初三函数综合题

合集下载

2019-2020届初三 中考复习 锐角三角函数综合性计算题 专项练习

2019-2020届初三 中考复习 锐角三角函数综合性计算题 专项练习

锐角三角函数综合性计算题专项练习1、在Rt△ABC中,∠C = 90°,a =3 ,c =5,求sin A和tan A的值.2、计算:3、如图,一次函数的图象经过M点,与x轴交于A点,与y轴交于B点,根据图中信息求:(1)这个函数的解析式;(2)tan∠BAO.4、计算:cos45°・(-)-2-(2-)0+|-|+5、如图,在中,,点、分别在、上,平分,,,.求(1)、的长;(2)的值.6、已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,边结AD、BD,过D作DH⊥AB,垂足为H,交AC于E。

(1)若△ABD是等边三角形,求DE的长;(2)若BD=AB,且,求DE的长。

7、如图,已知∠ACB=90°,AB=13,AC=12,∠BCM=∠BAC.(1)求sin∠BAC的值;(2)求点B到直线MC的距离.8、计算:.9、2007年5月17日我市荣获“国家卫生城市称号”.在“创卫”过程中,要在东西方向两地之间修建一条道路.已知:如图点周围180m范围内为文物保护区,在上点处测得在的北偏东方向上,从向东走500m到达处,测得在的北偏西方向上.(1)是否穿过文物保护区?为什么?(参考数据:)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?10、计算:.11、计算:.12、计算:.13、如图,一艘船以每小时30海里的速度向东北方向航行,在A处观测灯塔S在船的北偏东的方向,航行12分钟后到达B处,这时灯塔S恰好在船的正东方向。

已知距离此灯塔8海里以外的海区为航行安全区域,这艘船可以继续沿东北方向航行吗?为什么?(参考数据:,)14、如图①.②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切。

将这个游戏抽象为数学问题,如图②。

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)

2021年九年级数学中考复习专题:反比例函数综合(考察坐标、取值范围、面积等)(四)1.如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A 在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2.如图1,A(1,0)、B(0,2),双曲线y=(x>0)(1)若将线段AB绕A点顺时针旋转90°后B的对应点恰好落在双曲线y=(x>0)上①则k的值为;②将直线AB平移与双曲线y=(x>0)交于E、F,EF的中点为M(a,b),求的值;(2)将直线AB平移与双曲线y=(x>0)交于E、F,连接AE.若AB⊥AE,且EF =2AB,如图2,直接写出k的值.3.如图1,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD﹣∠POC时,求此时m的值;(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.4.如图,在四边形ABCD中,AB=BC=5,AD=DC=8,对角线BD=3+4,点B在y轴上,BD与x轴平行,点C在x轴上.(1)求∠ADC的度数.(2)点P在对角线BD上,点Q在四边形ABCD内且在点P的右边,连接AP、PQ、QC,已知AP=AQ,∠APQ=60°,设BP=m.①求CQ的长(用含m的代数式表示);②若某一反比例函数图象同时经过点A、Q,求m的值.5.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣2,且函数y1、y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C.①若k=2,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.6.如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F 在第一象限内,OF的长度不变,且反比例函数y=经过点F.(1)如图1,当F在直线y=x上时,函数图象过点B,求线段OF的长.(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.①求证:CD=2AE.②若AE+CD=DE,求k.③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.7.如图,二次函数与反比例函数的图象有公共点A(﹣2,5),▱ABCD的顶点B(﹣5,p)在双曲线上,C、D两点在抛物线上(点C在y轴负半轴,点D在x轴正半轴)(1)求直线AB的表达式及C、D两点的坐标;(2)第四象限的抛物线上是否存在点E,使得四边形ACED的面积最大,若存在,求出点E的坐标和面积的最大值,不存在,说明理由.8.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m >0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.10.如图,点P在曲线上,PA⊥x轴于点A,点B在y轴正半轴上,PA=PB,OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,点C是线段PB延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.(1)填空:OA=;OB=;k=;(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是;(3)试问:在点C运动的过程中,BD﹣BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.参考答案1.解:(1)∵△ADC与△ABC关于AC所在的直线对称,∴CD=BC=2,∠ACD=∠ACB=30°,如图1,过点D作DE⊥BC于点E,∵∠DCE=60°,∴,∵OC=2,∴OE=3,∴;(2)设OC=m,则OE=m+1,OB=m+2在Rt△ABC中,∠ACB=30°,BC=2,∴,∴,∵A,D在同一反比例函数上,∴,解得:m=1,∴OC=1;(3)由(2)得:∴,∵四边形A1B1C1D1由四边形ABCD平移得到,∴,∵D1在反比例函数上,∴同理:,,∴,∴,∵x P=x A=﹣3,P在反比例函数上,∴,①若P为直角顶点,则A1P⊥DP,过点P作l1⊥y轴,过点A1作A1F⊥l1,过点D作DG⊥l1,则△A1PF∽△PDG,,解得:;②若D为直角顶点,则A1D⊥DP,过点D作l2⊥x轴,过点A1作A1H⊥l2,则△A1DH∽△DPG,,,解得:k=0(舍),综上:存在.2.解:(1)设旋转后点B的对应点为点C,过点C作CD⊥x轴于点D,如图所示∵∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠BAO+∠ABO=90°,∴∠ABO=∠CAD,在△OAB和△DCA中,,∴△OAB≌△DCA(AAS),∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1),把C(3,1)代入y=中,得k=3,故答案为:3;(2)直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设点E(m,n),mn=3,直线EF的表达式为:y=﹣2x+t,将点E坐标代入上式并解得,直线EF的表达式为y=﹣2x+2m+n,将直线EF表达式与反比例函数表达式联立并整理得:2x2﹣(2m+n)x+3=0,x1+x2=,x1x2=,则点F(n,),则a=(),b=(n+),===2;(3)故点E作EH⊥x轴交于点H,由(1)知:△ABO∽△EHA,∴,设EH=m,则AH=2m,则点E(2m+1,m),且k=m(2m+1)=2m2+m,直线AB表达式中的k值为﹣2,AB∥EF,则直线EF表达式中的k值为﹣2,设直线EF的表达式为:y=﹣2x+b,将点E坐标代入并求解得:b=5m+2,故直线EF的表达式为:y=﹣2x+5m+2,将上式与反比例函数表达式联立并整理得:2x2﹣(5m+2)x+3=0,用韦达定理解得:x F+x E=,则x F=,则点F(m,4m+2),则EF==2AB=2×,整理得:3m2+4m﹣4=0,解得:m=或﹣2(舍去负值),k=m(2m+1)=2m2+m=.3.解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=﹣x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y=0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)如图2,过Q作QM⊥y轴于M,过P作PN⊥OC于N,过O作OH⊥CD于H,∵P(m,1)和Q(1,m),∴MQ=PN=1,OM=ON=m,∵∠OMQ=∠ONP=90°,∴△OMQ≌△ONP(SAS),∴OQ=OP,∠DOQ=∠POC,∵∠DOQ=∠OCD﹣∠POC,∠OCD=45°,∴∠DOQ=∠POC=∠QOH=∠POH=22.5°,∴MQ=QH=PH=PN=1,∵∠OCD=∠ODC=45°,∴△DMQ和△CNP都是等腰直角三角形,∴DQ=PC=,∵OC=OD=m+1,∴CD=OC=,∵CD=DQ+PQ+PC,∴=2+2,∴m=+1;(3)如图3,∵四边形BAPQ为平行四边形,∴AB∥PQ,AB=PQ,∴∠OAB=45°,∵∠AOB=90°,∴OA=OB,∴矩形OAMB是正方形,∵点M恰好在函数y=(m为常数,m>1,x>0)的图象上,∴M(,),即OA=OB=,∵AB=PQ,∴,解得:m=或(舍),∴OA=OB====.4.解:(1)连接AC交BD于点H,∵AB=BC,AD=DC,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BH是等腰三角形ABC的高,即BH⊥AC,即BD是AC的中垂线,设HD=x,则BH=4+3﹣x,AH2=AB2﹣BH2=AD2﹣DH2,即82﹣x2=52﹣(3+4﹣x)2,解得:x=,cos∠ADB===,故∠ADB=30°BD是AC的中垂线,则∠ADB=30°=∠CDB,故∠ADC=2∠ADB=60°;(2)①连接AQ、QD、PC,∵∠APQ=60°,AP=AQ,∴△APQ为等边三角形,故∠PAQ=60°=∠PAC+∠HAQ,同理△ACD是边长为8的等边三角形,∴∠CAD=60°=∠HAQ+∠QAD,∴∠PAC=∠QAD,而AP=AQ,AD=AC,∴△ACP≌△ADQ(SAS),∵BD是AC的中垂线,故PA=PC,则△ACP为等腰三角形,∴△AQD也为等腰三角形,即AQ=QD,而AC=CD(△ACD为等边三角形),CQ=CQ,∴△ACQ≌△DCQ(SSS),故∠ACQ=∠DCQ,在△CAD中,延长CQ交AD于点K,∵AC=CD,则CK⊥AD,∴∠AKQ=90°∵∠AKQ=90°=∠AHP,∠QAK=∠PAH,PA=AQ,∴△AKQ≌△QHP(AAS),∴QK=PH,过点D作DR⊥x轴交于点R,BD∥x轴,故∠BDC=∠DCR=30°,DR=CD=8×=4=CH=OB,而BC=5,故OC=3=BH,故点C(3,0),PH=BH=BP=3﹣m=QK,在等边三角形ACD中,AD边上的高CK=CD sin∠CDA=8×sin60°=4,则CQ=CK﹣QK=4﹣3+m;②过点Q分别作x、y轴的垂线,垂足为M、N,∵AK是等边三角形CDA的高,则∠KCD=30°,而∠DCR=30°,故∠QCR=60°,QM=CQ sin∠QCM=CQ sin60°=CQ,CM=CQ,故点Q(3+CQ,CQ),点C(3,0),CH=4,故点A(3,8),反比例函数图象同时经过点A、Q,则3×8=(3+CQ)×CQ,而CQ=4﹣3+m,即m2+24m+39﹣96=0,解得:m=﹣4(不合题意值已舍去).5.解:(1)①将点A的坐标代入一次函数表达式并解得:k=2,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m﹣n=2,即:m﹣n=1或0或2或4,当m﹣n=0时,m=n与题意不符,点D不能在C的下方,即BC=CD也不存在,n+2>n,当B、D重合时,m﹣n=2成立,故m﹣n=1或4或2;②点E的横坐标为:,当点E在点B左侧时,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.当点E在点B右侧时,同理BC+BE=(m﹣n)(1+)﹣1,当1+=0,k=﹣1时,(不合题意舍去)故k=1,d=1.6.解:(1)∵F在直线y=x上∴设F(m,m)∵y=经过点B(2,4).∴k=8.∵F(m,m)在反比例函数的图象上,∴m2=8∴m=2(负值已舍去).∴由两点间的距离公式可知:OF==4.(2)①∵函数y=的图象经过点D,E∴OC•CD=OA•AE=k.∵OC=2,OA=4,∴CD=2AE.②由①得:CD=2AE∴可设:CD=2n,AE=n∴DE=CD+AE=3n,BD=4﹣2n,BE=2﹣n在Rt△EBD,由勾股定理得:DE2=BD2+BE2,∴9n2=(4﹣2n)2+(2﹣n)2.解得n=,∴k=4n=6﹣10.③CD=2c,AE=c当OD=DE时,22+4c2=(4﹣2c)2+(2﹣c)2,∴c=10﹣2,∴k=4c=40﹣8.(a+b)2=a2+b2+2ab=16+2k=96﹣16.当若OE=DE时,16+c2=(4﹣2c)2+(2﹣c)2,∴c=.∴k=4c=10﹣2.∴(a+b)2=a2+b2+2ab=16+2k=36﹣4.当OE=OD时,4+4c2=16+c2,解得c=2.此时点D与点E重合,故此种情况不存在.综上所述,(a+b)2的值为96﹣16或36﹣4.7.解:(1)设反比例函数的解析式为y=.∵它图象经过点A(﹣2,5)和点B(﹣5,p),∴5=,∴k=﹣10,∴反比例函数的解析式为y=﹣,∴P=﹣=2,∴点B的坐标为(﹣5,2),设直线AB的表达式为y=mx+n,则,∴,∴直线AB的表达式为y=x+7.由▱ABCD中,AB∥CD,设CD的表达式为y=x+c,∴C(0,c),D(﹣c,0),∵CD=AB,∴CD2=AB2,∴c2+c2=(﹣5+2)2+(2﹣5)2,∴c=﹣3,∴点C、D的坐标分别是(0,﹣3)、(3,0).(2)设二次函数的解析式为y=ax2+bx﹣3,,∴,∴二次函数的解析式为y=x2﹣2x﹣3,假设第四象限的抛物线上存在点E,使得△CDE的面积最大.设E(k,k2﹣2k﹣3),则F(k,k﹣3),过点E作x轴的垂线交CD于点F,则S△CDE=S△EFC+S△EFD=•EF•OD=•[(k﹣3)﹣(k2﹣2k﹣3)]=﹣(k2﹣3k)=﹣(k﹣)2+,所以,当k=时,△CDE的面积最大值为,此时点E的坐标为(,﹣).∵A(﹣2,5),C(0,﹣3),D(3,0),∴△ACD的面积为定值,∵直线AD的解析式为y=﹣x+3,∴直线AD交y轴于K(0,3),∴S△ACD=S△ACK+S△CKD=×6×2+×6×3=15,∴四边形ACED的面积的最大值为15+=.8.解:(1)过点B、D分别作BE⊥x轴、DF⊥x轴交于点E、F,∵∠DAF+∠BAE=90°,∠DAF+∠FDA=90°,∴∠FDA=∠BAE,又∠DFA=∠AEB=90°,AD=AB,∴△DFA≌△AEB(AAS),∴DF=AE=3,BE=AF=1,∴点B坐标为(﹣3,1),故答案为(﹣3,1);(2)t秒后,点D′(﹣7+2t,3)、B′(﹣3+2t,1),则k=(﹣7+2t)×3=(﹣3+2t)×1,解得:t=,则k=6,则点D′(2,3)、B′(6,1);(3)存在,理由:设:点Q(m,n),点P(0,s),mn=6,①当BD为平行四边形一条边时,图示平行四边形B′D′QP,点B′向左平移4个单位、向上平移2个单位得到点D′,同理点Q(m,n)向左平移4个单位、向上平移2个单位为(m﹣4,n+2)得到点P (0,s),即:m﹣4=0,n+2=s,mn=6,解得:m=4,n=,s=,故点Q(4,)、点P(0,);②当BD为平行四边形对角线时,图示平行四边形D′Q′B′P′,B′、D′中点坐标为(4,2),该中点也是P′Q′的中点,即:4=,=2,mm=6,解得:m=8,n=,s=,故点Q′(8,)、P′(0,);故点Q的坐标为:Q(4,)或(8,),点P的坐标为P(0,)(0,).9.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.10.解:(1)t2﹣8t+12=0,解得:t=2或6,∵OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,即OA=6,OB=2,即点A、B的坐标为(﹣6,0)、(0,2),设点P(﹣6,),由PA=PB得:36+(2+)2=()2,解得:k=﹣60,故点P(﹣6,10),故答案为:6,2,﹣60;(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,tan∠ACO=,线段AB中点的坐标为(﹣3,1),则过AB的中点与直线AB垂直的直线PQ的表达式为:y=mx+n=﹣3x+n,将点(﹣3,1)的坐标代入上式并解得:n=﹣8,即点M的坐标为(0,﹣8),则圆的半径r=MB=2+8=10=MQ,过点Q作QG⊥y轴于点G,tan∠QMG=tan∠HMP===,则sin∠QMG=故GQ=MQ sin∠QMG=,MG=3,故点Q(,﹣8﹣3);故答案为:(,﹣8﹣3).(3)是定值,理由:延长PA交圆M于E,过点E作EH⊥BD于H,连接CE,DE,∵PA=PB,∴∠PAB=∠PBA,∵四边形ABCE是圆的内接四边形,∴∠PAB=∠PCE,∠PBA=∠PEC,∴∠PEC=∠PCE,∴PE=PC,∴AE=BC,∵AO⊥BD,EH⊥BD,PA⊥OA,∴四边形AOHE是矩形,∴AO=EH,AE=OH=BC,∵PA∥BD,∴=,∴,∴∠ABD=∠BDE,且∠AOB=∠EHD=90°,AO=EH,∴△AOB≌△EHD(AAS)∴OB=DH=2,∴BD﹣BC=BD﹣OH=OB+DH=4.。

