空气动力学原理.

合集下载

空气动力学三大原理

空气动力学三大原理

空气动力学三大原理
空气动力学的三大原理是保守性原理、流体动力学原理和耗散性原理。

保守性原理指的是热力学系统在没有外力影响的情况下,能量的守恒原则,即热力学系统的能量不能自行减少或增加。

流体动力学原理指的是空气动力学中流体的运动规律,如压强、流量、速度等物理量的变化规律,以及它们之间的关系。

耗散性原理指的是空气动力学中流动的耗散现象,它会使流体的能量和动量减弱,应力和温度随时间的变化而变化。

飞行器的运行原理是什么

飞行器的运行原理是什么

飞行器的运行原理是什么飞行器的运行原理涉及多个方面,包括空气动力学、力学、电子技术等。

一般来说,飞行器的运行原理可以分为以下几个方面:1. 空气动力学原理:飞行器能够飞行的最基本原理就是利用空气动力学。

空气动力学研究了空气在运动过程中产生的各种力,并从中推导出飞行器在不同飞行状态下所受到的各种力的大小、方向和作用点。

在飞行器运行过程中,它以空气作为工作介质,通过与气流相互作用来产生升力、阻力、推力和侧向力等。

2. 升力的产生:飞行器所受到的升力是它能够克服重力并在空中保持平衡的力。

升力主要通过飞行器的翅膀(或称为机翼)产生。

机翼的上表面比下表面更为凸起,当空气经过机翼时,其流速在上表面较快,压力较小;而在下表面,流速较慢,压力较大。

由于压差的存在,在机翼上部形成了一个向下的压强,从而产生向上的升力。

3. 推力的产生:推力是飞行器前进的动力来源,主要由发动机产生。

发动机通过燃料燃烧产生高温高压气体,然后将其排出,通过喷气或推进器喷射到后方,产生的反作用力推动飞行器向前运动。

推力的大小与喷出气体的速度和喷出的质量有关。

4. 阻力的产生:阻力是指空气对飞行器运动的一种阻碍力,阻碍着飞行器的加速度和速度的改变。

阻力可以分为多种类型,包括气动阻力、重力和摩擦阻力等。

飞行器通过减小阻力的大小,可以减少能量损失,提高效率。

5. 重力的作用:重力是地球对物体的吸引力,也是影响飞行器运动的一个重要因素。

在飞行过程中,飞行器需要克服重力的作用,才能继续保持飞行状态。

为了平衡重力与升力的作用,飞行器通常需要调整机身的姿态或通过不同部件的运作来实现。

6. 控制系统:飞行器的运行离不开精确的控制系统来调整姿态、航向和高度等参数。

控制系统一般包括操纵装置、传感器、计算机和执行器等组成。

传感器可以感知飞行器的各种姿态参数和环境条件,操纵装置通过操作来控制飞行器的行动,而计算机则负责对传感器获取的数据进行处理和判断,并通过执行器实现舵面、引擎等机械部件的运动,从而控制飞行器的运行。

空气动力汽车的原理

空气动力汽车的原理

空气动力汽车的原理
空气动力汽车是一种利用空气动力学原理来驱动的汽车,它与传统燃油汽车相比具有更环保、更节能的特点。

空气动力汽车的原理主要是通过利用空气动力学原理来驱动汽车,下面我们将详细介绍空气动力汽车的原理。

首先,空气动力汽车的原理是利用空气动力学原理来产生推进力。

空气动力学原理是研究空气在物体表面流动时所产生的力和阻力的科学,通过合理设计车身和发动机,可以使空气在流动过程中产生推进力,从而驱动汽车前进。

其次,空气动力汽车的原理是利用压缩空气来产生动力。

空气动力汽车通常配备有压缩空气储存装置,通过压缩空气储存装置将空气压缩到高压状态,然后释放压缩空气来驱动发动机,产生动力推动汽车前进。

另外,空气动力汽车的原理是利用空气动力学原理来减少空气阻力。

空气动力学原理可以帮助设计车身外形,使得汽车在运动时减少空气阻力,从而提高汽车的行驶效率和节能性能。

最后,空气动力汽车的原理是利用空气动力学原理来提高汽车
的动力性能。

通过合理设计发动机和传动系统,利用空气动力学原
理来提高汽车的动力性能,使得汽车在行驶过程中更加稳定、灵活
和高效。

综上所述,空气动力汽车的原理是基于空气动力学原理来驱动
汽车,通过合理设计车身和发动机,利用压缩空气来产生动力,减
少空气阻力,提高汽车的动力性能,从而实现更环保、更节能的汽
车行驶方式。

