初三中考数学函数综合题
2023年九年级中考数学专题训练:二次函数综合(含简单答案)

2023年九年级中考数学专题训练:二次函数综合一、单选题1.已知抛物线()2330y x x c x =++-≤≤与直线2y x =-有且只有一个交点,若c 为整数,则c 的值有( ) A .1个B .2个C .3个D .4个2.方程231x x +=的根可视为函数3y x的图象与函数1y x=的图象交点的横坐标,那么用此方法可推断出方程321x x +=-的实数根x 所在的范围是( ) A .112x -<<-B .1123x -<<-C .1134x -<<-D .104x -<<3.如图,已知二次函数()()5144y x x =-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,Р为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则APPK的最小值为( )A .94B .2C .74D .544.如图.抛物线y =ax 2+c 与直线y =mx +n 交于A (﹣1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集为( )A .x >﹣1B .x <3C .x <﹣3或x >1D .﹣1<x <35.如图,抛物线y =12-x 2+7x ﹣452与x 轴交于点A ,B ,把抛物线在x 轴及共上方的部分记作C 1将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12-x +m 与C 1,C 2共3个不同的交点,则m 的取值范是( )A .52928m << B .12928m << C .54528m << D .14528m <<6.在平面直角坐标系中,对图形F 给出如下定义:若图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,如图中的矩形ABCD 的坐标角度是90°.现将二次函数()213y ax a =≤≤的图象在直线1y =下方的部分沿直线1y =向上:翻折,则所得图形的坐标角度α的取值范围是( )A .3060α︒≤≤︒B .120150α︒≤≤︒C .90120α︒≤≤︒D .6090α︒≤≤︒7.二次函数y =2x 2﹣2x +m (0<m < 12),如果当x =a 时,y <0,那么当x =a ﹣1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m8.如图,抛物线21322y x x =-++的图象与坐标轴交于点A ,B ,D ,顶点为E ,以AB为直径画半圆交y 负半轴交于点C ,圆心为M ,P 是半圆上的一动点,连接EP . ①点E 在①M 的内部;①CD 的长为32①若P 与C 重合,则①DPE =15°;①在P 的运动过程中,若AP =PE =①N 是PE 的中点,当P 沿半圆从点A 运动至点B 时,点N 运动的路径长是π.则正确的选项为( )A .①①①B .①①①C .①①①D .①①①二、填空题9.如图,已知抛物线24y x x c =-+的顶点为D ,与y 轴交于点C ,过点C 作x 轴的平行线AC 交抛物线于点A ,过点A 作y 轴的平行线AB 交射线OD 于点B ,若OA OB =,则c 的值为_____________.10.已知抛物线()2123y x m x m =-+++以及平面直角坐标系中的点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,则m 的取值范围是________.11.在平面直角坐标系中,抛物线215y x bx c =-+(0b >,b 、c 为常数)的顶点为A ,与y 轴交于点B ,点B 关于抛物线对称轴的对称点为C .若ABC 是等腰直角三角形,则BC 的长为________.12.如图,2=23y x x --与x 轴交于A ,B 两点(A 在左边)与y 轴交于C 点,P 是线段AC 上的一点,连结BP 交y 轴于点Q ,连结OP ,当OAP △和PQC △的面积之和与OBQ △的面积相等时,点P 的坐标为______.13.如图,在平面直角坐标系中,抛物线214y x mx =-+与x 轴正半轴交于点A ,点B是y 轴负半轴上一点,点A 关于点B 的对称点C 恰好落在抛物线上,过点C 作//CD x 轴,交抛物线于点D ,连结OC 、AD .若点C 的横坐标为4-,则四边形OCDA 的面积为___________.14.若243P m m m ++(,)是一个动点(m 为实数),点Q 是直线4y x =-上的另一个动点,则PQ 长度的最小值为_____.15.已知抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点(6,)D y 在抛物线上,E 是该抛物线对称轴上一动点,当BE 十DE 的值最小时,ACE △的面积为是____16.已知:如图,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),我们规定:当AMB 为直角三角形时,就称AMB 为该抛物线的“优美三角形”.若抛物线26y ax bx =++的“优美三角形”的斜边长为4,求a 的值______.三、解答题17.抛物线23y ax bx =++顶点为点(1,4)D ,与x 轴交于点A 、B ,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点.(1)求a 和b 的值;(2)是否存在点P ,使得以P 、D 、B 为顶点的三角形中有两个内角的和等于45°?若存在,求出点P 的坐标;若不存在,说明理由.18.如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x -.(1)求抛物线的表达式;(2)已知点M 是抛物线对称轴上一点,当MB MC +的值最小时,点M 的坐标是___________;(3)若点P 在抛物线对称轴上,是否存在点P ,使以点B ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出P 点的坐标;若不存在,请说明理由.19.如图,已知抛物线233384y x x =--与x 轴的交点为点A 、D (点A 在点D 的右侧),与y 轴的交点为点C .(1)直接写出A 、D 、C 三点的坐标;(2)在抛物线的对称轴上找一点M ,使得MD MC +的值最小,并求出点M 的坐标; (3)设点C 关于抛物线对称轴的对称点为点B ,在抛物线上是否存在点P ,使得以A 、B 、C 、P 四点为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由.20.如图,已知抛物线223y ax ax =++中,当=1x -时,4y =.(1)求此抛物线的解析式;(2)点E 是抛物线上且位于直线AB 上方的一个动点,不与点A ,B 重合,求ABE 的面积最大时,点E 的坐标.(3)若1t x ≤≤时,y 的取值范围是04y ≤≤,请直接写出t 的取值范围.参考答案:1.D 2.B 3.A 4.C 5.A 6.D 7.C 8.D 9.8310.2m <-或m>2或1m = 11.6 12.2,13⎛⎫-- ⎪⎝⎭13.641415.616.12±17.(1)1a =-,2b = (2)存在,(1,2)或(1,6)-18.(1)248433y x x =--+(2)8(1,)3M -(3)存在,P 点的坐标为(1,0)-或(-或(1,-或13(1,)8-19.(1)()4,0A ,()2,0D -,()0,3C -(2)连接AC 交对称轴于点M ,点M 即为所求,91,4M ⎛⎫- ⎪⎝⎭(3)()2,0-或()6,6.20.(1)223y x x =--+(2)315()24-,(3)31t -≤≤-。
中考数学 二次函数综合试题附详细答案