北师大版数学九年级上册期末复习压轴专题:反比例函数综合(四)

北师大版数学九年级上册期末复习压轴专题:反比例函数综合(四)

北师大版数学九年级上期末复习压轴专题:反比例函数综合(四)1.如图,点A 是反比例图数y =(x <0)图象上一点,AC ⊥x 轴于点C ,与反比例函数y =(x <0)图象交于点B ,AB =2BC ,连接OA 、OB ,若△OAB 的面积为2,则m +n =( )A .﹣3B .﹣4C .﹣6D .﹣82.如图,点A ,B 在反比例函数y =﹣(x <0)的图象上,连结OA ,AB ,以OA ,AB 为边作▱OABC ,若点C 恰好落在反比例函数y =(x >0)的图象上,此时▱OABC 的面积是( )A .3B .C .2D .6 3.如图,是反比例函数y 1=和y 2=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲于A 、B 两点,若S △AOB =3,则k 2﹣k 1的值是( )A.8 B.6 C.4 D.24.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.125.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为()A.2 B.1.5 C.4 D.66.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A 的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)7.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=,则k=()=在第一象限图象经过点A,与BC交于点F.S△AOFA.15 B.13 C.12 D.58.正方形ABCD的顶点A(2,2),B(﹣2,2),C(﹣2,﹣2),反比例函数y=与y =﹣的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是()A.2 B.4 C.8 D.69.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB 上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数y=(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.210.双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2 C.3 D.411.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.412.如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x 上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A.3 B.C.﹣1 D.+113.如图所示,正方形ABCD的边长为2,AB∥x轴,AD∥y轴,顶点A在双曲线y=上,边CD,BC分别交双曲线于E,F,线段AB,CD分别交y轴于G,H,且线段AE恰好经过原点,下列结论:=,其中①E是CD中点:②点F坐标为(,);③△AEF是直角三角形;④S△AEF 正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,平面直角坐标系中,O为原点,点A,B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,且点P在反比例函数y=的图象上.PA,PB的延长线分别交x轴、y轴于点C,D,连结CD.则△OCD的面积是()A.8 B.8C.16 D.1615.如图,平行四边形AOBC中,对角线交于点E,双曲线y=(k>0)经过A、E两点,若平行四边形AOBC的面积为12,则k的值是()A.2 B.4 C.6 D.816.如图,△AOB的内心在x轴上,顶点A在函数y=(k1>0,x>0)的图象上,顶点B在函数y=(k2<0,x>0)的图象上,若△AOB的面积为4,则k1•k2的值为()A.﹣8 B.﹣12 C.﹣14 D.﹣1617.如图,已知三角形的顶点C在反比例函数y=位于第一象限的图象上,顶点A在x的负半轴上,顶点B在反比例函数y=(k≠0)位于第四象限的图象上,BC边与x轴交于点D,CD=2BD,AC边与y轴交于点E,AE=CE,若△ABD面积为,则k=()A.﹣4 B.﹣C.﹣2D.318.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于x轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>419.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A.B.6 C.D.920.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S=8,则OC△OCE 的长为()A.8 B.4 C.D.参考答案1.解:设B(a,),A(a,)∵AB=2BC,∴=,∴m=3n,∵△OAB的面积为2,∴根据反比例函数k的几何意义可知:△AOC的面积为﹣,△BOC的面积为﹣,∴△AOB的面积为﹣+=2,∴n﹣m=4,∴n﹣3n=4,∴n=﹣2,∴m=﹣6,∴m+n=﹣8故选:D.2.解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,﹣),点C(m,)(a<0,m>0)∵四边形ABCO是平行四边形∴AC与BO互相平分∴点E()∵点O坐标(0,0)∴点B[(a+m),(﹣)]∵点B在反比例函数y=﹣(x<0)的图象上,∴﹣+=﹣∴a=﹣2m,a=m(不合题意舍去)∴点A(﹣2m,)∴S△AOC=()(m+2m)﹣﹣1=∴▱OABC的面积=2×S△AOC=3故选:A.3.解:由反比例函数比例系数k的几何意义可知,S△BOC=S△AOC=∵S△BOC ﹣S△AOC=S△AOB=3∴﹣=3∴k2﹣k1=6故选:B.4.解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PO∴B为OA中点.∴S△PAB =S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选:B.5.解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x 轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.故选:B.6.解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD 的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),故选:C.7.解:过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM=a,∴点A的坐标为(a,a).=,∵四边形OACB是菱形,S△AOF∴OB×AM=,即×a×a=39,解得a=±,而a>0,∴a=,即A(,6),∵点A在反比例函数y=的图象上,∴k=×6=15.故选:A.8.解:根据对称性可知,阴影部分的面积=正方形ABCD的面积的=×4×4=8,故选:C.9.解:∵△OAB和△BCD都是等腰直角三角形,∴OA=AB,CD=BC.设OA=a,CD=b,则点D的坐标为(a+b,a﹣b),∵反比例函数y=在第一象限的图象经过点D,∴(a+b)(a﹣b)=a2﹣b2=6,∴△OAB与△BCD的面积之差=a2﹣b2=×6=3.故选:C.10.解:设直线AB与x轴交于点C.∵AB∥y轴,∴AC⊥x轴,BC⊥x轴.∵点A在双曲线y=的图象上,∴△AOC的面积=×5=.点B在双曲线y=的图象上,∴△COB的面积=×3=.∴△AOB的面积=△AOC的面积﹣△COB的面积=﹣=1.故选:A.11.解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选:B.12.解:因为AO∥BC,上底边OA在直线y=x上,则可设BE的解析式为y=x+b,将E(2,0)代入上式得,b=﹣2,BE的解析式为y=x﹣2.把y=1代入y=x﹣2,得x=3,C点坐标为(3,1),则反比例函数解析式为y=,将它与y=x组成方程组得:,解得x=,x=﹣(负值舍去).代入y=x得,y=.A点坐标为(,),OA==,BC==3,∵B(0,﹣2),E(2,0),∴BE=2,∴BE边上的高为,∴梯形AOBC高为:,梯形AOBC面积为:×(3+)×=3+,△OBE的面积为:×2×2=2,则四边形AOEC的面积为3+﹣2=1+.故选:D.13.解:①∵线段AE过原点,且点A、E均在双曲线y=上,∴点A、E关于原点对称,∵正方形ABCD边长为2,∴点A的坐标为(﹣,﹣1),点E的坐标为(,1),∴AG=DH=EH=,∵CD=2,∴CE=DE=1,∴E是CD中点;故①正确;②∵CH=,∴F(,),故②正确;③∵点A的坐标为(﹣,﹣1),点E的坐标为(,1),F(,),∴AE2==5,AF2==,EF2==1,∴AE2+EF2≠AF2,∴△AEF不是直角三角形;故③不正确;=2×2﹣﹣﹣=,④∵S△AEF故④正确;故选:C.14.解:如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=16,∵m>0,∴m=4,∴P(4,4).设OA=a,OB=b,则AM=AH=4﹣a,BN=BH=4﹣b,∴AB=AH+BH=8﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(8﹣a﹣b)2,可得ab=8a+8b﹣32,∴4a+4b﹣16=ab,∵PM∥OC,∴,∴,∴OC=,同法可得OD=,=•OC•DO=•=•=•=16.∴S△COD故选:C.15.解:过A作AD⊥OB于D,过E作EF⊥OB于F,如图,设A(x,y=),B(a,0),∵四边形AOBC为平行四边形,∴AE=BE,∴EF为△BAD的中位线,∴EF=AD=,∴DF=(a﹣x),OF=OD+DF=,∴E(,),∵E点在双曲线上,∴•=k,∴a=3x,∵平行四边形的面积是12,∴AD•OB=12,即•a=12,∴•3x=12,∴k=4.故选:B.16.解:∵△AOB的内心在x轴上,∴∠AOE=∠BOE,∴∠AOC=∠BOD,过作AC⊥y轴于C,BD⊥y轴于D,∴△ACO∽△BDO,∴=,设A(a,b),B(c,d),∴AC=a,OC=b,BD=c,OD=﹣d,∴=,∴bc=﹣ad,∴S△AOB =S梯形ACDB﹣S△AOC﹣S△BDO=(BD+AC)(OC+OD)﹣AC•OC﹣BD•OD=(a+c)(b﹣d)﹣ab+cd=4,∴bc﹣ad=8,∴bc=4,∴c=,d=,∴点B(,),∴•=k2,∴k2•ab=﹣16又∵ab=k1,∴k2•k1=﹣16.故选:D.17.解:如图,过点C,点B分别作x轴的垂线,垂足分别为M,N,则EO∥CM,∴△AEO∽△ACM,∴,设AO=OM=a,OE=b,CM=2b,∴点C的坐标为(a,2b),∵顶点C 在反比例函数y =位于第一象限的图象上,∴2ab =4,即ab =2,∵CM ∥BN ,∴△CMD ∽△BND ,∴,设DN =m ,则MD =2m ,BN =b ,∴点B 的坐标为(a +3m ,﹣b ),∵顶点B 在反比例函数y =(k ≠0)位于第四象限的图象上,∴﹣b (a +3m )=k ,∵△ABD 面积为,∴,即ab +mb =,∴mb =0.5,∴k =﹣b (a +3m )=﹣ab ﹣3mb =﹣2﹣1.5=﹣3.5,故选:B .18.解:∵A ,B 是函数y =的图象上关于原点O 对称的任意两点,且AC 垂直于x 轴于点C ,BD 垂直于x 轴于点D ,∴S △AOC =S △BOD =×2=1,假设A 点坐标为(x ,y ),则B 点坐标为(﹣x ,﹣y ),则OC =OD =x ,∴S △AOD =S △AOC =1,S △BOC =S △BOD =1,∴四边形ADBC 面积=S △AOD +S △AOC +S △BOC +S △BOD =4.故选:C .19.解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=x B﹣x A=n﹣m=3,AD=y A﹣y B=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB =S△ADB=AD•BD=,故选:A.20.解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt △EAF 中,∵∠EAF =60°,AE =AB =t , ∴AF =,EF =AF =t ,∵点C 与点E 都在反比例函数y =的图象上, ∴OD ×CD =OF ×EF ,∴OF ==2t ,∴OA =2t ﹣=t ,∴S 四边形OABC =2S △OCE ,∴t ×t =2×8,∴解得:t =(舍负), ∴OC =. 故选:D .。