空气动力汽车的原理虽然目前还处于研究和发展阶段,但相信随着技术的不断进步,空气动力汽车一定会成为未来汽车发
展的重要方向。

空气动力学——空气流动的数学模型和水动力学原理

空气动力学——空气流动的数学模型和水动力学原理

空气动力学——空气流动的数学模型和水动力学原理人类一直在探索自然,寻找其中的规律和奥妙。

在气体和液体的流动领域中,空气动力学和水动力学一直是研究的热点。

本文将分别介绍这两个领域的数学模型和原理。

一、空气动力学空气动力学是研究气体在物体表面流动的科学。

空气动力学的研究对象主要是飞行器、船舶、建筑物及其它工程结构物的气流特性。

空气动力学的基本研究方程式是Navier-Stokes方程式,它描述了气体在三维空间中运动的微分方程组。

这些方程可以解释风洞实验中的气流现象和飞行器在高速飞行时的空气动力学性能。

但是由于方程式过于复杂,目前仍无法对所有气流现象进行精确分析。

在通常的研究中,经常使用的是雷诺平均Navier-Stokes方程组(RANS方程组)。

这个模型假设气体流向可以拆解为平均流动和扰动流动两部分,将对平均流动的分析看作是气体流动问题的主要部分,扰动流动部分视为干扰,用一些附加的模型来进行分析。

针对不同的气体流动情况,可以采用不同的数值模拟方法,进行数值分析。

最常用的方法是有限体积法(FVM)和有限元法(FEM)。

这些方法将航空、航天以及一般的流体动力学设计用计算机模拟,降低了实验和生产成本,提高了产品的可靠性和性能。

二、水动力学原理水动力学是研究液体的运动及其所产生的效应的科学,应用于水流方面的研究,例如洪灾、水利、河流、湖泊和海洋等。

与空气动力学类似,水动力学的研究对象是船舶、水利工程结构、海洋平台、波浪、洪水等。

在水动力学中,常见的问题是流体结构相互作用(FSI)问题。

研究FSI问题的方法有许多种,包括基于网格的方法和非网格的方法。

基于网格方法包括有限元法(FEM)、有限差分法(FDM)和有限体积法(FVM)。

而非网格方法有物体空间分解法(BEM)和粒子法(PF)。

流体动力学的模拟分析在工业上有广泛的应用,如造船、岸边水利工程设计、水电站的设计评估、混合设备的设计等。

同时也广泛应用于水环境模拟、污染扩散模拟和洪水预测等领域。

直升机的空气动力学原理

直升机的空气动力学原理

直升机的空气动力学原理直升机的升力产生主要依靠主旋翼产生的升力,主旋翼又由主旋翼桨叶和发动机组成。

主旋翼桨叶一般采用三片叶片,通过主轴旋转,在空气中产生升力。

主旋翼桨叶在运动过程中,相对于直升机机身而言,具有迎风运动和顺风返流运动。

主旋翼桨叶迎风运动时,椭圆形的桨叶在进入迎风段时,攻角较大,形成向上的升力。

在桨叶前半部,流速较大,产生的升力大;桨叶后半部流速减小,升力减小。

此时,通过调节桨叶的攻角和旋转速度,使得桨叶的合力与重力平衡,从而实现直升机的悬停。

主旋翼桨叶顺风返流运动时,桨叶相对于机身运动速度逐渐增大,攻角减小。

在桨叶前半部,流速变小,产生的升力减小;桨叶后半部流速增加,升力增加。

此时,通过调节桨叶的攻角和旋转速度,使得升力与飞机的质量平衡,实现直升机的前进飞行。

此外,直升机的侧倾和横滚运动也是通过调节主旋翼桨叶的迎风运动和顺风返流运动来实现的。

侧倾运动是通过改变主旋翼桨叶的迎风运动时的攻角大小和方向,使得主旋翼桨叶产生侧向的力矩,从而使直升机发生侧倾运动。

横滚运动是通过改变主旋翼桨叶的迎风运动和顺风返流运动的相对大小,使得主旋翼桨叶的升力中心发生移动,从而使直升机发生横滚运动。

除了主旋翼的升力产生外,直升机还利用尾旋翼产生的反扭矩以及水平尾翼产生的水平稳定力来保持平稳飞行。

尾旋翼通过产生方向相反的旋转力矩,抵消主旋翼产生的旋转力矩,从而保持直升机的平衡。

水平尾翼通过产生向下的力来平衡主旋翼产生的俯仰力矩,从而保持直升机的水平稳定。

总结一下,直升机的空气动力学原理主要是通过主旋翼桨叶的旋转运动产生升力,通过调节桨叶的攻角和旋转速度来控制升力的大小和方向,从而实现直升机的悬停、垂直起降和平稳飞行。