中考数学 二次函数综合试题附详细答案一、二次函数1.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则033k mm==+⎧⎨-⎩,∴13 km⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(6-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-621+62∵点P在第三象限.∴P2(6-52).综上所述:满足条件为P1(2-2),P2(6-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2.∴P (1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y=>,所以可以通过(3)令8y=,即212486x x-++=,可得212240x x-+=,解得12623,623x x=+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.5.如图,抛物线212222y x x=-++与x轴相交于A B,两点,(点A在B点左侧)与y轴交于点C.(Ⅰ)求A B,两点坐标.(Ⅱ)连结AC,若点P在第一象限的抛物线上,P的横坐标为t,四边形ABPC的面积为S.试用含t的式子表示S,并求t为何值时,S最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(A B ;(Ⅱ)2(2S t t =--+<<,当t =时,S =最大;(Ⅲ)满足条件的点m n 、的值为:34m n ==,或154m n ==-,或14m n == 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论.【详解】解:(Ⅰ)抛物线21222y x x =-++,令0y =,则212022x x -++=,解得:x =x =∴((,A B(Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q ,∵P 的横坐标为t ,∴设(),P t p ,∴212,,22p t PQ p BQ t OQ t =-++===,∴()()11122222AOC PQB OCPQ S S S S p t t p =++=++⨯+⨯⨯V V 梯形 1122t pt pt t =++-=++21222t t ⎫=-+++⎪⎪⎭2t t =+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =, ∴)2,2P ,∵抛物线212222y x x =-++的对称轴为22x =, ∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A ,①当AP 和HG 为对角线时, ∴()2112111222,20222222m m n ⎛⎛⎫=++=-+++ ⎪ ⎪⎝⎭⎝⎭, ∴234m n ==, ②当AG 和PH 是对角线时, ∴(()2112112122,20222222m m n ⎛⎫=-++=+ ⎪ ⎪⎭⎝⎭, ∴215,24m n ==-, ③AH 和PG 为对角线时, ∴(()2121112122,22022222m m n ⎛⎛⎫-=+-+++=+ ⎪ ⎪⎝⎭⎝⎭, ∴3214m n ==, 即:满足条件的点m n 、的值为: 2324m n =-=,或5215,24m n ==-,或32124m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.6.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B . (Ⅱ)CDB ∆为直角三角形.理由如下: 由抛物线解析式,得顶点D 的坐标为()1,4. 如答图1所示,过点D 作DM x ⊥轴于点M , 则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=, ∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+, ∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩,解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+, ∵()()3,0,1,4B D , ∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=,∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中: (1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩,∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PBPJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.7.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 82秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3, ∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A′H+A′C≥HC=2218233⎛⎫+=⎪⎝⎭,∴t≥82,即点M在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t的取值范围,难度系数较大,是中考的压轴题.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
中考数学专题五函数应用问题综合题(解析版全国适用)

函数实际问题综合题一、一次函数+二次函数应用问题例题(2020·湖北随州·中考真题)2020年新冠肺炎疫情期间.部分药店趁机将口罩涨价.经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:第x 天1 2 3 4 5 销售价格p (元/只)2 3 4 5 6 销量q (只)7075808590店从第6天起将该型号口罩的价格调整为1元/只.据统计.该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤.且x 为整数).已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式. (2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式.并判断第几天的利润最大.(3)物价部门为了进一步加强市场整顿.对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款.若罚款金额不低于2000元.则m 的取值范围为______.【答案】(1)1p x =+.15x ≤≤且x 为整数.565q x =+.15x ≤≤且x 为整数.(2)22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数.第5天时利润最大.(3)85m . 【解析】 【分析】(1)根据表格数据.p 是x 的一次函数.q 是x 的一次函数.分别求出解析式即可. (2)根据题意.求出利润w 与x 的关系式.再结合二次函数的性质.即可求出利润的最大值.(3)先求出前5天多赚的利润.然后列出不等式.即可求出m 的取值范围. 【详解】(1)观察表格发现p 是x 的一次函数.q 是x 的一次函数. 设p=k 1x+b 1.将x=1.p=2.x=2.p=3分别代入得:1111232k b k b =+⎧⎨=+⎩. 解得:1111k b =⎧⎨=⎩. 所以1p x =+.经验证p=x+1符合题意. 所以1p x =+.15x ≤≤且x 为整数. 设q=k 2x+b 2.将x=1.q=70.x=2.q=75分别代入得:222270752k b k b =+⎧⎨=+⎩. 解得:22565k b =⎧⎨=⎩. 所以565q x =+.经验证565q x =+符合题意. 所以565q x =+.15x ≤≤且x 为整数. (2)当15x ≤≤且x 为整数时.(10.5)(565)W x x =+-+213565522x x =++. 当630x ≤≤且x 为整数时.()2(10.5)280200W x x =--+-240100x x =-+-.即有22135655,152240100,630x x x x W x x x x ⎧++⎪=⎨⎪-+-⎩且为整数且为整数. 当15x ≤≤且x 为整数时.售价.销量均随x 的增大而增大. 故当5x =时.495W =最大(元)当630x ≤≤且x 为整数时.2240100(20)300W x x x =-+-=--+ 故当20x时.300W =最大(元).由495300>.可知第5天时利润最大. (3)根据题意.前5天的销售数量为:7075808590400q =++++=(只). ∴前5天多赚的利润为:(270375480585690)140016504001250W =⨯+⨯+⨯+⨯+⨯-⨯=-=(元).∴12502000m ≥. ∴85m. ∴m 的取值范围为85m . 【点睛】此题考查二次函数的性质及其应用.一次函数的应用.不等式的应用.也考查了二次函数的基本性质.另外将实际问题转化为求函数最值问题.从而来解决实际问题. 练习题1.(2021·山东青岛·中考真题)科研人员为了研究弹射器的某项性能.利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升.此时.在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力).在1秒时.它们距离地面都是35米.在6秒时.它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示.小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式. (2)求出2y 与x 之间的函数关系式.(3)小钢球弹射1秒后直至落地时.小钢球和无人机的高度差最大是多少米?