初三中考数学函数综合题含答案

初三中考数学函数综合题含答案

初三中考数学函数综合题含答案一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >-B .3x ≥-且2x ≠C .2x ≠D .3x >-且2x ≠2.如图,函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是( )A .42x y =-⎧⎨=-⎩B .42x y =⎧⎨=⎩C .24x y =-⎧⎨=-⎩D .24x y =⎧⎨=⎩3.若反比例函数1k y x-=,当0x >时,y 随x 的增大而减小,则k 的取值范围是() A .1k >B .1k <C .1k >-D .1k <-4.将抛物线()2321y x =-+先向右平移2个单位长度,再向下平移2个单位长度,平移后所得的抛物线解析式是() A .()2341y x =-- B .()2343y x =-+ C .233y x =+D .231y x =-5.抛物线213y x =的开口方向、对称轴分别是( )A .向上,x 轴B .向上,y 轴C .向下,x 轴D .向下,y 轴 6.二次函数y =x 2+6x +4的对称轴是( ) A .x =6B .x =﹣6C .x =﹣3D .x =47.下列y 关于x 的函数中,一次函数为( ) A .()2y a x b =-+B .()211y k x =++C .2y x=D .221y x =+8.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( ) A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+9.已知抛物线y =ax 2+bx +c (a ≠0)的顶点为(2,4),有以下结论:①当a >0时,b 2-4ac >0;②当a >0时,ax 2+bx +c≥4;③若点(-2,m ),(3,n )在抛物线上,则m <n ;④若关于x 的一元二次方程ax 2+bx +c =0的一根为-1,则另一根为5.其中正确的是( ) A .①②B .①④C .②③D .②④10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 211.已知y =kx +b ,当x =2时,y =-2;当x =3时,y =0.则( )A .k =2,b =-6B .k =-6,b =2C .k =-2,b =6D .k =-2,b =-612.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)13.将一次函数23y x =-的图象沿y 轴向上平移3个单位长度后,所得图象的函数表达式为( ) A .2y x = B .26y x =- C .53y x =- D .3y x =-- 14.二次函数22(3)1y x =-+-的顶点坐标是( )A .(31), B .(13)-, C .(3,1)-D .(3,1)--15.已知A (﹣11,3y ),B (﹣21,2y ),C (1,y 3)是一次函数y =b ﹣3x 的图象上三点,则y 1、y 2、y 3的大小关系为( ) A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 1<y 3二、填空题16.一次函数(27)2y k x =-+中,y 随x 的增大而减小,则k 的取值范围是___________. 17.将直线213y x =-+向上平移3个单位后所得直线解析式为_______.18.已知点(2,)A m 在一次函数53y x =+的图象上,则m 的值是__.19.已知一次函数(1)2y m x m =-+-的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是______.20.若函数y =(m ﹣2)x +|m |﹣2是正比例函数,则m =_____.三、解答题21.如图,抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,并且与y 轴交于点C .(1)求此抛物线的解析式; (2)直线BC 的解析式为 ;(3)若点M 是第一象限的抛物线上的点,且横坐标为t ,过点M 作x 轴的垂线交BC 于点N ,设MN 的长为h ,求h 与t 之间的函数关系式及h 的最大值;(4)在x 轴的负半轴上是否存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形?如果存在;如果不存在,说明理由.22.如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣1,0)、B (3,0)两点,抛物线的对称轴l 与x 轴交于M 点.(1)求抛物线的函数解析式;(2)设点P 是直线l 上的一个动点,当PA +PC 的值最小时,求PA +PC 长;(3)已知点N (0,﹣1),在y 轴上是否存在点Q ,使以M 、N 、Q 为顶点的三角形与△BCM 相似?若存在;若不存在,请说明理由.23.已知二次函数222y x x m =-+-的图象与x 轴有交点,求非负整数m 的值. 24.已知抛物线y =12x 2﹣x ﹣32与x 轴交于点A ,点B (点A 在点B 左侧). (1)求点A ,点B 的坐标;(2)用配方法求该抛物线的顶点C 的坐标,判断△ABC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使以点O 、点C 、点P 为顶点的三角形构成等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 25.已知抛物线222y x mx m =--.(1)求证:对任意实数m ,抛物线与x 轴总有交点. (2)若该抛物线与x 轴交于1,0A ,求m 的值.【参考答案】一、单选题 1.B 2.A3.A 4.A 5.B 6.C 7.B 8.B 9.D 10.A 11.A 12.C 13.A 14.D 15.A 二、填空题16.72k < 17.243y x =-+18.1319.2m >20.-2三、解答题21.(1)234y x x =-++ (2)4y x =-+(3)h 与t 之间的函数关系式为:()2404h t t t =-+<<,h 的最大值为4(4)在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由见解析 【解析】 【分析】(1)把A (﹣1,0),B (4,0) 代入抛物线解析式,即可求解;(2)根据抛物线解析式求出点C 的坐标,再利用待定系数法,即可求解;(3)根据题意可得点()2,34M t t t -++,点(),4N t t -+,从而得到24MN t t =-+,再根据二次函数的性质,即可求解;(4)分三种情况:当PC =BC 时,当PB =BC 时,当PC =PB 时,即可求解. (1)解:∵抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,∴3016340a c a c -+=⎧⎨+⨯+=⎩, 解得:14a c =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++; (2)解:当0x =时,4y =, ∴点()0,4C ,设直线BC 的解析式为()0y kx b k =+≠, 把点B (4,0),()0,4C 代入得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BC 的解析式为4y x =-+; (3) 解:如图,∵点M 是第一象限的抛物线上的点,且横坐标为t ,∴点()2,34M t t t -++,∵MN ⊥x 轴, ∴点(),4N t t -+,∴()()223444MN t t t t t =-++--+=-+,∴()()2242404h t t t t =-+=--+<<, ∴当2t =时,h 的值最大,最大值为4; (4)解:在x 轴的负半轴上存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由如下: 当PC =BC 时, ∵OC ⊥BP , ∴OP =OB ,∵点B (4,0),点P 在x 轴的负半轴上, ∴点()4,0P -; 当PB =BC 时, ∵B (4,0),()0,4C , ∴OC =4,OB =4,∴BP BC ==∴4OP BP OB =-=, ∵点P 在x 轴的负半轴上,∴点()4P -;当PC =PB 时,点P 位于BC 的垂直平分线上, ∵OB =OC =4,∴点O 位于BC 的垂直平分线上, ∴此时点P 与点O 重合,不合题意,舍去;综上所述,在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形. 【点睛】本题主要考查了求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质,熟练掌握用待定系数法求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质是解题的关键. 22.(1)y =﹣x 2+2x +3(2)PA +PC 的长为(3)存在,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭,理由见解析【解析】 【分析】(1)当x =0时,y =3,可得C (0,3).再设设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),利用待定系数法,即可求解;(2)连接PA 、PB 、PC ,根据轴对称性可得PA =PB .从而得到PA +PC =PC +PB .进而得到当点P 在线段BC 上时,PC +AP 有最小值.即可求解;(3)先求出抛物线的对称轴,可得点()1,0M ,再由点N (0,﹣1),B (3,0),C (0,3).可得2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,可得∠CBM =∠MNO ,然后分三种情况讨论,即可求解. (1)解:把x =0代入得:y =3, ∴C (0,3).设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0), 将点C 的坐标代入上式得:3=﹣3a ,解得:a =﹣1.∴抛物线的解析式为y =-(x +1)(x -3)=﹣x 2+2x +3. (2)解:如图,连接PA 、PB 、PC ,∵点A 与点B 关于直线l 对称,点P 在直线l 上, ∴PA =PB . ∴PA +PC =PC +PB . ∵两点之间线段最短,∴当点P 在线段BC 上时,PC +AP 有最小值. ∵OC =3,OB =3, ∴BC =32∴PA +PC 的最小值=32 (3)解:存在,理由: 抛物线的对称轴为直线x =﹣2ba=1. ∵抛物线的对称轴l 与x 轴交于M 点. ∴点()1,0M ,∵点N (0,﹣1),B (3,0),C (0,3). ∴OM =ON =1,OB =OC =3,∴2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒, ∴∠CBM =∠MNO ,当点Q 在点N 下方时,∠MNQ =135°,不符合题意, ∴点Q 在点N 上方,设点Q 的坐标为(0,n ).则QN =n +1, ∵以M 、N 、Q 为顶点的三角形与△BCM 相似, ∴∠QMN =∠CMB 或∠MQN =∠CMB , 当1Q MN CMB ∠=∠时,1Q MNCMB ,如图(2),∴1Q N MNBC BM=, ∴12232n +=,解得:2n =, ∴点()10,2Q ;当2MQ N CMB ∠=∠时,2MQ NCMB ,如图(3),∴2Q N MN MB BC=, ∴12232n +=13n =-,∴点210,3Q ⎛⎫- ⎪⎝⎭,综上所述,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,相似三角形的判定和性质,两点之间,线段最短,待定系数法求二次函数解析式等知识,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键. 23.0或1或2或3 【解析】【分析】根据二次函数y =x 2-2x +m -2的图象与x 轴有交点,根据Δ≥0列出m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数y =x 2-2x +m -2的图象与x 轴有交点, ∴Δ=4-4(m -2)≥0, ∴m ≤3, ∵m 为非负整数, ∴m =0或1或2或3. 【点睛】本题主要考查了抛物线与x 轴交点的知识,解答本题的关键是根据二次函数y =x 2-2x +m -2的图象与x 轴有交点列出m 的不等式,此题难度不大. 24.(1)A (-1,0),B (3,0)(2)点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由见解析(3)点P 的坐标为(1,2),2),(1,2)或3(1,)4-【解析】 【分析】(1)把0y =代入到21322y x x =--得,213022x x --=,解得13x =,21x =-,又因为点A 在点B 的左侧,即可得; (2)21322y x x =--配方得21(1)22y x =--,即可得点C 的坐标为(1,-2),根据点A ,B ,C 的坐标得4AB =,AC ,BC =AC =BC ,又因为2224+=,所以222AC BC AB +=,即可得90ACB ∠=︒,从而得出ACB △是等腰直角三角形;(3)当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形,即可得点P 的坐标(1,2),当CO CP =时,CP =,即可得点P 的坐标为2)或(1,2),当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a ,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,解得34a =-,即可得点P 的坐标为3(1,)4-,综上,即可得. (1)解:把0y =代入到21322y x x =--得, 213022x x --= 2230x x --= (3)(1)0x x -+=解得13x =,21x =-, ∵点A 在点B 的左侧,∴A (-1,0),B (3,0). (2) 解:21322y x x =-- =21(3)2x x -- =21(1)22x x -+- =21(1)22x --∴点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由如下:∵A (-1,0),B (3,0),C (1,-2), ∴3(1)4AB =--=,22(11)(02)8AC =----=, 22(31)(02)8BC =---=,∴AC =BC , ∵222(8)(8)4+=, ∴222AC BC AB +=, ∴90ACB ∠=︒,∴ACB △是等腰直角三角形. (3)解:当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形, ∴点P 的坐标为(1,2);当CO CP =时,22(10)(20)5CP =-+-=, ∴点P 的坐标为(1,52)-或(1,52)--;当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a , 如图所示,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,22441a a a ++=+34a =- ∴点P 的坐标为3(1,)4-;综上,点P 的坐标为(1,2),2),(1,2)或3(1,)4-. 【点睛】本题考查了二次函数与三角形的综合,解题的关键是掌握二次函数的性质,等腰三角形的判定与性质.25.(1)见解析(2)122,1m m =-=【解析】【分析】(1)令0y =,得到关于x 的一元二次方程,根据一元二次方程根的判别式判断即可; (2)令1x =,0y =,解一元二次方程即可求得m 的值(1)令0y =,则有2220x mx m --=222890m m m ∆=+=≥即,对于任意实数方程2220x mx m --=总有两个实数根,∴对任意实数m ,抛物线与x 轴总有交点.(2)解:∵抛物线222y x mx m =--与x 轴交于1,0A ,∴202m m =--解得122,1m m =-=【点睛】本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.。