同时,借助尾旋翼和水平尾翼产生的力矩和稳定力来保持直升机的平衡和稳定。

直升机的空气动力学原理是复杂且精细的,对于设计和控制直升机的飞行具有重要意义。

飞机空气动力学原理

飞机空气动力学原理

飞机空气动力学原理
飞机空气动力学原理是研究飞机在空中飞行时受到的空气力学力的学科。

飞机在飞行过程中,必须克服引起阻力的空气阻力,同时利用空气动力学力来产生升力和推进力。

首先,了解空气动力学原理的基础是空气的流体特性。

空气是一种气体,在空间中可以自由流动。

当飞机运动时,空气会被迫与其接触,并对其产生作用力。

这些作用力可以分为阻力、升力和推力。

阻力是飞机在空气中运动时受到的阻碍力量。

主要有两种形式,即废气阻力和气动阻力。

废气阻力是由于飞机的发动机排放废气产生的。

气动阻力是由于空气与飞机表面摩擦产生的。

为了减小阻力,飞机的外形设计通常会采用流线型,以减少气流的阻碍。

升力是使飞机脱离地面、保持在空中飞行的力量。

它是通过飞机机翼上的气动力学原理产生的。

机翼的设计使得上表面的气压比下表面低,从而产生一个向上的升力。

此外,机翼上的襟翼也能够改变机翼形状,进一步调节升力的大小。

推力是飞机在空中前进的力量。

通常是由发动机产生的,通过喷射燃烧产物来产生反作用力推动飞机。

推力的大小取决于发动机的性能以及喷气速度。

除了上述三种主要的空气动力学力以外,还有其他一些影响飞机飞行的因素。

例如重力会使飞机朝下落,需要通过升力来抵
消。

风也会对飞机产生侧向的力量,需要通过控制飞机的舵面来调整方向。

总的来说,飞机空气动力学原理是飞机在空中飞行时受到的各种空气力学力的研究。

了解这些原理可以帮助我们更好地设计和改进飞机,提高飞行性能和安全性。

汽车底盘设计中的空气动力学原理与应用

汽车底盘设计中的空气动力学原理与应用

汽车底盘设计中的空气动力学原理与应用在汽车设计中,底盘是一个至关重要的部分,它直接影响着汽车的操控性、稳定性以及燃油经济性。

而在底盘设计中,空气动力学原理起着至关重要的作用。

本文将探讨汽车底盘设计中的空气动力学原理及其应用。

一、空气动力学原理空气动力学是研究空气与物体相互作用的科学。

在汽车底盘设计中,空气动力学原理主要体现在气动力和气动噪声两个方面。

1. 气动力气动力是指空气对汽车底盘的压力和阻力。

在高速行驶时,空气会产生较大的压力和阻力,影响汽车的行驶性能。

因此,设计合理的底盘结构能够减小气动力的影响,提高汽车的速度和燃油经济性。

2. 气动噪声气动噪声是由空气相互摩擦和振动所产生的噪音。

底盘的设计不仅要考虑到降低气动力的影响,还要考虑到减小气动噪声的产生。

通过优化底盘的形状和结构可以有效降低气动噪声的水平,提高车辆的乘坐舒适度。

二、空气动力学在底盘设计中的应用在汽车底盘设计中,空气动力学原理被广泛应用,以优化汽车的性能和舒适性。

1. 底盘结构设计通过优化底盘的形状和结构,可以降低汽车在高速行驶时的气动力,提高汽车的稳定性和操控性。

同时,合理设计的底盘结构还可以减小气动噪声的产生,提高车辆的乘坐舒适度。

2. 底盘悬挂设计底盘悬挂系统对汽车的操控性和舒适性有着重要影响。

空气动力学原理可以帮助设计师优化底盘悬挂系统的结构,提高汽车的通过性和舒适性。

通过合理设计底盘悬挂系统,可以有效减小气动力的影响,提高汽车的性能表现。

3. 底盘通风设计在底盘设计中,通风系统的设计也是十分重要的。

通过合理设计底盘通风系统,可以有效降低车辆在高速行驶时的气动力,提高汽车的速度和燃油经济性。

同时,优化通风系统也可以减小气动噪声的产生,提高车辆的乘坐舒适度。

总结在汽车底盘设计中,空气动力学原理是一个不可忽视的因素。

通过充分理解空气动力学原理,并将其应用于底盘设计中,可以提高汽车的性能和舒适性,让驾驶者拥有更好的驾驶体验。

希望本文能够对读者对汽车底盘设计中的空气动力学原理有所启发。

空气动力学效应

空气动力学效应

空气动力学效应空气动力学效应是指在空气中物体运动时所受到的力学效应。

它在许多领域中都有重要的应用,特别是在航空航天、汽车工程、建筑设计等领域。

本文将介绍空气动力学效应的基本概念、原理和应用。

一、空气动力学效应的基本概念空气动力学效应是指当物体在空气中运动时,由于空气的存在而对物体产生的力学效应。

空气动力学效应的主要原因是空气分子与物体表面发生碰撞,从而产生了气动力。

这种气动力包括了阻力、升力、侧力等。

1.1 阻力阻力是物体在空气中运动时所受到的阻碍力。

当物体在空气中运动时,空气分子与物体表面发生碰撞,使物体受到反向的力,从而减小物体的运动速度。

阻力的大小与物体的形状、速度、密度等因素有关。

1.2 升力升力是物体在空气中运动时所受到的向上的力。

升力的产生主要是由于物体表面的气流分离和气压差异所引起的。