【答案】(1)1530y x =+.(2)22540y x x =-+.(3)70米【解析】 【分析】(1)先设出一次函数的解析式.再用待定系数法求函数解析式即可. (2)用待定系数法求函数解析式即可.(3)当1<x ≤6时小钢球在无人机上方.因此求y 2-y 1.当6<x ≤8时.无人机在小钢球的上方.因此求y 1-y 2.然后进行比较判断即可. 【详解】解:(1)设y 1与x 之间的函数关系式为y 1=kx +b'. ∵函数图象过点(0.30)和(1.35).则'35'30k b b +=⎧⎨=⎩. 解得5'30k b =⎧⎨=⎩. ∴y 1与x 之间的函数关系式为1530y x =+. (2)∵6x =时.1563060y =⨯+=. ∵2y 的图象是过原点的抛物线.∴设22y ax bx =+.∴点()1,35.()6,60在抛物线22y ax bx =+上.∴3536660a b a b +=⎧⎨+=⎩.即35610a b a b +=⎧⎨+=⎩. 解得540a b =-⎧⎨=⎩. ∴22540y x x =-+.答:2y 与x 的函数关系式为22540y x x =-+.(3)设小钢球和无人机的高度差为y 米. 由25400x x -+=得10x =或28x =. ①16x <≤时.21y y y =-2540530x x x =-+-- 253530x x =-+-27125524x ⎛⎫=--+⎪⎝⎭. ∵50a =-<.∴抛物线开口向下. 又∵16x <≤. ∴当72x =时.y 的最大值为1254. ②68x <≤时.12y y y =-2530540x x x =++- 253530x x =-+27125524x ⎛⎫=--⎪⎝⎭. ∵50a =>.∴拋物线开口向上. 又∵对称轴是直线72x =. ∴当72x >时.y 随x 的增大而增大. ∵68x <≤.∴当8x =时.y 的最大值为70. ∵125704<. ∴高度差的最大值为70米. 答:高度差的最大值为70米. 【点睛】本题考查了二次函数以及一次函数的应用.关键是根据根据实际情况判断无人机和小钢球的高度差.2.(2021·辽宁盘锦·中考真题)某工厂生产并销售A .B 两种型号车床共14台.生产并销售1台A 型车床可以获利10万元.如果生产并销售不超过4台B 型车床.则每台B 型车床可以获利17万元.如果超出4台B 型车床.则每超出1台.每台B 型车床获利将均减少1万元.设生产并销售B 型车床x 台. (1)当4x >时.完成以下两个问题: ①请补全下面的表格:A 型B 型车床数量/台 ________ x每台车床获利/万元10________70万元.问:生产并销售B 型车床多少台?(2)当0<x ≤14时.设生产并销售A .B 两种型号车床获得的总利润为W 万元.如何分配生产并销售A .B 两种车床的数量.使获得的总利润W 最大?并求出最大利润. 【答案】(1)①14x -.21x -.②10台.(2)分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元 【解析】 【分析】(1)①由题意可知.生产并销售B 型车床x 台时.生产A 型车床(14-x )台.当4x >时.每台就要比17万元少(4x -)万元.所以每台获利17(4)x --.也就是(21x -)万元. ②根据题意可得根据题意:(21)10(14)70x x x ---=然后解方程即可. (2)当0≤x ≤4时.W =10(14)x -+17x =7140x +.当4<x ≤14时. W =2( 5.5)170.25x --+.分别求出两个范围内的最大值即可得到答案. 【详解】解:(1)当4x >时.每台就要比17万元少(4x -)万元 所以每台获利17(4)x --.也就是(21x -)万元 ①补全表格如下面:A 型B 型车床数量/台 14x -x每台车床获利/万元1021x -由B 型可获得利润为(21)x x -万元.根据题意:(21)10(14)70x x x ---=. 2312100x x -+=.(21)(10)0x x --=.∵0≤x ≤14. ∴10x =.即应产销B 型车床10台. (2)当0≤x ≤4时. 当0≤x ≤4 A 型 B 型车床数量/台 14x -x每台车床获利/万元 1017 利润10(14)x -17x该函数值随着x 的增大而增大.当x 取最大值4时.W 最大1=168(万元). 当4<x ≤14时. 当4<x ≤14 A 型 B 型车床数量/台 14x -x每台车床获利/万元1021x -利润10(14)x - (21)x x -则=+=211140x x -++=( 5.5)170.25x --+.当5x =或6x =时(均满足条件4<x ≤14).W 达最大值W 最大2=170(万元). ∵W 最大2> W 最大1.∴应分配产销A 型车床9台、B 型车床5台.或产销A 型车床8台、B 型车床6台.此时可获得总利润最大值170万元. 【点睛】本题主要考查了一元二次方程的实际应用.一次函数和二次函数的实际应用.解题的关键在于能够根据题意列出合适的方程或函数关系式求解.3.(2021·辽宁锦州·中考真题)某公司计划购进一批原料加工销售.已知该原料的进价为6.2万元/t .加工过程中原料的质量有20%的损耗.加工费m (万元)与原料的质量x (t )之间的关系为m =50+0.2x .销售价y (万元/t )与原料的质量x (t )之间的关系如图所示.(1)求y 与x 之间的函数关系式.(2)设销售收入为P (万元).求P 与x 之间的函数关系式.(3)原料的质量x 为多少吨时.所获销售利润最大.最大销售利润是多少万元?(销售利润=销售收入﹣总支出).【答案】(1)1y 204x =-+.(2)21165P x x =-+.(3)原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元 【解析】 【分析】(1)利用待定系数法求函数关系式.(2)根据销售收入=销售价×销售量列出函数关系式.(3)设销售总利润为W .根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式.然后根据二次函数的性质分析其最值. 【详解】解:(1)设y 与x 之间的函数关系式为y kx b +=. 将(20.15).(30.12.5)代入. 可得:20153012.5k b k b +=⎧⎨+=⎩. 解得:1420k b ⎧=-⎪⎨⎪=⎩. ∴y 与x 之间的函数关系式为1y 204x =-+.(2)设销售收入为P (万元).∴()2411120%2016545P xy x x x x ⎛⎫=-=⨯-+=-+ ⎪⎝⎭.∴P 与x 之间的函数关系式为21165P x x =-+.(3)设销售总利润为W .∴()216.216 6.2500.25W P x m x x x x =--=-+--+.整理.可得:()22148132650245555W x x x =-+-=--+. ∵﹣15<0.∴当24x =时.W 有最大值为3265. ∴原料的质量为24吨时.所获销售利润最大.最大销售利润是3265万元. 【点睛】本题考查了二次函数的实际应用.涉及了数形结合的数学思想.熟练掌握待定系数法求解析式是解决本题的关键.4.(2021·湖北荆门·中考真题)某公司电商平台.在2021年五一长假期间.举行了商品打折促销活动.经市场调查发现.某种商品的周销售量y (件)是关于售价x (元/件)的一次函数.下表仅列出了该商品的售价x .周销售量y .周销售利润W (元)的三组对应值数据. x 40 70 90 y1809030W 3600 4500 2100.(2)若该商品进价a (元/件).售价x 为多少时.周销售利润W 最大?并求出此时的最大利润.(3)因疫情期间.该商品进价提高了m (元/件)(0m >).公司为回馈消费者.规定该商品售价x 不得超过55(元/件).且该商品在今后的销售中.周销售量与售价仍满足(1)中的函数关系.若周销售最大利润是4050元.求m 的值.【答案】(1)3300y x =-+.(2)售价60元时.周销售利润最大为4800元.(3)5m = 【解析】 【分析】(1)①依题意设y=kx+b.解方程组即可得到结论.(2)根据题意得(3300)()W x x a =-+-.再由表格数据求出20a =.得到2(3300)(20)3(60)4800W x x x =-+-=--+.根据二次函数的顶点式.求出最值即可.(3)根据题意得3(100)(20)(55)W x x m x =----.由于对称轴是直线60602mx =+>.根据二次函数的性质即可得到结论. 【详解】解:(1)设y kx b =+.由题意有401807090k b k b +=⎧⎨+=⎩.解得3300k b =-⎧⎨=⎩. 所以y 关于x 的函数解析式为3300y x =-+. (2)由(1)(3300)()W x x a =-+-.又由表可得: 3600(340300)(40)a =-⨯+-.20a ∴=.22(3300)(20)336060003(60)4800W x x x x x ∴=-+-=-+-=--+.所以售价60x =时.周销售利润W 最大.最大利润为4800. (3)由题意3(100)(20)(55)W x x m x =----. 