平面相交,且其所 成二面角为直二面角,则两个平面垂直。
记作:
画法:
A
BC
l
高中数学面面垂直的判定
如果一个平面经过另一个平面的一 条垂线,那么这两个平面互相垂直
符号表示:
l l
l
B
CD A
线线垂直 线面垂直 面面垂直
高中数学面面垂直的判定
两个平面垂直的判定:
(1)利用定义[作出二面角的平面角,证明平面角是直角]
(2)利用判定定理[线面垂直
面面垂直]
高中数学面面垂直的判定
课堂练习:
一、判断:
BC面PAC
BC面 PBC 面 P A C面 P B C 高中数学面面垂直的判定
探究: 已 知 A B 面 B C D ,B C C D
请问哪些平面互相垂直的,为什么?
面AB C面BCD AB面BCDA
面AB C面ACD CD面ABC
面AB D面BCD AB面BCD
B
D
C
高中数学面面垂直的判定
P P
O
A
C
D
C
B
A 高中数学面面垂直的判定
B
3、正方体ABCD-A1B1C1D1中, 已知E,F,G,H分
别是A1D1,B1C1,D1D,C1C的中点.
求证:平面AH⊥平面DF
D1
C1
E
A1
G
F
B1
H
D A
C B
高中数学面面垂直的判定
例三.如图,四面体P-ABC中
PLeabharlann FPA平面ABCBCAC
E
(1)问此图中有多少个直角三角形?A
练习、如右图: A是ΔBCD所在平面外一点,AB=AD, ∠ABC=∠ADC=90°,E是BD的中点, 求证:平面AEC⊥平面ABD
A
B
C
E
D
高中数学面面垂直的判定
例2、在正方体ABCD-A1B1C1D1中 求证:平面A1C1CA 平面 B1D1DB
D1 A1
D A
C1 B1
C B
高中数学面面垂直的判定
问题:
如何检测所砌的墙面和地面是否垂直?
高中数学面面垂直的判定
高中数学面面垂直的判定
高中数学面面垂直的判定
猜想:
如果一个平面经过了另一个平面的 一条垂线,那么这两个平面互相垂 直.
高中数学面面垂直的判定
如果一个平面经过了另一个平面的一条垂线,那 么这两个平面互相垂直。
已知:AB⊥β,AB∩β=B,AB α
一、二面角的定义
α
从空间一直线出发的两个半 平面所组成的图形叫做二面角
ι
β
二、二面角的平面角
复 1、定义 2、求二面角的平面角方法
ι αβ
γP
B A
习
①点P在棱上 —定义法 ②点P在一个半平面上 —三垂线定理法
③点P在二面角内 —垂面法
ι
α
β
β
pβ
B
p
p
A
B
B
ι
α
A
O
ι
α
A
高中数学面面垂直的判定
高中数学面面垂直的判定
例1、如图,AB是 ⊙O的直径,PA垂直于⊙O所在 的平面,C是 圆周上不同于A,B的任意一点,求证: 平面PAC⊥平面PBC.
证明: 设已知⊙O平面为α
P A 面 ,B C 面
PABC 又AB为圆的直径
ACBC PABCACBC
PA ACA P A 面 P A C ,A C 面 P A C
学完一节课或一个内容,
应当及时小结,梳理知识
1、证明面面垂直的方法:
(1)证明二面角为直角 (2)用面面垂直的判定定理
2、线线垂直 线面垂直 面面垂直
高中数学面面垂直的判定
例3、已知PA ⊥平面ABCD,ABCD为矩形, PA = AD,M、N分别是AB、PC的中点, 求证:(1)MN // 平面PAD;
(2)平面PMC ⊥平面PDC
P
Q
AN D
M
B
C
高中数学面面垂直的判定
练习 1、已知△ABC中,O为AC中点, ∠ ABC=900,P 为△ABC所在平面外一点,PA=PB=PC,求证: 平面PAC ⊥平面ABC
2、PD ⊥面ABCD,四边形ABCD为正方形,在 所有的平面中共有多少对互相垂直的平面?
∪
求证:α⊥β.
α
A
C
B
β
E
∪
∪
证明:设α∩β=CD,则B∈CD.