初三数学二次函数经典习题

初三数学二次函数经典习题

初三数学二次函数综合练习卷一、填空题:1、函数21(1)21my m x mx +=--+是抛物线,则m = .2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m .8. 如果抛物线c bx ax y ++=2的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x +=B . 220x y +-= C . 22y ax -=- D .2210x y -+=12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下223x y -=B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线122+--=m mx x y 的图象过原点,则m 为( )A .0B .1C .-1D .±114.把二次函数122--=x x y 配方成为( )A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m 16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、23(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、23(1)2y x =-+ 18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+ B 、25y x =- C 、22y x x=-+ D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.二次函数单元检测 (B ) ___ ____一、新课标基础训练1.下列二次函数的图象的开口大小,从大到小排列依次是( ) ①y=13x 2;②y=23x 2+3;③y=-12(x-3)2-2;④y=-32x 2+5x-1. A .④②③① B .①③②④ C .④②①③ D .②③①④2.将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式( )A .y=3(x+5)2-5;B .y=3(x-1)2-5;C .y=3(x-1)2-3;D .y=3(x+5)2-33.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,•若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( ) A .5元 B .10元 C .15元 D .20元4.若直线y=ax+b (ab ≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( ) A .一 B .二 C .三 D .四5.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y>0,则m 的取值范围是( ) A .m ≥14 B .m>14 C .m ≤14 D .m<146.二次函数y=mx 2-4x+1有最小值-3,则m 等于( ) A .1 B .-1 C .±1 D .±12二、新课标能力训练7.如图,用2m 长的木条,做一个有横档的矩形窗子,为使透进的光线最多,那么这个窗子的面积应为_______m 2.8.如图,有一个抛物线型拱桥,其最大高度为16m , •跨度为•40m ,• 现把它的示意图放在平面直角坐标系 中••,••则此抛物线的函数关系式为__________.9、已知函数4m m2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?10、观察表格:2(1)求a ,b ,c 的值,并在表内空格处填入正确的数.(2)画出函数y=ax 2+bx+c 的图象,由图象确定,当x 取什么实数时,ax 2+bx+c>0.11、如图(2),已知平行四边形ABCD 的周长为8cm ,∠B =30。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

知识点详解人教版九年级数学下册第二十六章-反比例函数综合测评试题(含详解)

知识点详解人教版九年级数学下册第二十六章-反比例函数综合测评试题(含详解)