其对称轴60602mx =+>.055x ∴<时上述函数单调递增. 所以只有55x =时周销售利润最大.40503(55100)(5520)m ∴=----. 5m ∴=.【点睛】本题考查了二次函数在实际生活中的应用.重点是掌握求最值的问题.注意:数学应用题来源于实践.用于实践.在当今社会市场经济的环境下.应掌握一些有关商品价格和利润的知识.总利润等于总收入减去总成本.然后再利用二次函数求最值.5.(2021·辽宁营口·中考真题)某商家正在热销一种商品.其成本为30元/件.在销售过程中发现随着售价增加.销售量在减少.商家决定当售价为60元/件时.改变销售策略.此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x (元/件)满足如图所示的函数关系.(其中4070x ≤≤.且x 为整数)(1)直接写出y 与x 的函数关系式.(2)当售价为多少时.商家所获利润最大.最大利润是多少?【答案】(1)10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩.(2)当售价为70元时.商家所获利润最大.最大利润是4500元 【解析】 【分析】(1)利用待定系数法分段求解函数解析式即可.(2)分别求出当4060x ≤≤时与当6070x <≤时的销售利润解析式.利用二次函数的性质即可求解. 【详解】解:(1)当4060x ≤≤时.设11y k x b =+. 将()40,300和()60,100代入.可得11113004010060k b k b =+⎧⎨=+⎩.解得1110700k b =-⎧⎨=⎩.即10700y x =-+. 当6070x <≤时.设22y k x b =+. 将()70,150和()60,100代入.可得22221507010060k b k b =+⎧⎨=+⎩.解得225200k b =⎧⎨=-⎩.即5200y x =-. ∴10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩. (2)当4060x ≤≤时.销售利润()()22301010002100010504000w y x x x x =⋅-=-+-=--+.当50x =时.销售利润有最大值.为4000元. 当6070x <≤时.销售利润()()()2230150605500150005502500w y x x x x x =⋅---=-+=-+.该二次函数开口向上.对称轴为50x =.当6070x <≤时位于对称轴右侧. 当70x =时.销售利润有最大值.为4500元. ∵45004000>.∴当售价为70元时.商家所获利润最大.最大利润是4500元. 【点睛】本题考查一次函数的应用、二次函数的性质.根据图象列出解析式是解题的关键. 6.(2021·湖南郴州·中考真题)某商店从厂家以每件2元的价格购进一批商品.在市场试销中发现.此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:x… 4.0 5.0 5.5 6.5 7.5 … y…8.06.05.03.01.0…(1)根据表中的数据.在图中描出实数对(,)x y 所对应的点.并画出y 关于x 的函数图象. (2)根据画出的函数图象.求出y 关于x 的函数表达式. (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式.②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本).若物价局限定商品的销售单价不得超过....进价的200%.则此时的销售单价应定为多少元? 【答案】(1)图象见详解.(2)216y x =-+.(3)①222032P x x =-+-.②销售单价应定为3元. 【解析】 【分析】(1)由题意可直接进行作图.(2)由图象可得y 与x 满足一次函数的关系.所以设其关系式为y kx b =+.然后任意代入表格中的两组数据进行求解即可.(3)①由题意易得()2P x y =-.然后由(2)可进行求解.②由①及题意可得22203210x x -+-=.然后求解.进而根据销售单价不得超过进价的200%可求解.【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+.则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩.解得:216k b =-⎧⎨=⎩. ∴y 与x 的函数关系式为216y x =-+. (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-.∴P 关于x 的函数表达式为222032P x x =-+-. ②由题意得:2200x ≤⨯%.即4x ≤. ∴22203210x x -+-=. 解得:123,7x x ==.∴3x=.答:此时的销售单价应定为3元.【点睛】本题主要考查二次函数与一次函数的应用.熟练掌握二次函数与一次函数的应用是解题的关键.7.(2021·四川南充·中考真题)超市购进某种苹果.如果进价增加2元/千克要用300元.如果进价减少2元/千克.同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克.就按原价购进.如果购进苹果超过100千克.超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克.且购进苹果当天全部销售完.据统计.销售单价z(元/千克)与一天销售数量x(千克)的关系为112100z x=-+.在(2)的条件下.要使超市销售苹果利润w(元)最大.求一天购进苹果数量.(利润=销售收入-购进支出)【答案】(1)苹果的进价为10元/千克.(2)10(100)8200(100)x xyx x≤⎧=⎨+>⎩.(3)要使超市销售苹果利润w最大.一天购进苹果数量为200千克.【解析】【分析】(1)设苹果的进价为x元/千克.根据等量关系.列出分式方程.即可求解.(2)分两种情况:当x≤100时. 当x>100时.分别列出函数解析式.即可.(3)分两种情况:若x≤100时.若x>100时.分别求出w关于x的函数解析式.根据二次函数的性质.即可求解.【详解】解:(1)设苹果的进价为x元/千克.由题意得:30020022x x=+-.解得:x=10.经检验:x=10是方程的解.且符合题意.答:苹果的进价为10元/千克.(2)当x≤100时.y=10x.当x>100时.y=10×100+(10-2)×(x-100)=8x+200.∴10(100)8200(100)x x y x x ≤⎧=⎨+>⎩. (3)若x ≤100时.w =zx -y =21112102100100x x x x x ⎛⎫-+-=-+ ⎪⎝⎭=()21100100100x --+. ∴当x =100时.w 最大=100. 若x >100时.w =zx -y =()2111282004200100100x x x x x ⎛⎫-+-+=-+- ⎪⎝⎭=()21200200100x --+. ∴当x =200时.w 最大=200.综上所述:当x =200时.超市销售苹果利润w 最大.答:要使超市销售苹果利润w 最大.一天购进苹果数量为200千克. 【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用.根据数量关系.列出函数解析式和分式方程.是解题的关键.8.(2021·湖北十堰·中考真题)某商贸公司购进某种商品的成本为20元/kg .经过市场调研发现.这种商品在未来40天的销售单价y (元/kg )与时间x (天)之间的函数关系式为:0.2530(120)35(2040)x x y x +≤≤⎧=⎨<≤⎩且x 为整数.且日销量()kg m 与时间x (天)之间的变化规律符合一次函数关系.如下表: 时间x (天) 1 3 6 10 …日销量()kg m 142 138 132 124 …(1)m 与x 的函数关系为___________.(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中.公司决定每销售1kg 商品就捐赠n 元利润(4n <)给当地福利院.后发现:在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.求n 的取值范围.【答案】(1)2144m x =-+.(2)第16天销售利润最大.最大为1568元.(3)1.75<n <4 【解析】 【分析】(1)设m kx b =+.将()1142,.()3138,代入.利用待定系数法即可求解. (2)分别写出当120x ≤≤时与当2040x <≤时的销售利润表达式.利用二次函数和一次函数的性质即可求解.(3)写出在前20天中.每天扣除捐赠后的日销售利润表达式.根据二次函数的性质可得对称轴16220n +≤.求解即可. 【详解】解:(1)设m kx b =+.将()1142,.()3138,代入可得: 1421383k b k b =+⎧⎨=+⎩.解得2144k b =-⎧⎨=⎩. ∴2144m x =-+. (2)当120x ≤≤时.销售利润()()()212021440.2530201615682W my m x x x =-=-++-=--+. 