∵AB⊥β,CD β,∴AB⊥CD. D 在平面β内过B点作直线BE⊥CD,则
∠ABE就是二面角α--CD--β的平面角, ∵AB⊥β,BE β,
∴AB⊥BE. ∴二面角α--CD--β是
直二面角,∴α⊥β.
高中数学面面垂直的判定
面面垂直的判定定理
与平面α垂直.
2.过一点可作_无__数__个平面与已知平面垂
直.
3.过平面α的一条斜线,可作__一__个平
面与平面α垂直.
4.过平面α的一条平行线可作___一_个平
面与α垂直.
高中数学面面垂直的判定
小练习
练 三、已知PD矩形平面ABCD所在平面, 才 图中互相垂直的平面有几对?
是
P
硬
道
理
D
C
A B
B C
( 2 ) 过 A 作 A E P C 于 E ,过 A 作 A F P B 于 F , 连 接 E F
问 此 图 形 中 有 多 少 直 角 三 角 形 ?
高中数学面面垂直的判定
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
高中数学面面垂直的判定
1.如果平面α内有一条直线垂直于平面β内的一条 直线,则α⊥β.( ×)
2.如果平面α内有一条直线垂直于平面β内的两条 直线,则α⊥β.( ×) 3. 如果平面α内的一条直线垂直于平面β内的两条 相交直线, 则α⊥β.( √ )
4.若m⊥α,m β,则α⊥β.( )√
高中数学面面垂直的判定
∪
二、填空题: 1.过平面α的一条垂线可作__无__数_个平面
3、二面角的范围: [0。,180。]
A 4、直二面角——
平面角为直角的二面角 叫做直二面角
B
高中数学面面垂直的判定
O
两个平面垂直的判定
高中数学面面垂直的判定
两个平面互相垂直
定义:一般地,如果两个平面相交,且其所 成二面角为直二面角,则两个平面垂直。
记作:
画法:
A
BC
l
高中数学面面垂直的判定
如果一个平面经过另一个平面的一 条垂线,那么这两个平面互相垂直
符号表示:
l l
l
B
CD A
线线垂直 线面垂直 面面垂直
高中数学面面垂直的判定
两个平面垂直的判定:
(1)利用定义[作出二面角的平面角,证明平面角是直角]
(2)利用判定定理[线面垂直
面面垂直]
高中数学面面垂直的判定
课堂练习:
一、判断:
BC面PAC
BC面 PBC 面 P A C面 P B C 高中数学面面垂直的判定
探究: 已 知 A B 面 B C D ,B C C D
请问哪些平面互相垂直的,为什么?
面AB C面BCD AB面BCDA
面AB C面ACD CD面ABC
面AB D面BCD AB面BCD
B
D
C
高中数学面面垂直的判定
P P
O
A
C
D
C
B
A 高中数学面面垂直的判定
B
3、正方体ABCD-A1B1C1D1中, 已知E,F,G,H分
别是A1D1,B1C1,D1D,C1C的中点.
求证:平面AH⊥平面DF
D1
C1
E
A1
G
F
B1
H
D A
C B
高中数学面面垂直的判定
例三.如图,四面体P-ABC中
PLeabharlann FPA平面ABCBCAC
E
(1)问此图中有多少个直角三角形?A
练习、如右图: A是ΔBCD所在平面外一点,AB=AD, ∠ABC=∠ADC=90°,E是BD的中点, 求证:平面AEC⊥平面ABD
A
B
C
E
D
高中数学面面垂直的判定
例2、在正方体ABCD-A1B1C1D1中 求证:平面A1C1CA 平面 B1D1DB
D1 A1
D A
C1 B1
C B
高中数学面面垂直的判定
问题:
如何检测所砌的墙面和地面是否垂直?
高中数学面面垂直的判定
高中数学面面垂直的判定
高中数学面面垂直的判定
猜想:
如果一个平面经过了另一个平面的 一条垂线,那么这两个平面互相垂 直.
高中数学面面垂直的判定
如果一个平面经过了另一个平面的一条垂线,那 么这两个平面互相垂直。
已知:AB⊥β,AB∩β=B,AB α