人教版九年级数学下册第二十六章-反比例函数综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知函数22(1)ny n x-=+是反比例函数,则n的值为().A.1 B.-1 C.±1D.±22、如图,两个反比例函数4yx=和2yx=在第一象限内的图象分别是1C和2C,点P在1C上,PA x⊥轴于点A,交2C于点B,连接OB,OP,则POB的面积为()A.1 B.2 C.4 D.8 3、下列函数,其中y是x的反比例函数的是()A .21y x =-B .1y x=C .21y x =D .3x y =4、已知:点A (﹣1,y 1),B (1,y 2),C (2,y 3)都在反比例函数ky x=图象上(k <0),则y 1、y 2、y 3的关系是( ) A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 3<y 1D .y 3<y 2<y 15、下列说法正确..的个数有( ) ①方程210x x -+=的两个实数根的和等于1; ②半圆是弧;③正八边形是中心对称图形;④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;⑤如果反比例函数的图象经过点()1,2,则这个函数图象位于第二、四象限. A .2个B .3个C .4个D .5个6、在平面直角坐标系中,已知点P (a ,0)(a ≠0),过点P 作x 轴的垂线,分别交直线y =-x +1和反比例函数2y x=-的图象于点M ,N ,若线段MN 的长随a 的增大而增大,则a 的取值范围为( ) A .-1<a <2B .0<a <2C .a >2或a <-1D .-1<a <0或a >27、如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,BC //x 轴,反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )A .60B .48C .36D .208、如果反比例函数的图象经过点P(﹣3,﹣1),那么这个反比例函数的表达式为()A.y=3xB.y=﹣3xC.y=13x D.y=﹣13x9、反比例函数kyx=经过点(2,1),则下列说法错误的是()A.点(﹣1,﹣2)在函数图象上B.函数图象分布在第一、三象限C.y随x的增大而减小D.当y≥4时,0<x≤1210、点A(1,y1),点B(2,y2),在反比例函数4yx=的图象上,则()A.y1<y2B.y1>y2C.y1=y2D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABOC的边长为2,双曲线y=kx的一个分支经过点A,若点(﹣1,y1),(2,y2),(4,y3)都在该双曲线上,则y1,y2,y3的大小关系是_____(用“<”号连接).2、如图,在反比例函数y=20x(x>0)的图象上有点P1,P2,P3,P4,P5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,则阴影部分的面积S1+S2+S3+S4=_____.3、反比例函数3y x=中,反比例常数k 的值为_____. 4、如图,点()6,1P ,点()2,Q n -都在反比例函数ky x=的图象上.过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则12:S S =__________.5、若点()3,1A -、(),2B m 都在反比例函数()0k y k x=≠的图象上,则m 的值是___________. 三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象过点()0,4B -,且与函数()40y x x=-<的图象交于点(),2A m .(1)求一次函数的解析式;(2)若P 是x 轴上一点,PAB △的面积是5,请求出点P 的坐标; (3)直接写出不等式4kx b x+≥-的解集. 2、当x =2时,x =(1)求y 与x 的函数关系式; (2)当x =4时,求y 的值.5.已知正方形OABC 的面积为9,点O 是坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(),k y x 0k 0x =>>的图象上,点()P m n ,是函数(),ky x 0k 0x=>>的图象上任意一点.过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .若矩形OEPF 和正方形OABC 不重合部分(阴影)面积为S .(提示:考虑点P 在点B 的左侧或右侧两种情况)(1)求B 点的坐标和k 的值; (2)写出S 关于m 的函数关系式; (3)当3S =时,求点P 的坐标.3、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y 随时间x (分)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第 分钟时学生的注意力更集中.(2)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.4、在直角坐标系中,直线y 13=x 与反比例函数y kx=的图象在第一、三象限分别交于A 、B 两点,已知B 点的纵坐标是﹣2.(1)写出点A 的坐标,并求反比例函数的表达式;(2)将直线y 13=x 沿y 轴向上平移5个单位后得到直线l ,l 与反比例函数图象在第一象限内交于点C ,与y 轴交于点D .(ⅰ)S △ABC S △ABD ;(请用“<”或“=”或“>”填空) (ⅱ)求△ABC 的面积.5、如图,在▱ABCD 中,设BC 边的长为x (cm ),BC 边上的高线AE 长为y (cm ),已知▱ABCD 的面积等于24cm2.(1)求y关于x的函数表达式;(2)求当3<y<6时x的取值范围.---------参考答案-----------一、单选题1、A【分析】根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),即可得到关于n的方程,解方程即可求出n.【详解】解:∵函数22(1)ny n x-=+是反比例函数,∴n+1≠0且n2−2=−1,∴n=1,故答案选A【点睛】本题考查了反比例函数的定义,反比例函数解析式的一般式y=kx(k≠0),特别注意不要忽略k≠0这个条件.2、A 【分析】根据反比例函数k y x=(k ≠0)系数k 的几何意义得到S △POA =12×4=2,S △BOA =12×2=1,然后利用S △POB =S △POA -S △BOA 进行计算即可.【详解】解:∵PA ⊥x 轴于点A ,交C 2于点B , ∴S △POA =12×4=2,S △BOA =12×2=1, ∴S △POB =2-1=1. 故选:A . 【点睛】本题考查了反比例函数k y x =(k ≠0)系数k 的几何意义:从反比例函数ky x=(k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k |. 3、B 【分析】根据反比例函数的定义即可判断. 【详解】解:A 、21y x =-是一次函数,不是反比例函数,故此选项不合题意; B 、1y x=是反比例函数,故此选项符合题意;C 、21y x =不是反比例函数,故此选项不合题意; D 、3x y =是正比例函数,不是反比例函数,故此选项不合题意; 故选B . 【点睛】此题主要考查反比例函数的识别,解题的关键是熟知反比例函数的定义:一般地,形如()10-=≠y kx k 的函数叫做反比例函数. 4、C 【分析】利用k <0,得到反比例函数ky x=图象在第二、四象限,在每一象限内y 随x 的增大而增大;于是y 1>0,y 2<0,y 3<0.利用在第四象限内y 随x 的增大而增大,根据1<2,可得y 2<y 3<0.最终结论可得. 【详解】解:在反比例函数k y x=中,∵k <0,∴反比例函数k y x=图象在第二、四象限,在每一象限内y 随x 的增大而增大. ∵A (﹣1,y 1),B (1,y 2),C (2,y 3),∴A (﹣1,y 1)在第二象限,B (1,y 2),C (2,y 3)在第四象限. ∴y 1>0,y 2<0,y 3<0. 又∵1<2, ∴y 2<y 3<0. ∴y 2<y 3<y 1. 故选:C . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 5、B 【分析】根据所学知识对五个命题进行判断即可.【详解】1、214130=-⨯=-<,故方程无实数根,故本命题错误;2、圆上任意两点间的部分叫做圆弧,半圆也是,故本命题正确;3、八边形绕中心旋转180°以后仍然与原图重合,故本命题正确;4、抛硬币无论抛多少,出现正反面朝上都是随机事件,故抛三枚硬币全部正面朝上也是随机事件,故本命题正确;5、反比例函数的图象经过点 (1,2) ,则0k>,它的函数图像位于一三象限,故本命题错误综上所述,正确个数为3故选B【点睛】本题考查一元二次函数判别式、弧的定义、中心对称图形判断、随机事件理解、反比例函数图像,掌握这些是本题关键.6、D【分析】根据题意作出图像,分别求得,A B的坐标,分第二象限和第四象限分别讨论【详解】解:如图,设直线y=-x+1和反比例函数2yx=-的图象交于点,A B,根据题意, 12y x y x =-+⎧⎪⎨=-⎪⎩解得121221,12x x y y ==-⎧⎧⎨⎨=-=⎩⎩ ()()2,1,1,2A B ∴--P (a ,0),根据题图像可知,当-1<a <0或a >2,线段MN 的长随a 的增大而增大,故选D【点睛】本题考查了反比例函数与一次函数图像交点问题,数形结合是解题的关键.7、A【分析】过A 作AE ⊥BC 于E 交x 轴于F ,则由三线合一定理得到142BE BC ==,即可利用勾股定理求出3AE =,设OB =a ,由BD =AB =5,得到A 点坐标为(4,a +3),D 点坐标为(5,a ),再由反比例函数ky x =(0k >,0x >)的图象经过点A ,交BC 于点D ,()435k a a =+=,由此求解即可.解:过A 作AE ⊥BC 于E 交x 轴于F ,∵5AB AC ==,8BC =, ∴142BE BC ==,∴3AE ==,设OB =a ,∵BD =AB =5,∴A 点坐标为(4,a +3),D 点坐标为(5,a ), ∵反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .∴4(3)5k a a =+=,解得:a =12,∴k =60,故选A .【点睛】本题主要考查了坐标与图形,三线合一定理,勾股定理,反比例函数图像上点的坐标特点,解题的关键在于能够熟练掌握相关知识进行求解.8、A根据点P 的坐标,利用待定系数法即可得.【详解】 解:设这个反比例函数的表达式为(0)k y k x =≠,由题意,将点(3,1)P --代入得:3(1)3k =-⨯-=, 则这个反比例函数的表达式为3y x =,故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键.9、C【分析】利用待定系数法求得k 的值,再利用反比例函数图象的性质对每个选项进行逐一判断即可.