当16x =时.销售利润最大为1568元. 当2040x <≤时.销售利润20302160W my m x =-=-+. 当21x =时.销售利润最大为1530元.综上所述.第16天销售利润最大.最大为1568元. (3)在前20天中.每天扣除捐赠后的日销售利润为:()()()21'200.2510214416214401442W my m nm x n x x n x n =--=+--+=-+++-.对称轴为直线x ═16+2n .∵在前20天中.每天扣除捐赠后的日销售利润随时间x 的增大而增大.且x 只能取整数.故只要第20天的利润高于第19天. 即对称轴要大于19.5 ∴16+2n >19.5. 求得n >1.75.又∵n <4. ∴n 的取值范围是:1.75<n <4. 答:n 的取值范围是1.75<n <4. 【点睛】本题考查二次函数与一次函数的实际应用.掌握二次函数与一次函数的性质是解题的关键.9.(2021·江苏扬州·中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租.下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元.那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元.那么将少租出1辆汽车.另外.公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元.无论是否租出汽车.公司均需一次性支付月维护费共计1850元. ..②月利润=月租车费-月维护费.③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润. 在两公司租出的汽车数量相等的条件下.根据上述信息.解决下列问题:(1)当每个公司租出的汽车为10辆时.甲公司的月利润是_______元.当每个公司租出的汽车为_______辆时.两公司的月利润相等. (2)求两公司月利润差的最大值.(3)甲公司热心公益事业.每租出1辆汽车捐出a 元()0a >给慈善机构.如果捐款后甲公司剩余的月利润仍高于乙公司月利润.且当两公司租出的汽车均为17辆时.甲公司剩余的月利润与乙公司月利润之差最大.求a 的取值范围. 【答案】(1)48000.37.(2)33150元.(3)50150a << 【解析】 【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金.再乘以10.减去维护费用可得甲公司的月利润.设每个公司租出的汽车为x 辆.根据月利润相等得到方程.解之即可得到结果. (2)设两公司的月利润分别为y 甲.y 乙.月利润差为y .同(1)可得y 甲和y 乙的表达式.再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况.列出y 关于x 的表达式.根据二次函数的性质.结合x 的范围求出最值.再比较即可.(3)根据题意得到利润差为()25018001850y x a x =-+-+.得到对称轴.再根据两公司租出的汽车均为17辆.结合x 为整数可得关于a 的不等式180016.517.5100a-<<.即可求出a 的范围. 【详解】解:(1)()50105030001020010-⨯+⨯-⨯⎡⎤⎣⎦=48000元.当每个公司租出的汽车为10辆时.甲公司的月利润是48000元. 设每个公司租出的汽车为x 辆.由题意可得:()5050300020035001850x x x x -⨯+-=-⎡⎤⎣⎦. 解得:x =37或x =-1(舍).∴当每个公司租出的汽车为37辆时.两公司的月利润相等.(2)设两公司的月利润分别为y 甲.y 乙.月利润差为y . 则y 甲=()50503000200x x x -⨯+-⎡⎤⎣⎦. y 乙=35001850x -.当甲公司的利润大于乙公司时.0<x <37. y =y 甲-y 乙=()()5050300020035001850x x x x -⨯+---⎡⎤⎣⎦ =25018001850x x -++. 当x =1800502--⨯=18时.利润差最大.且为18050元. 当乙公司的利润大于甲公司时.37<x ≤50. y =y 乙-y 甲=()3500185050503000200x x x x ---⨯++⎡⎤⎣⎦ =25018001850x x --. ∵对称轴为直线x =1800502--⨯=18. 当x =50时.利润差最大.且为33150元. 综上:两公司月利润差的最大值为33150元.(3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润.则利润差为25018001850y x x ax =-++-=()25018001850x a x -+-+.对称轴为直线x =1800100a-. ∵x 只能取整数.且当两公司租出的汽车均为17辆时.月利润之差最大. ∴180016.517.5100a-<<. 解得:50150a <<. 【点睛】本题考查了二次函数的实际应用.二次函数的图像和性质.解题时要读懂题意.列出二次函数关系式.尤其(3)中要根据x 为整数得到a 的不等式.10.(2018·湖北荆门·中考真题)随着龙虾节的火热举办.某龙虾养殖大户为了发挥技术优势.一次性收购了10000kg 小龙虾.计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同.放养10天的总成本为166000.放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg.销售单价为y 元/kg.根据往年的行情预测.a 与t 的函数关系为a=()()1000002010080002050t t t ⎧≤≤⎪⎨+<≤⎪⎩.y 与t 的函数关系如图所示. (1)设每天的养殖成本为m 元.收购成本为n 元.求m 与n 的值. (2)求y 与t 的函数关系式.(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少? (总成本=放养总费用+收购成本.利润=销售总额﹣总成本)【答案】(1)m=600.n=160000.(2)()()316020513220505t t y t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩.(3)该龙虾养殖大户将这批小龙虾放养25天后一次性出售所得利润最大.最大利润是108500元. 【解析】 【详解】【分析】(1)根据题意列出方程组.求出方程组的解得到m 与n 的值即可. (2)根据图象.分类讨论利用待定系数法求出y 与P 的解析式即可.(3)根据W=ya ﹣mt ﹣n.表示出W 与t 的函数解析式.利用一次函数与二次函数的性质求出所求即可.【详解】(1)依题意得1016600030178000m n m n +=⎧⎨+=⎩ . 解得:600160000m n =⎧⎨=⎩. (2)当0≤t≤20时.设y=k 1t+b 1.由图象得:111162028b k b =⎧⎨+=⎩. 解得:113516k b ⎧=⎪⎨⎪=⎩ ∴y=35t+16.当20<t≤50时.设y=k 2t+b 2.由图象得:222220285022k b k b +=⎧⎨+=⎩.解得:221532k b ⎧=-⎪⎨⎪=⎩. ∴y=﹣15t+32.综上.()()3160t 205y 13220t 505t t ⎧+≤≤⎪⎪=⎨⎪-+<≤⎪⎩. (3)W=ya ﹣mt ﹣n.当0≤t≤20时.W=10000(35t+16)﹣600t ﹣160000=5400t.∵5400>0.∴当t=20时.W 最大=5400×20=108000.当20<t≤50时.W=(﹣15t+32)(100t+8000)﹣600t ﹣160000=﹣20t 2+1000t+96000=﹣20(t ﹣25)2+108500. ∵﹣20<0.抛物线开口向下. ∴当t=25.W 最大=108500. ∵108500>108000.∴当t=25时.W 取得最大值.该最大值为108500元.【点睛】本题考查了二次函数的应用.具体考查了待定系数法确定函数解析式.利用二次函数的性质确定最值.熟练掌握二次函数的性质是解本题的关键.二、一次函数+反比例函数应用问题例题(2021·广东深圳·中考真题)探究:是否存在一个新矩形.使其周长和面积为原矩形的2倍、12倍、k 倍.(1)若该矩形为正方形.是否存在一个正方形.使其周长和面积都为边长为2的正方形的2倍?_______(填“存在”或“不存在”).(2)继续探究.是否存在一个矩形.使其周长和面积都为长为3.宽为2的矩形的2倍? 同学们有以下思路:设新矩形长和宽为x 、y .则依题意10x y +=.12xy =.联立1012x y xy +=⎧⎨=⎩得210120x x -+=.再探究根的情况:根据此方法.请你探究是否存在一个矩形.使其周长和面积都为原矩形的12倍.如图也可用反比例函数与一次函数证明1l :10y x =-+.2l :12y x=.那么.①是否存在一个新矩形为原矩形周长和面积的2倍?_______. ②请探究是否有一新矩形周长和面积为原矩形的12.若存在.用图像表达. ③请直接写出当结论成立时k 的取值范围:.