升力的大小与物体的形状、速度、密度等因素有关。

在航空领域中,升力是飞机能够飞行的基本原理。

1.3 侧力侧力是物体在空气中运动时所受到的垂直于运动方向的力。

侧力的产生主要是由于空气动力学效应导致物体受到横向的气流作用。

侧力的大小与物体的形状、速度、密度等因素有关。

在汽车工程中,侧力对于提高车辆的操控性能具有重要意义。

空气动力学效应的原理是基于流体力学的基本原理和空气的物理性质。

流体力学是研究流体运动规律的学科,它是研究空气动力学效应的基础。

2.1 流体力学的基本原理流体力学的基本原理包括连续性方程、动量方程和能量方程。

连续性方程描述了流体的质量守恒定律,动量方程描述了流体的力学运动规律,能量方程描述了流体的能量守恒定律。

这些基本原理是研究空气动力学效应的理论基础。

2.2 空气的物理性质空气是一种气体,具有质量、体积和压力等物理性质。

空气的密度是指单位体积空气中所含的质量,密度越大,空气对物体的气动力越大。

空气的压力是指单位面积上空气对物体施加的力,压力越大,空气对物体的气动力越大。

三、空气动力学效应的应用空气动力学效应在许多领域中都有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气动力学原理空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。

此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。

另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。

所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。

对付浮升力的方法对付浮升力的方法,其一可以在车底使用扰流板。

不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。

在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT-R还使用这样的装置。

另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。

它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。

至于车尾部分,其课题主要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。

如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为A TTECHED 或者LAMINAR(即所谓的流线型)。

而水滴的形状就是现今我们所知的最为流线的形状了。

不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可以达到很好的LAMIAR的效果。

常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。

FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。

其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。

当气流流过这个机翼形状的物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。

随着速度的升高,下压力的损失会逐渐加大。

虽然车体上下方的压力差有可能只有一点点,但是由于车体上下的面积较大,微小的压力差便会造成明显的抓着力分别。

一般而言,车尾更容易受到浮升力的影响,而车头部分也会因此造成操控稳定性的问题。

传统的房车、旅行车和掀背车这类后挡风玻璃较垂直的汽车,浮升力对它们的影响会较为轻微,因为气流经过垂直的后窗后就已经散落,形成所谓的乱流效果,浮升力因此下降,但是这些乱流也正是气流拉力的来源。

有些研究指出像GOLF之类的两厢式掀背车,如车顶和尾窗的夹角在30度之内,它所造成的气流拉力会较超过30度的设计更低。

所以有些人就会想当然的认为只要将后窗的和车顶的夹角控制在28至32度之间,就能同时兼顾浮升力和空气拉力的问题。

其实问题并没有那么简单,在这个角度范围里气流既不能紧贴在车体上也不足以造成乱流,如此一来将很难预计空气的流动情况。

因为汽车在行驶时并非在一个水平面上行驶,随着悬挂系统的上下运动,其实汽车的离地距离是一个变量,而气流在流过车体上下所造成的压力差也会随时改变,同时在车辆过弯时车尾左右的气流动态也会对车尾的气流情况造成影响。