【详解】 解:∵反比例函数k y x =经过点(2,1),∴k =2.∴﹣1×(﹣2)=2,故A 正确;∵k =2>0,∴双曲线y =2x分布在第一、三象限,故B 选项正确;∵当k =2>0时,反比例函数y =2x 在每一个象限内y 随x 的增大而减小,故C 选项错误,当y≥4时,0<x≤12,D选项正确,综上,说法错误的是C,故选:C.【点睛】本题考查了反比例函数图象上点的坐标的特征,待定系数法确定函数的解析式,反比例函数图象的性质.利用待定系数法求得k的值是解题的关键.10、B【分析】利用反比例函数4yx=的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,利用2>1得出y1>y2即可.【详解】解:∵反比例函数4yx=的图象分布在一、三象限,在每个单独的象限内y随x的增大而减小,而A(1,y1),B(2,y2)都在第一象限,∴在第一象限内,y随x的增大而减小,∵2>1,∴y1>y2,故选:B.【点睛】本题主要考查了反比例函数的性质,当k>0时,图象分布在一、三象限,在每个单独的象限内,y随x 的增大而减小,当k<0时,图象分布在二、四象限,在每个单独的象限内,y随x的增大而增大,由x 的值的变化得出y的值的变化情况;也可以把x的值分别代入到关系式中求出y1和y2的值,然后再做比较即可.二、填空题1、231y y y <<【解析】【分析】先根据正方形的性质可得点A 的坐标,再利用待定系数法可得反比例函数的解析式,然后分别求出123,,y y y 的值即可得.【详解】 解:正方形ABOC 的边长为2,(2,2)A ∴-,将点(2,2)A -代入k y x =得:224k =-⨯=-, 则反比例函数的解析式4y x =-,将点1(1,)y -代入得:1441y =-=-, 将点2(2,)y 代入得:2422y =-=-,将点3(4,)y 代入得:3414y =-=-,则231y y y <<,故答案为:231y y y <<.【点睛】本题考查了比较反比例函数的函数值,熟练掌握待定系数法是解题关键.2、16【解析】【分析】由题意易知点P1的坐标为(2,10),然后根据平移可把右边三个矩形进行平移,进而可得S1+S2+S3+S4=S矩形ABCP1,最后问题可求解.【详解】=10,解:当x=2时,y=202∴点P1的坐标为(2,10),如图所示,将右边三个矩形平移,把x=10代入反比例解析式得:y=2,∴P1C=AB=10﹣2=8,则S1+S2+S3+S4=S矩形ABCP1=2×8=16,故答案为:16.【点睛】本题主要考查反比例函数的几何意义,熟练掌握反比例函数的几何意义是解题的关键.3、3【解析】【分析】根据反比例函数基本定义求解即可.【详解】解:根据反比例函数定义得: 反比例函数3y x =中,k =3,故答案为:3.【点睛】 本题考查反比例函数的基本定义,理解反比例函数()0k y k x =≠各字母的含义是解题关键. 4、3:4【解析】【分析】根据图象上点的坐标特征得到6k =,3n =-,根据反比例函数系数k 的几何意义求得16=S ,然后根据()211184611428222PQK PON ONKQ S S S S =--=⨯⨯-⨯⨯-+⨯=梯形,即可得答案. 【详解】解:点()61P ,,点()2Q n -,都在反比例函数k y x =的图象上, ∴16k=,-2k n =, ∴612k n =⨯=-,∴6k =,3n =-,∴()23Q --,, ∴反比例函数为6y x =,∴16=S ,作QK PN ⊥,交PN 的延长线于K ,则6PN =,1ON =,8PK =,4KQ =, ∴()211184611428222PQK PONONKQ S S S S =--=⨯⨯-⨯⨯-⨯+⨯=梯形, ∴12:6:8=3:4S S =,故答案为:3:4.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,分别求得S 1、S 2的值是解题的关键.5、32-## 1.5-【解析】【分析】将点,A B 的坐标都代入反比例函数的解析式即可得.【详解】 解:点()3,1A -、(),2B m 都在反比例函数()0k y k x =≠的图象上,231k m ∴==-⨯, 解得32m =-,故答案为:32-.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.三、解答题1、(1)34y x =--;(2)1(,0)3或(3,0)-;(3)2x -≤【分析】1)将A 点坐标代入代入()40y x x =-<,求出m 的值为2,再将(),2A m ()0,4B -代入y kx b =+,求出k 的值,即可得到一次函数的解析式;(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加;(3)根据图象即可求得.【详解】(1)将(),2A m 代入()40y x x=-<得,m =-2, 则A 点坐标为A (-2,2),将A (-2,2)、()0,4B -代入y kx b =+得422b k b-=⎧⎨=-+⎩,解得43b k =-⎧⎨=-⎩, 则一次函数解析式为34y x =--;(2)∵一次函数34y x =--与x 轴的交点为C 4(,0)3- S △ABP =S △ACP +S △BPC∴1124522CP CP ⨯+⨯=,解得53CP =,则P 点坐标为1(,0)3或(3,0)-.(2)∵A (-2,2),()40y x x=-< ∴由图象可知不等式4kx b x +≥-的解集为2x -≤;【点睛】本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键.2、(1)(3,3)B ,9k =;(2)93(03)279(3)m m S m m -<<⎧⎪=⎨-≥⎪⎩;(3)(92,2)或9(,2)2. 【分析】(1)先根据正方形的面积公式可得3OA AB ==,从而可得点B 的坐标,再利用待定系数法即可得k 的值;(2)先将点(,)P m n 代入反比例函数的解析式可得9n m=,再分①点P 在点B 的右侧,②点P 在点B 的左侧两种情况,分别利用矩形的面积公式即可得;(3)根据(2)的结果,求出3S =时,m 的值,由此即可得出答案.【详解】解:(1)正方形OABC 的面积为9,3OA AB ∴==,(3,3)B ∴, 将点(3,3)B 代入k y x =得:339k =⨯=;(2)由(1)得:反比例函数的解析式为9y x =,将点(,)P m n 代入9y x =得:9n m=, 由题意,分以下两种情况: ①如图,当点P 在点B 的右侧,即3m ≥时,则9,OE m PE n m===, 3AE OE OA m ∴=-=-,927(3)9S AE PE m m m∴=⋅=-⋅=-; ②如图,当点P 在点B 的左侧,即03m <<时,则9,PF OE m OF PE n m=====, 93CF OF OC OF AB m∴=-=-=-, 9(3)93S PF CF m m m∴=⋅=⋅-=-,综上,S关于m的函数关系式为93(03)279(3)m mSmm-<<⎧⎪=⎨-≥⎪⎩;(3)①当03m<<时,933S m=-=,解得2m=,则92n=,即此时点P的坐标为9 (2,)2 P;②当3m≥时,2793Sm=-=,解得92m=,则9292n==,即此时点P的坐标为9(,2)2P;综上,点P的坐标为(92,2)或9(,2)2.【点睛】本题考查了反比例函数与几何综合等知识点,较难的是题(2),正确分两种情况讨论是解题关键.3、(1)5;(2)能,理由见解析.【分析】(1)根据函数解析分别求得5x=时,30x=时的函数值,即可得到结论;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【详解】设线段AB的解析式为:y AB=kx+b,把(10,50)和(0,30)代入得,105030k bb+=⎧⎨=⎩,解得230k b =⎧⎨=⎩, ∴直线AB 的解析式为:230AB y x =+;设双曲线CD 的函数关系式为:CD a y x =, 把(20,50)代入得,50=20a , ∴a =1000,∴双曲线CD 的函数关系式为:1000CD y x=; (1)当5x =时,40AB y =,30x =时,1003CD y = 100403> 故答案为:5;(2)当y =40时,则2x +30=40,解得x =5;当y =40时,则1000x=40,解得x =25. ∴25﹣5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.【点睛】本题考查了反比例函数与一次函数的应用,根据函数图象获取信息是解题的关键.4、(1)y =12x,A (6,2);(2)(ⅰ)=;(ⅱ)30 【分析】(1)根据点B的纵坐标是﹣2,结合正比例函数可得B(﹣6,﹣2),利用点B在反比例函数图像上,求出反比例函数的表达式为12yx=,再利用解方程组1213yxy x⎧=⎪⎪⎨⎪=⎪⎩时,求出点A即可;(2)(ⅰ)根据直线13y x=沿y轴向上平移5个单位后得到直线l,1y x53=+,得出直线AB与直线l1互相平行,可得平行线间的距离处处相等,两三角形底相同,高是平行线间的距离可得S△ABC=S△ABD;(ⅱ)根据平移可得OD=5,利用S△ABD=S△BOD+S△AOD求出S△ABD,再利用S△ABC=S△ABD可求.【详解】解:(1)∵点B的纵坐标是﹣2,∴123x-=即x=﹣6,∴B(﹣6,﹣2),把B的坐标代入kyx=,即k=12,∴反比例函数的表达式为12yx =,点A是两函数的交点∴1213 yx y x ⎧=⎪⎪⎨⎪=⎪⎩解方程组得6622 x xy y==-⎧⎧⎨⎨==-⎩⎩,∴A(6,2);(2)(ⅰ)S△ABC=S△ABD;直线13y x=沿y轴向上平移5个单位后得到直线l,1y x53=+∴直线AB与直线l1互相平行,∵平行线间的距离处处相等,∴S △ABC =S △ABD ;故答案为:=;(ⅱ)由题意得,OD =5,∴S △ABD =S △BOD +S △AOD =()11166=56+6=30222OD OD ⨯-+⨯⨯⨯,∴S △ABC =S △ABD =30.【点睛】本题考查一次函数及其应用;反比例函数及其应用;模型思想.反比例函数和一次函数的交点问题,根据题意求出函数解析式是解题关键.5、(1)y =24x(x >0);(2)当3<y <6时x 的取值范围为4<x <8. 【分析】(1)利用平行四边形的面积公式列出函数关系式即可;(2)根据x 的取值范围确定y 的取值范围即可.【详解】(1)∵BC 边的长为x (cm ),BC 边上的高线AE 长为y (cm ),已知▱ABCD 的面积等于24cm 2. ∴根据平行四边形的面积计算方法得:xy =24,∴y =24x (x >0); (2)当y =3时x =8,当y =6时x =4,所以当3<y <6时x 的取值范围为4<x <8.【点睛】本题考查了反比例函数的应用及平行四边形的性质的知识,解题的关键是根据题意列出函数关系式.。