【答案】(1)不存在.(2)①存在.②不存在.见解析.③2425k 【解析】 【分析】(1)直接求出边长为2的正方形周长与面积.再求出周长扩大2倍即边长扩大2倍时正方形的面积.比较是否也为2倍即可.(2)①依题意根据一元二次方程根的情况判断即可.②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立.求出关于x 、y 的一元二次方程.判断根的情况.③设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =.同样列出一元二次方程.利用根的判别式进行求解即可. 【详解】(1)边长为2的正方形.周长为8.面积为4.当周长为其2倍时.边长即为4.面积为16.即为原来的4倍.故不存在. (2)①存在.∵210120x x -+=的判别式0∆>.方程有两组正数解.故存在. 从图像来看.1l :10y x =-+.2l :12y x=在第一象限有两个交点.故存在. ②设新矩形长和宽为x 、y .则依题意52x y +=.3xy =.联立523x y xy ⎧+=⎪⎨⎪=⎩得25302x x -+=. 因为∆<0.此方程无解.故这样的新矩形不存在.从图像来看.1l :52y x =-+.2l :3y x =在第一象限无交点.故不存在.③2425k. 设新矩形长和宽为x 和y .则由题意5x y k +=.6xy k =. 联立56x y k xy k +=⎧⎨=⎩得2560x kx k -+=.225240k k ∆=-.故2425k .【点睛】本题考查了一元二次方程的应用.根的判别式.需要认真阅读理解题意.根据题干过程模仿解题. 练习题1.(2021·浙江台州·中考真题)电子体重科读数直观又便于携带.为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1. R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k .b 为常数.0≤m ≤120).其图象如图1所示.图2的电路中.电源电压恒为8伏.定值电阻R 0的阻值为30欧.接通开关.人站上踏板.电压表显示的读数为U 0 .该读数可以换算为人的质量m . 温馨提示:①导体两端的电压U .导体的电阻R .通过导体的电流I .满足关系式I =UR. ②串联电路中电流处处相等.各电阻两端的电压之和等于总电压.(1)求k .b 的值.(2)求R 1关于U 0的函数解析式. (3)用含U 0的代数式表示m .(4)若电压表量程为0~6伏.为保护电压表.请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩.(2)1024030R U =-.I (3)0120135m U =-.(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法.即可求解.(2)根据“串联电路中电流处处相等.各电阻两端的电压之和等于总电压”.列出等式.进而即可求解.(3)由R 1=12-m +240.1024030R U =-.即可得到答案. (4)把06U =时.代入0480540m U =-.进而即可得到答案. 【详解】解:(1)把(0.240).(120.0)代入R 1=km +b .得2400120bk b =⎧⎨=+⎩.解得:2402b k =⎧⎨=-⎩. (2)∵001830U U R -=. ∴1024030R U =-. (3)由(1)可知:2402b k =⎧⎨=-⎩. ∴R 1=2-m +240. 又∵1024030R U =-. ∴024030U -=2-m +240.即:0120135m U =-. (4)∵电压表量程为0~6伏. ∴当06U =时.1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用.熟练掌握待定系数法.是解题的关键. 2.(2021·安徽·中考真题)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m .2). (1)求k .m 的值.(2)在图中画出正比例函数y kx =的图象.并根据图象.写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3.(2)30x -<<或3x > 【解析】 【分析】(1)把点A (m .2)代入6y x=求得m 的值.从而得点A 的坐标.再代入(0)y kx k =≠求得k 值即可.(2)在坐标系中画出y kx =的图象.根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称.求得另一个交点的坐标.观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =.3m ∴=.(3,2)A ∴.将(3,2)A 代入y kx =得23k =.23k ∴=. ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示.∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3.2). ∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3.-2). 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >. 【点睛】本题是正比例函数与反比例函数的综合题.利用数形结合思想是解决问题的关键. 3.(2020·广西柳州·中考真题)如图.平行于y 轴的直尺(部分)与反比例函数my x=(x >0)的图象交于A 、C 两点.与x 轴交于B 、D 两点.连接AC .点A 、B 对应直尺上的刻度分别为5、2.直尺的宽度BD =2.OB =2.设直线AC 的解析式为y =kx +b . (1)请结合图象.直接写出: ①点A 的坐标是 . ②不等式mkx b x+>的解集是 . (2)求直线AC 的解析式.。
中考数学专题专练--二次函数与一次函数的综合

中考数学专题专练--二次函数与一次函数的综合1.如图,二次函数y=- 34x2+94x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3.如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△P AB=6,并求出此时P点的坐标.4.如图,抛物线y1=a(x-1)2+4与x轴交于A(-1,0)。
(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x 轴于点B,求△ABC的面积。
5.如图,已知直线y=-3x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A和点C,对称轴为直线I:x=-1,该抛物线与x轴的另一个交点为B。
(1)求此抛物线的解析式;(2)点P在抛物线上且位于第二象限,求△PBC的面积最大值及点P的坐标。
(3)点M在此抛物线上,点N在对称轴上,以B、C、M、N为顶点的四边形能否为平行四边形?若能,写出所有满足要求的点M 的坐标;若不能,请说明理由。
6.如图,直线y=-x+2与抛物线y=ax 2交于A ,B 两点,点A 坐标为(1,1)。
(1)水抛物线的函数表达式:(2)连结OA ,OB ,求△AOB 的面积。
7.已知抛物线y=ax 2+bx+c 的顶点P(1,-1),且过Q(5,3)。
2023年九年级中考数学专题专练--反比例函数与一次函数的综合【含答案】

2023年九年级中考数学专题专练--反比例函数与一次函数的综合1.如图,在平面直角坐标系中,点A(m ,n)(m >0)在双曲线y = 上.4x (1)如图1,m =1,∠AOB =45°,点B 正好在y = (x >0)上,求B 点坐标; 4x (2)如图2,线段OA 绕O 点旋转至OC ,且C 点正好落在y = 上,C(a ,b),试求m 与a4x 的数量关系.2.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P 、Q 两点,PA ⊥x 轴于点A ,mx 一次函数的图象分别交x 轴、y 轴于点C ,点B,其中OA=6,且 .12OC CA(1)求一次函数和反比例函数的表达式; (2)求△APQ 的面积;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.3.如图,已知一次函数y 1=k 1x+b (k 1为常数,且k 1≠0)的图象与反比例函数y 2= (k 2为常数,2k x 且k 2≠0)的图象相交于A (1,2),B (m ,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)若A 1(m 1,n 1),A (m 2,n 2),A 3(m 3,n 3)为反比例函数图象上的三点,且m 1<m 2<0<m 3,请直接写出n 1、n 2、n 3的大小关系式;(3)结合图象,请直接写出关于x 的不等式k 1x+b > 的解集.2k x 4.如图,在平面直角坐标系xOy 中,直线y=x﹣2与双曲线y= (k≠0)相交于A,B 两点,且点Akx 的横坐标是3.(1)求k 的值;(2)过点P(0,n)作直线,使直线与x 轴平行,直线与直线y=x﹣2交于点M ,与双曲线y=kx (k≠0)交于点N ,若点M 在N 右边,求n 的取值范围.5.已知双曲线y= 和直线y=kx+4.6x (1)若直线y=kx+4与双曲线y= 有唯一公共点,求k 的值.6x(2)若直线y=kx+4与双曲线交于点M (x 1,y 1),N (x 2,y 2).当x 1>x 2,请借助图象比较y 1与y 2的大小.6.如图,已知A (﹣2,﹣2),B (1,4)是一次函数y =kx+b (k≠0)的图象和反比例函数(m≠0)的图象的两个交点,直线AB 与y 轴交于点C.my x =(1)求一次函数和反比例函数的解析式;(2)求△AOC 的面积;(3)结合图象直接写出不等式的解集.mkx b x +<7.如图,在平面直角坐标系系中,一次函数y 1=kx+b(k0)与反比例函数y 2= (m≠0)的图象交mx 于第二、第四象限A ,B 两点,过点A 作AD ⊥x 轴,垂足为D ,AD=4,sin ∠AOD= ,且点B 的45坐标为(n ,-2).(1)求一次函数与反比例函数的表达式;(2)将一次函数y 1=kx+b(k0)向下移动2个单位的函数记为y 3,当y 3<y 2时,求x 的取值范围。