当尾窗与车顶的夹角介于28至32度时,车尾将介于稳定和不稳定的边缘,这其实非常危险的。

举个例子,AUDI TT在推出时曾经发生高速翻车的问题,当时的事故调查报告指出AUDI TT的后轴在高速时浮升力过高,造成后轮抓着力太弱。

而TT在设计时以风格作为首要前提,在空气动力学上有所牺牲。

后窗与车尾的弧度就介于以上那个尴尬的角度之间。

车厂在设计掀背车时宁愿将车尾设计的平直一点,一来可以增加车内的空间,二来也克服了空气动力学上的不足。

尾翼的基本设计尾翼和扰流器的诞生正是要解决气流和浮升力的问题。

我们见到过的尾翼可谓五花八门、千万百怪。

不过它们却有着相同的特点:表面狭窄、水平面离开车身安装(如果尾翼紧贴在车身安装,如果它不仅仅起到装饰作用,便只有扰流器般的作用,这两者是不同的。

)尾翼的主要作用是增加下压力,所以尾翼的外形必须像倒置的机翼才行,这样的设计会使流经尾翼下端的气流的速度较流经尾翼上端的来得高,从而产生下压力。

还有一种产生下压力的方法是将尾翼前端微微向下倾斜,虽然这种设计会比水平式的尾翼产生更大的空气拉力,但是在调节下压力大小的方面却较有弹性。

WING和SPOILER的分别尾翼和车尾扰流器的分别是后者与车尾连为一体,或者干脆就是车身整体设计的一部分。

车尾扰流器其实也可以用来制造下压力,但是常见的功能扔是减少浮升力和气流拉力。

掀背车的尾扰流器集结了大量的空气于扰流器的前方,目的是分隔车尾的气流,从而降低浮升力。

后扰流器也可以令气流更顺畅的流经车尾,避免气流长时间的徘徊或紧贴在车尾上,如此一来便可以减少空气拉力,同时也可以减低导致浮升力的车底气压。

所以,有很多车书喜欢统称车尾上的凸出物为尾翼是很不专业的行为,比如普通版的911那个可以自动升降的东西该被称为扰流器,而GT2上的那个才是货真价实的尾翼。

一般来说,欧洲的车厂比较注重汽车的美学设计,同时也很在意SPORTS SEDAN和RACING EDITION之间的分别。

所以,欧洲的车厂比较忌用尾翼,而日本的车厂则将尾翼作为卖点推给顾客,从这种分别中也可以轻易的体会出不同国家造车哲学的不同。

尾翼和扰流器的简史早在上世纪30年代,各大车厂已经开始致力于降低气流拉力,而对于浮升力的研究,各车厂大致要到60年代才开始关注。

FERRAR的赛车手RICHIE GINTHER于1961年发明了能产生下压力的车尾扰流器,他也因此闻名于世。

随后的FERRARI战车也都使用此项设计。

而第一部使用前扰流器(俗称气霸)的汽车应该是大名鼎鼎的FORD GT40。

这部车在超越时速300KM/H时所产生的浮升力令其成为一部根本无法驾驭的汽车,据说在加装了前气霸之后,GT40在达到极速时前轮的下压力由原来的310磅激增至604磅!!!至于第一部使用尾翼的汽车我没有准确的资料,不过据说时道奇于60年代末生产的CHARGER DAYTONA PL YMOUTH SUPERBIRD。

韵敕洲车厂方面,保时捷可以算首家兼顾扰流器的功能和美学设计的车厂。

1975的911 TUBRO的一体式的气霸和鲸鱼尾式的扰流器大副降低了浮升力的产生,其效用高达90%。

于是在70年代末,气霸和扰流器更成为保时捷的标志。

当时有很多以高性能作为卖点的车厂也跟随保时捷的步伐以气霸和扰流器作为卖点。

(说到这里,我到想起了一些题外话。

其实车厂都要经过一个发展阶段才能走向成熟,其实日本车与欧洲车的差距就体现在日本车其实在走欧洲车曾经走过的一条道路,这条路每个车厂都必须经历。

如果以后中国真正的拥有自己的汽车工业的话,那么中国的车厂也必须走这条道路。

一般我认为欧洲车厂的空气动力学水平要较日本车厂来的高一点,就拿对空气动力学要求很高的F1赛事来说,所有空气动力学高手都是欧洲人,而这些欧洲人也无一例外的供职酉敕洲车厂,英美车队在空气动力学方面的研究在它这几年来几乎没有进步,从这一点上面就可以看出欧洲车厂于日本车厂之间的差距。