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档y??x?4与两坐标轴分别交于A、B5.如图,直线两点,初三函数综合题边长为2的正方形OCEF沿着x轴的正方向移动,设平一、选择题a(0?a?4),正方形OCEF与△移的距离为AOB重叠kax0k?k?yy的函数关系的图象大致是(与是常数,且部分的面积为),S1.已知反比例函数与.则表示的部分对应值如表所示,S x m S那么的值等于SSSx41?3 D. C. .A-3 B. 33a42a O aa4442O2OO y2c??bx?yax如图,已知二次函数的图象,下列结论:2.二、解答题2 .+= x3+4x.已知二次函数1y0a?abcb?c?0a??b?c0?; ; ③;②① 2 2 -kh+4x)+3化成y 的形式;=a ()用配方法将(1yx= x+1-1Ox(2)在平面直角坐标系中,画出这个二次函数的图象;0b?2a?④) ;⑤△正确的个数是( y(>0.3x为何值时,)写出当个D.1 个 B.3个 C.2 A. 4 个y2c??yaxbx?的是如图所示二次函数的图象,下列说法不正确3. ...0?acA.m?yb??kxy、1图象交于如图,一次函数2. A(-2,)的图象与反比例函数321??x3x?0?ax??bxc-1 x O B.方程的根为,x120b???ca C.yB(1,n)两点。

1x?xy.的增大而增大时, D.当随着)求反比例函数和一次函数的解析式;(1 8题图 Ax的(2)根据图象写出使一次函数的值小于反比例函数的值的,的正方形在边长为4. 2ABCD 过ACEFP作∥BDPOBDAC中,对角线与相交于点,是上一动点,取值范围。