中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。
初三中考数学函数综合题含答案

初三中考数学函数综合题含答案一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >-B .3x ≥-且2x ≠C .2x ≠D .3x >-且2x ≠2.如图,函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是( )A .42x y =-⎧⎨=-⎩B .42x y =⎧⎨=⎩C .24x y =-⎧⎨=-⎩D .24x y =⎧⎨=⎩3.若反比例函数1k y x-=,当0x >时,y 随x 的增大而减小,则k 的取值范围是() A .1k >B .1k <C .1k >-D .1k <-4.将抛物线()2321y x =-+先向右平移2个单位长度,再向下平移2个单位长度,平移后所得的抛物线解析式是() A .()2341y x =-- B .()2343y x =-+ C .233y x =+D .231y x =-5.抛物线213y x =的开口方向、对称轴分别是( )A .向上,x 轴B .向上,y 轴C .向下,x 轴D .向下,y 轴 6.二次函数y =x 2+6x +4的对称轴是( ) A .x =6B .x =﹣6C .x =﹣3D .x =47.下列y 关于x 的函数中,一次函数为( ) A .()2y a x b =-+B .()211y k x =++C .2y x=D .221y x =+8.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( ) A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+9.已知抛物线y =ax 2+bx +c (a ≠0)的顶点为(2,4),有以下结论:①当a >0时,b 2-4ac >0;②当a >0时,ax 2+bx +c≥4;③若点(-2,m ),(3,n )在抛物线上,则m <n ;④若关于x 的一元二次方程ax 2+bx +c =0的一根为-1,则另一根为5.其中正确的是( ) A .①②B .①④C .②③D .②④10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 211.已知y =kx +b ,当x =2时,y =-2;当x =3时,y =0.则( )A .k =2,b =-6B .k =-6,b =2C .k =-2,b =6D .k =-2,b =-612.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)13.将一次函数23y x =-的图象沿y 轴向上平移3个单位长度后,所得图象的函数表达式为( ) A .2y x = B .26y x =- C .53y x =- D .3y x =-- 14.二次函数22(3)1y x =-+-的顶点坐标是( )A .(31), B .(13)-, C .(3,1)-D .(3,1)--15.已知A (﹣11,3y ),B (﹣21,2y ),C (1,y 3)是一次函数y =b ﹣3x 的图象上三点,则y 1、y 2、y 3的大小关系为( ) A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 1<y 3二、填空题16.一次函数(27)2y k x =-+中,y 随x 的增大而减小,则k 的取值范围是___________. 17.将直线213y x =-+向上平移3个单位后所得直线解析式为_______.18.已知点(2,)A m 在一次函数53y x =+的图象上,则m 的值是__.19.已知一次函数(1)2y m x m =-+-的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是______.20.若函数y =(m ﹣2)x +|m |﹣2是正比例函数,则m =_____.三、解答题21.如图,抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,并且与y 轴交于点C .(1)求此抛物线的解析式; (2)直线BC 的解析式为 ;(3)若点M 是第一象限的抛物线上的点,且横坐标为t ,过点M 作x 轴的垂线交BC 于点N ,设MN 的长为h ,求h 与t 之间的函数关系式及h 的最大值;(4)在x 轴的负半轴上是否存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形?如果存在;如果不存在,说明理由.22.如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣1,0)、B (3,0)两点,抛物线的对称轴l 与x 轴交于M 点.(1)求抛物线的函数解析式;(2)设点P 是直线l 上的一个动点,当PA +PC 的值最小时,求PA +PC 长;(3)已知点N (0,﹣1),在y 轴上是否存在点Q ,使以M 、N 、Q 为顶点的三角形与△BCM 相似?若存在;若不存在,请说明理由.23.已知二次函数222y x x m =-+-的图象与x 轴有交点,求非负整数m 的值. 24.已知抛物线y =12x 2﹣x ﹣32与x 轴交于点A ,点B (点A 在点B 左侧). (1)求点A ,点B 的坐标;(2)用配方法求该抛物线的顶点C 的坐标,判断△ABC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使以点O 、点C 、点P 为顶点的三角形构成等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 25.已知抛物线222y x mx m =--.(1)求证:对任意实数m ,抛物线与x 轴总有交点. (2)若该抛物线与x 轴交于1,0A ,求m 的值.【参考答案】一、单选题 1.B 2.A3.A 4.A 5.B 6.C 7.B 8.B 9.D 10.A 11.A 12.C 13.A 14.D 15.A 二、填空题16.72k < 17.243y x =-+18.1319.2m >20.-2三、解答题21.(1)234y x x =-++ (2)4y x =-+(3)h 与t 之间的函数关系式为:()2404h t t t =-+<<,h 的最大值为4(4)在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由见解析 【解析】 【分析】(1)把A (﹣1,0),B (4,0) 代入抛物线解析式,即可求解;(2)根据抛物线解析式求出点C 的坐标,再利用待定系数法,即可求解;(3)根据题意可得点()2,34M t t t -++,点(),4N t t -+,从而得到24MN t t =-+,再根据二次函数的性质,即可求解;(4)分三种情况:当PC =BC 时,当PB =BC 时,当PC =PB 时,即可求解. (1)解:∵抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,∴3016340a c a c -+=⎧⎨+⨯+=⎩, 解得:14a c =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++; (2)解:当0x =时,4y =, ∴点()0,4C ,设直线BC 的解析式为()0y kx b k =+≠, 把点B (4,0),()0,4C 代入得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BC 的解析式为4y x =-+; (3) 解:如图,∵点M 是第一象限的抛物线上的点,且横坐标为t ,∴点()2,34M t t t -++,∵MN ⊥x 轴, ∴点(),4N t t -+,∴()()223444MN t t t t t =-++--+=-+,∴()()2242404h t t t t =-+=--+<<, ∴当2t =时,h 的值最大,最大值为4; (4)解:在x 轴的负半轴上存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由如下: 当PC =BC 时, ∵OC ⊥BP , ∴OP =OB ,∵点B (4,0),点P 在x 轴的负半轴上, ∴点()4,0P -; 当PB =BC 时, ∵B (4,0),()0,4C , ∴OC =4,OB =4,∴BP BC ==∴4OP BP OB =-=, ∵点P 在x 轴的负半轴上,∴点()4P -;当PC =PB 时,点P 位于BC 的垂直平分线上, ∵OB =OC =4,∴点O 位于BC 的垂直平分线上, ∴此时点P 与点O 重合,不合题意,舍去;综上所述,在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形. 