不过,这些差距是由时间造成的,我想技术上的差距相对比较容易弥补。

而文化背景的不同才容易造成真正的差异,而这种差异如果产生不良性的发展,日本车厂就真正的危险了。

)现在气霸和扰流器已经非常非常的普通了,几乎时速可以达到百余公里的汽车都使用这些东西。

其实如果你的车速并不高,这些东西并不起作用。

当车速介于60到80之间时,气流的拉力根本高不过车轮的运动阻力,如果要感受尾翼和扰流器在浮升力和下压力方面的明显作用,时速必须高于160KM。

其中的原因是因为气流的动力往往是车速的二次方,一部汽车从130KM/H加速至260KM/H,浮升力和空气拉力将会有四倍的增加。

同时,所有汽车所有的气霸,在降低气流拉力方面都具有一定的作用。

一般来说可以减少5~10%的整体气流拉力。

另一方面,气霸也有助于冷却引擎,亦方便了雾灯的安装。

不过仍然有为数不少的车厂认为尾翼和扰流器是为了美观而设的。

不过总体来说,这些空气动力部件都具有一定的实际作用,以上代凌志SC系列来说,加装原厂车尾扰流器之后,汽车的Cd数值(气流拉力)由原来的0.32降至0.31。

但是FORD ADV ANCED DESIGN STUDIO 的设计师GRANT GARRISON曾经说过:如果尾翼和扰流器不是那么受欢迎,我们是不会加在车身上的,但是我们可以用其它方法来把车辆设计得具有同样的空气动力学效果。

持相同观点的还有大名鼎鼎的FERRARI,众所周知FERRARI为了迁就车身设计的美感是很忌讳在车身上使用尾翼的,而即使以快跑作为最高目的的ENZO FERRARI也使用的是可升降的尾扰流板,其原因是FERRARI的主席认为一部静止的FERRARI不需要任何扰流器!!!对Cd值的一为什么释最后值得一提的倒是普遍存在的对Cd值的一些误解。

在许多车厂的产品介绍书中,常常会提及新车的风阻系数降低至多少多少Cd,而Cd所指的并不简单是指我们一般所说的空气阻力,而是流气拉力系数(DRAG COEFFICIENT),一般而言气流在车尾造成的拉力,数值越低,表示车尾气流处理的越流畅,该部分的浮升力亦会越小,相对而言,车辆行走时的阻力会低一点,后轮的下压力也会好一点。

说到这里我们就应该明白,加装尾翼并不一定会增加Cd值!如果加装尾翼和尾扰流器后,车辆尾部气流通过的流畅度增高,那么这辆车的Cd值反而应该降低。

汽车设计的空气动力学问题并不止于车尾,其实车头的长度和宽度也会影响一部汽车的总拉力数值。

比如前纵置引擎的中心点要比前轴的中心点更前,车头就容易造得很长,而如果加阔前轮距来横置摆放引擎,车头部分就会随着加阔,以上两种情况都会影响到整体的气流拉力(CdA)。

虽然有可能一辆车的Cd造得很低,但是同样难以弥补车头部分增加的长度和宽度所带来的整体气流拉力数值的上升,举个例子来说,一部汽车的风阻系数由原来的Cd0.40下降至Cd0.38,但是车头的宽度却增加了75MM,这时它的CdA 数值约会上升5%,这样一来等于完全抵消了Cd下降的效果。

(比如新款的ACCORD,虽然风阻系数达到了惊人的Cd0.25,可是因为车体全面比上一代要加大许多,所有在高速时的稳定性表现,我个人估计不会有大幅的攀升,如果这方面的表现的确有所改进,也首先应该归功于轴距的加长和悬挂设定的改进,空气动力学的成就反而是次要的。

因为民用车的空气动力学表现必须兼顾降低风噪和燃油经济性,所有在设计时必然会对汽车的下压力作出一定的牺牲。

)因此,在大家谈论Cd时,不应该认为Cd代表了一部汽车的整体空气动力表现,更不能轻易的认为随便加装一只尾翼或者巨型扰流器就必然可以获得更好的空气动力学表现!其实充其量它只不过改善了空气动力学中某个部分的表现而已。

相关文档
最新文档