xO之间关系的图,△BP设=,则能反映的面积为BEF与. 、分别交正方形的两条边于点EF yy xx ()象为By yyy2c?bxy?ax?yx与自变量已知二次函数中,函数的部分对应值如下表:3.2 222x301?412……y-2-12…2…7-1x0 x0x x0220(1)求二次函数的解析式;2222222222)求以二次函数图像与坐标轴交点为顶点的三角形面积;2(ACBD)1,y?(Bm)(Amy,yy试比较且若)3(,两点都在该函数的图象上,, m<2, 与的大小.2121精品文档.精品文档4. 如图,抛物线②是由抛物线①平移后得到的.2经过点A(-1,0)、:B (3,0)、9. 已知:抛物线C cy?ax??bx1 1)分别求出抛物线①和抛物线②的解析式;(C(2()抛物线①的对称轴与抛物线②交于点A,求点A的坐标.0,-3).(1)求抛物线C的解析式;1(2)将抛物线C向左平移几个单位长度,可使所得的抛物线1C经过坐标原点,并写出C的解析式;222x3xx??2?y、轴的两个交点分别为已知:抛物线与A5.o 绕点A(-1O)旋转180,,写出所得抛物(3)把抛物线C1的坐标.顶点D线C3b?y?kx A经过点、,直线轴交于点的左侧,与yC,顶点为DC.在点B,点AB的坐标和直线AC的解析式;D(1)求点22xbx?1y?axy?x?2x?A的图象与.二次函数如图,已知二次函数的图象的顶点为10. ACD?ACP?PP. 的坐标(2)点为抛物线上的一个动点,求使得的面积相等的点的面积与2CO?2xx?1y?B的图象的对称轴上.在函数轴交于原点,它的顶点及另一点2c?bx?yax?0)a(?yx,中的6.已知:二次函数满足下表:C2的关系式.)当四边形为菱形时,求函数(2m;)(1的值为. 2()求这个二次函数的解析式m?ybkxy?? 7. 已知如图,一次函数的图象与反比例函数xy(单心理学家经过调查发现,某班级的学生对概念的接受能力与提出概念所用的时间11. x.的图象相交于A两点、B2?2.6x?43(0?y??0.1xx?30)y值越大,表示接.其中,位:分)之间满足函数关系:;(1)利用图中条件,求反比例函数和一次函数的解析式x的取2)根据图象写出使一次函数的值大于反比例函数的值的(受能力越强.. 值范围(1)第10分钟时,学生的接受能力是多少?(2)第几分时,学生的接受能力最强?x224?mxm??x1m?y(?)在什么范围内,学生的接受能力逐步增强?)(3. 已知:抛物线8. .的图象经过原点,且开口向上)1(m确定的值;y12. 如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水8 2(求此抛物线的顶点坐标;)位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m 6(x)3画出抛物线的图象,结合图象回答:当取速度上升,经过多少小时会达到拱顶? 4y什么值时,的增大而增大?随x2x结合图象回答:当?取什么值时,y<0CD x86-2-4-6-842O AB-2-4-6-8精品文档.精品文档16. 如图1是一个供滑板爱好者滑行使用的U元时,房间可以住型池,图2是该U型池的横截面(实线部分)示6013. 某宾馆客房部有个房间供游客居住,当每个房间的定价为每天200意图,其中四边形满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.设每个房间每天的定价增加AMND是矩形,弧AmD是半圆.x204元.米,点E在CD上,CEAB = CD = = 4米,一(1)若半圆AmD的半径是型池边缘米,U xy(间)关于(元)的函数关系式.(1)房间每天的入住量求:滑板爱好者从点A滑到点E,求他滑行的最短距离(结果可保留根号);xz(元)关于(2)该宾馆每天的房间收费(元)的函数关系式.(2)若U型池的横截面的周长为32米,设AD为2x,U型池的强度为y,已知U型池的强...度是横截面的面积的2倍,当x取何值时,U型池的强度最大.y(万元)14. 某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润CB1E x y(万元)与投入资1(万元)成正比例关系,如图所示;种植花卉的利润与投入资金2ADAD x 所示.金2(万元)成二次函数关系,如图m N x yy M(万元)关于投入资金(万元)的函数关系式;1()分别求出利润(万元)与NM21图1 图2 他至少获得多少利润?他能获取的最8万元资金投入种植花卉和树木,2()如果该园艺公司以大利润是多少?y17. 如图7,某市要在一矩形地块ABCD上规化建设一个矩形街心花园GHCK,为方便文物保护区△AEF不被破坏,花园的顶点G不能在△AEF内,显然,当花园面积最大时,点G应在线EG=t,求当t=,AF30m,设的值为多=EF上;已知AB=150m,AD120m,AE=45 m段FG11少时,花园GHCK的面积最大?图1xa轴的对称点在反比例函,2(18. 已知:点P)关于8x0)?(xy??y的函数数关于的图象上,x台,为了配合国家元的彩电以200015. 某电器商场将进价为82400元售出,平均每天能售出y?(1?a)x?3的图象交x轴于点A﹑交y轴于点B.50商场决定采取适当的降价措施“家电下乡”政策的实施,调查表明:.这种彩电的售价每降低求点P坐标和△PAB的面积.台.4元,平均每天可多售出xx x yy1之间的元,商场每天销售这种彩电的利润是)假设每台彩电降价1(与元,请写出O函数表达式;(不要求写自变量的取值范围) 2()每台彩电降价多少元时,商场每天销售这种彩电的利润最高?最高利润是多少?精品文档.精品文档222x0)a?ax?cm?0y?ax(x??(2m?1)x?m3?ABAC两点,轴交于点,与与y22. 已知:如图,抛物线19. 已知:关于x的一元二次方程轴交于、B点左侧.点B的坐标为(1)求证:此方程有两个不相等的实数根;(1点在,0),OC=3﹒BO .a?2y?3b,(其中2)设此方程的两个实数根分别为a、ba>b),若y且m的函数,是关于( (1)求抛物线的解析式;DACABCD面积的最大值请求出这个函数的解析式;下方抛物线上的动点,求四边形是线段.(2)若点x AC为一边的平行为顶点且以E、P.是否存在以A)请在直角坐标系内画出((32)中所得函数的图象;将此图象在m轴上方的部分沿m轴、C若点 (3)E在、轴上,点P在抛物线上四边形?若存在,求出点P y翻折,在轴左侧的部分沿y轴翻折,其余部分保持不变,得到一个新的图象,动点Q在的坐标;若不存在,请说明理由.4??y. 的横坐标的取值范围被新图象截得的部分(含两端点)上运动,求点Q双曲线m20m?)xy??(?m20. 如图所示,抛物线的顶点为A,其中.x ll x?y3”)平移““(1)已知直线(填:左”或,将直线沿右轴向m个单位(用含A的代数式)后过点;l y问在对称轴左侧的抛Q在抛物线对称轴上,(2)设直线平移后与B轴的交点为,若动点OAB?若存为顶点的三角形与△相似,且相似比为2、,使以物线上是否存在点PP、QA m P点坐标;若不存在,说明理由.在,求出的值,并写出所有符合上述条件的2x0)?(a?bx?cy?axy都是整数,此时23. 对于二次函数,如果当取任意整数时,函数值y2x?2x?y?x2y).称该点()为整点,该函数的图象为整点抛物线(例如:,(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式.(不必证明);2?2x?2y?xy?4)请直接写出整点抛物线与直线(24围成的阴影图形中(不包括边界)所含的整点个数.22?yax??x)0 (a已知抛物线21. . 10x?x)若对称轴为直线1(.2a的值;①求yx y AA②在①的条件下,若的值为正整数,求的值;过点24. 如图,第一象限内的点,在反比例函数图象上x BAOAOBAB的面积连结已知△轴,垂足为,点作,⊥2mx aa??aa2?yxax??M时,当;0,时,当2()抛物线轴的正半轴相交于点与()21为4.(1)求反比例函数的解析式;2nx NNa2xax?y??M试比较.),(轴的正半轴相交于点抛物线与0的左边,若点在点x1PAA,的直线与轴相交于点)(2若点4,的纵坐标为过点AOB相似,B为顶点的三角形与△直接写出、、以AP a.与的大小2P的坐标.所有符合条件的点x精品文档.精品文档2 1 y轴A点在B点左侧),与两点(+ bx + c的图象与x轴的交点为A、3()设y=xB2cy??xbx?A轴交于点A点坐标为25. 抛物线,(2,0)与y与x轴交于A,B两点,其中6 PC,交BC于E,连结,P C(0,2).点为线段AB上一动点,过P点作PE∥AC交于点C P点的坐标.当△1)求抛物线的解析式;PEC的面积最大时,求(12c??y?xbx PQmQP+)在抛物线为此抛物线对称轴上一个动点,求)点8(,上,点(2x C B6在轴相交于点(点、29. 在平面直角坐标系中,以点A(3,0)为圆心、半径为5的圆与B y.在点(点DMC的左边),与的下方)轴相交于点D、M点PB的最小值;EMC CE为是过点的半圆的切线,20)为圆心、为半径,在x3()以点轴下方作半圆,(4,OE的抛物线的解析式;为对称轴,且经过点D、C(1切点,求)求以直线所在直线的解析式.x=3、C,使得以点B、2)若E为这条抛物线对称轴上的点,则在抛物线上是否存在这样的点F(F的坐标;若不存在,说明理由.、EF为顶点的四边形是平行四边形.若存在,求出点xOy轴分别与中,直线ABx轴已知:如图,在平面直角坐标系26. yPBC??CE⊥xABCD?PAD P,那么我们称点为平面内一动点,与反比例函数的图象分别交于点交于点B、AC、D. 30. 轴如图1,已知四边形如果,点x BCABCD1BABP轴建为坐标原点,2为四边形,以点关于所在直线为、如图的等角点.?ABOtan?,OE=2于点E,.求该反比例函数的解析式.=2 OA C26.立平面直角坐标系,点的横坐标为??25x?y??2a C27. 如图,已知抛物线两点(点A在:、轴相交于,与的顶点为PxAB1ABCD4)A(0,4)D(6,BAAD、的等角、,当四边形两点的坐标分别为、关于)若(1.1B点B的左侧),点的横坐标是DC PP 1()求a的值;;点在边上时,则点的坐标为关于C与抛物线)如图,抛物线(2Cx轴对称,将抛物12ABCD4)(6,A(2,4)DBAAD、的等角关于两点的坐标分别为)若2、,当四边形、(C向右平移,平移后的抛物线记为CC的顶点,抛物线线B 332ADC PP、COM关于点成中心对称时,求抛物线的PM为,当点的坐标;点边上时,求点在O x 3解析式.ABCD)y(2,4)(Px,A(10,4)DAAD、、两点的坐标分别为为四边形,、)(3若点关于P C C32x2?x0y?By.与,的等角点,其中,求之间的关系式2 +x下表给出了代数式28. bx的一些对应值:与+cxDBC2图 1 图(c、b)根据表格中的数据,确定1的值,并填齐表格中空白处的对应值;2 x)代数式(2是否有最小值?如果有c+bx+ 求出最小值;如果没有,请说明理由;,精品文档.精品文档,求抛物线的解析式;的面积为6m>1,△ABC(1)若)中的抛物线上的一个动点,且1D在x轴下方,是((2)点轴与抛物线交于另x在该抛物线对称轴的左侧,作DE∥DEGF轴于点G,求矩形x⊥x轴于F,作EG⊥一点E,作DF 周长的最大值;NABx轴上方做菱形ABMN(∠(3)若m<0,以AB为一边在上一点,若边的中点,Q是对角线AM 备用图1 备用图2为锐角),P是AB4的面积最大时,求点A的坐标.,,当菱形ABMN6??PQQB?NABcos?52c?axbx?y?)4,B(8,0)C(0?2,0)(A?. y31. 已知:抛物线、x轴交于点轴交于点,与与的①、②、③中,分别各画1,请你类比直线和一个圆的三种位置关系,在图134. (1)如图my??xFEDDE. ,与抛物线的对称轴交于点与抛物线交于点在、(的左侧)直线出一条直线,使它与两个圆都相离、与两个圆都相切、与一个圆相离且与另一个圆相交,并在的④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系;图1 (1)求抛物线的解析式;DCF2??m的大小;(2)当时,求my?x????DPF45PP 只,使得,且满足条件的点(3)若在直线下方的抛物线上存在点④①②③m有两个,则的值为.(第(3)问不要求写解答过程)1图ABABA厘米.的半径均为、11在直线MN上,AB=厘米,1、(2)如图2,点B r(厘米)与厘米的速度自左向右运动,与此同时,的半径也不断增大,其半径以每秒20)?(tr?1?t A出发后多少秒两圆内切?.请直接写出点时间t(秒)之间的关系式为MNBA2图备用图2 备用图1 2,且它到原x,在轴正半轴上有一点A),(,20C 32.已知在平面直角坐标系中,点(,)D343y??xbx??0),1A(?xOy,顶35.如图,在平面直角坐标系中,二次函数的图象经过点B1.点的距离为点为.、、)求过点(1CAD的抛物线的解析式;)求这个二次函数的解析式;(1BCBCAE?C0),(4AEDEA在直线垂足为点过点,作(2)若点的坐标为当点.,连接,的面积;,求四边形轴的另一个交点为x)中抛物线与)设(2(1BCABD D1?DE的坐标.时,求点上,且满足)中的抛物线先向左平移一个单位,再向上或向下平移多少个单位能使抛物线与直)把(3(1m2? AC⊥(,一开口向上的抛物线与36. x轴交于AB两点,C.,BC)为抛物线顶点,且AD线只有一个交点?m是常数,求抛物线的解析式;1()若2,33. 、)0,在(A轴交于点x已知:抛物线与A()0,的左侧)B(B m?x)1?m(x?y?xx x E21,使点。

相关文档
最新文档