【点睛】本题主要考查了求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质,熟练掌握用待定系数法求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质是解题的关键. 22.(1)y =﹣x 2+2x +3(2)PA +PC 的长为(3)存在,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭,理由见解析【解析】 【分析】(1)当x =0时,y =3,可得C (0,3).再设设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),利用待定系数法,即可求解;(2)连接PA 、PB 、PC ,根据轴对称性可得PA =PB .从而得到PA +PC =PC +PB .进而得到当点P 在线段BC 上时,PC +AP 有最小值.即可求解;(3)先求出抛物线的对称轴,可得点()1,0M ,再由点N (0,﹣1),B (3,0),C (0,3).可得2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,可得∠CBM =∠MNO ,然后分三种情况讨论,即可求解. (1)解:把x =0代入得:y =3, ∴C (0,3).设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0), 将点C 的坐标代入上式得:3=﹣3a ,解得:a =﹣1.∴抛物线的解析式为y =-(x +1)(x -3)=﹣x 2+2x +3. (2)解:如图,连接PA 、PB 、PC ,∵点A 与点B 关于直线l 对称,点P 在直线l 上, ∴PA =PB . ∴PA +PC =PC +PB . ∵两点之间线段最短,∴当点P 在线段BC 上时,PC +AP 有最小值. ∵OC =3,OB =3, ∴BC =32∴PA +PC 的最小值=32 (3)解:存在,理由: 抛物线的对称轴为直线x =﹣2ba=1. ∵抛物线的对称轴l 与x 轴交于M 点. ∴点()1,0M ,∵点N (0,﹣1),B (3,0),C (0,3). ∴OM =ON =1,OB =OC =3,∴2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒, ∴∠CBM =∠MNO ,当点Q 在点N 下方时,∠MNQ =135°,不符合题意, ∴点Q 在点N 上方,设点Q 的坐标为(0,n ).则QN =n +1, ∵以M 、N 、Q 为顶点的三角形与△BCM 相似, ∴∠QMN =∠CMB 或∠MQN =∠CMB , 当1Q MN CMB ∠=∠时,1Q MNCMB ,如图(2),∴1Q N MNBC BM=, ∴12232n +=,解得:2n =, ∴点()10,2Q ;当2MQ N CMB ∠=∠时,2MQ NCMB ,如图(3),∴2Q N MN MB BC=, ∴12232n +=13n =-,∴点210,3Q ⎛⎫- ⎪⎝⎭,综上所述,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,相似三角形的判定和性质,两点之间,线段最短,待定系数法求二次函数解析式等知识,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键. 23.0或1或2或3 【解析】【分析】根据二次函数y =x 2-2x +m -2的图象与x 轴有交点,根据Δ≥0列出m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数y =x 2-2x +m -2的图象与x 轴有交点, ∴Δ=4-4(m -2)≥0, ∴m ≤3, ∵m 为非负整数, ∴m =0或1或2或3. 【点睛】本题主要考查了抛物线与x 轴交点的知识,解答本题的关键是根据二次函数y =x 2-2x +m -2的图象与x 轴有交点列出m 的不等式,此题难度不大. 24.(1)A (-1,0),B (3,0)(2)点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由见解析(3)点P 的坐标为(1,2),2),(1,2)或3(1,)4-【解析】 【分析】(1)把0y =代入到21322y x x =--得,213022x x --=,解得13x =,21x =-,又因为点A 在点B 的左侧,即可得; (2)21322y x x =--配方得21(1)22y x =--,即可得点C 的坐标为(1,-2),根据点A ,B ,C 的坐标得4AB =,AC ,BC =AC =BC ,又因为2224+=,所以222AC BC AB +=,即可得90ACB ∠=︒,从而得出ACB △是等腰直角三角形;(3)当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形,即可得点P 的坐标(1,2),当CO CP =时,CP =,即可得点P 的坐标为2)或(1,2),当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a ,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,解得34a =-,即可得点P 的坐标为3(1,)4-,综上,即可得. (1)解:把0y =代入到21322y x x =--得, 213022x x --= 2230x x --= (3)(1)0x x -+=解得13x =,21x =-, ∵点A 在点B 的左侧,∴A (-1,0),B (3,0). (2) 解:21322y x x =-- =21(3)2x x -- =21(1)22x x -+- =21(1)22x --∴点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由如下:∵A (-1,0),B (3,0),C (1,-2), ∴3(1)4AB =--=,22(11)(02)8AC =----=, 22(31)(02)8BC =---=,∴AC =BC , ∵222(8)(8)4+=, ∴222AC BC AB +=, ∴90ACB ∠=︒,∴ACB △是等腰直角三角形. (3)解:当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形, ∴点P 的坐标为(1,2);当CO CP =时,22(10)(20)5CP =-+-=, ∴点P 的坐标为(1,52)-或(1,52)--;当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a , 如图所示,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,22441a a a ++=+34a =- ∴点P 的坐标为3(1,)4-;综上,点P 的坐标为(1,2),2),(1,2)或3(1,)4-. 【点睛】本题考查了二次函数与三角形的综合,解题的关键是掌握二次函数的性质,等腰三角形的判定与性质.25.(1)见解析(2)122,1m m =-=【解析】【分析】(1)令0y =,得到关于x 的一元二次方程,根据一元二次方程根的判别式判断即可; (2)令1x =,0y =,解一元二次方程即可求得m 的值(1)令0y =,则有2220x mx m --=222890m m m ∆=+=≥即,对于任意实数方程2220x mx m --=总有两个实数根,∴对任意实数m ,抛物线与x 轴总有交点.(2)解:∵抛物线222y x mx m =--与x 轴交于1,0A ,∴202m m =--解得122,1m m =-=【点睛】本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.。
初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。