复旦附中2017-2018高一下期末数学卷(答案)
2018复附高一数学期末考试卷(含解析)

。
4. 若在等比数列{an} 中, a1 a2 a9 512 ,则 a5
。
5. 方程 (3cos x 1)(cos x 3sin x) 0 的解集是
。
6.
若数列{an} 满足 a1 13 , an1 an
n ,则 an n
的最小值为
。
7.
若数列{an} 是等差数列,则数列 bn
an1 anm m
。
精益求精,不断超越,成就学生,成就梦想
1/6
积极拼搏锐意进取,全心全意以学生学习为中心 二. 选择题
选择菁英高中,成就名校梦想
13. “b 是1 3 与1 3 的等差中项”是“b 是 2 3 与 2 3 的等比中项”的( )
A. 充分不必要条件 C. 充要条件
B. 必要不充分条件 D. 既不充分也不必要条件
(2)设 Sn 是数列{an} 前 n 项的和,求使得不等式 S2n 20182 成立的最小正整数 n.
精益求精,不断超越,成就学生,成就梦想
3/6
积极拼搏锐意进取,全心全意以学生学习为中心
选择菁英高中,成就名校梦想
19. 王某 2017 年 12 月 31 日向银行贷款 100000 元,银行贷款年利率为 5%,若此贷款分十年
件的所有数列{an} 中, S12 的最大值为 a,最小值为 b,则 a b
。
12. 用 An 表示所有形如 2r1 2r2 2rn 的正整数集合,其中 0 r1 r2 rn n , n N* 且
ri N (i N* ) , bn 为集合 An 中的所有元素之和,则{bn} 的通项公式为 bn
21.(1) an2 an1 an1 an ,即 bn1 bn , 2(a5 a4 ) a4 a2 ;
XXX2017-2018学年高一下学期期末数学试卷 Word版含解析

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析2017-2018学年XXX高一(下)期末数学试卷一、选择题(共12小题,每小题5分,共60分)1.已知sinα=1/2,并且α是第二象限的角,那么tanα的值等于()A。
-1/2 B。
-2 C。
1/2 D。
22.某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查。
这种抽样方法是()A。
简单随机抽样法 B。
抽签法 C。
随机数表法 D。
分层抽样法3.已知变量x,y满足约束条件x+y=1,则z=x+2y的最小值为()A。
3 B。
1 C。
-5 D。
-64.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三.1班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是()A。
2 B。
3 C。
4 D。
55.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A。
105 B。
16 C。
15 D。
16.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A。
1/2 B。
1/4 C。
3/4 D。
1/37.为了得到函数y=sin(2x-π/2)的图象,可以将函数y=cos2x的图象()A。
向右平移π/4个单位长度 B。
向右平移π/2个单位长度 C。
向左平移π/4个单位长度 D。
向左平移π/2个单位长度8.a11 B。
0<q<1 C。
q<0 D。
q<19.函数y=|x-2|+|x+1|的图象大致为()A。
图略 B。
图略 C。
图略 D。
图略10.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得AP/BP=CP/DP的点P的坐标为()A。
2017-2018学年高一数学下学期期末考试试题 文 (I)

2017-2018学年高一数学下学期期末考试试题文 (I)考试时间:120分钟满分:150分一、选择题(本题共12小题,每题5分)1.设全集是实数集,或,,则()A. B. C. D.2.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包量成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为()A. B. C. D.3.从某中学甲、乙两班各随机抽取名同学,测量他们的身高(单位:),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是()A. 甲班同学身高的方差较大B. 甲班同学身高的平均值较大C. 甲班同学身高的中位数较大D. 甲班同学身高在以上的人数较多4.在如图所示的程序框图中,若输出的,则判断框内可以填入的条件是()A. B. C. D.5.若在区间上随机取一个数,则“直线与圆相交”的概率为()A. B. C. D.6.下面四种说法:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是()A.4B.3C.2D.17.当时,若,则的值为()A. B. C. D.8.已知平面向量,且,则在上的投影为()A. B. C. D.9.三棱锥中,为等边三角形,,,三棱锥的外接球的体积为()A.B.C.D.10.已知圆的半径为2,圆的一条弦的长是3,是圆上的任意一点,则的最大值为 ( )A. 9B. 10C.D.11.将函数的图象向右平移()个单位,再将图象上每一点的横坐标缩短到原来的(纵坐标不变),所得图象关于直线对称,则的最小值为()A. B. C. D.12.设等差数列的前项和为,已知,为整数,且,则数列前项和的最大值为()A.1 B. C.D.二、填空题(本题共4小题,每题5分)13.在中, , , 分别是角,,的对边,且,则=14.若角的终边经过点,则15.已知函数f(x)=x+sinx,x(-1,1),如果f(1-m)+f(1-m2)<0,则m的取值范围是.16.定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积。
2017-2018学年高一数学下学期期末考试试题理 (VI)

2017-2018学年高一数学下学期期末考试试题理 (VI)说明:本卷满分150分,考试时间为2小时。
一、选择题:本大题共12小题,每小题5分,共60分。
1.设,,若,则( )A. B. C. D.2. 某中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( )A. B. C. D. 3.若直线与直线垂直,则的值是( )A.或B.或C.或D.或14.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为( )A. B. C. 或 D. 或5. 已知四棱锥的三视图如图所示,则四棱锥的五个面中面积的最大值是( )A. 3B. 6C. 8D. 106.设,是两条不重合的直线, ,是两个不同的平面,有下列四个命题: ①若, ,则;②若, , ,则; (第5题) ③若, , ,则;④若, , ,则. 则正确的命题为( )A. ①②③B. ②③C. ③④D. ①④ 7.若, , ,则的最小值为( )A. B. C. D.8.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当否i > 4?x = 2x-1i = i +1i =1输入x 开 始原多少酒?”用程序框图表达如下图所示,即最终输出的,则一开始输入的的值为()A. B. C. D.9.正方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.(第8题)10. 已知的三边长构成公差为2的等差数列,且最大角为120°,则这个三角形的周长为()A. 15B. 18C. 21D. 2411.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A. ①③B. ③④C. ①④D. ②③12.和点,使得,则实数的取值范围是()A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分。
上海市复旦大学附属中学2023-2024学年高一下学期期末考试 数学试题【含答案】

复旦中学高一期末数学试卷一、填空题1.已知角α终边经过点(2,1)P -,则sin α=.2.已知复数z 满足i 2i z =-,则z =3.满足π2cos 214x ⎛⎫+= ⎪⎝⎭,[0,π]x ∈的角x 的集合为.4.已知函数()sin 22y x ϕ=+(0ϕ>)是偶函数,则ϕ的最小值是.5.已知{}n a 为无穷等比数列,23a =,14i i a +∞==-∑,则{}n a 的公比为.6.若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p =.7.若数列{}n a 的通项公式为222023n a n n =-+,则n =时1i ni a =∑取到最大值.8.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15°,山脚A 处的俯角为45°,已知60BAC ∠=︒,求山的高度BC =m ..9.已知P 是边长为3的正方形ABCD 内(包含边界)的一点,则AP AB ⋅的最大值是.10.已知公差不为0的等差数列{}n a 的前n 项和为n S ,若{}457,,10,0a S S ∈-,则n S 的最小值为11.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-,求集合{}1,1500k m kb a a m =+≤≤∣中元素个数.12.17世纪法国数学家费马在给朋友的一封信中曾提出一个关于三角形的有趣问题:在三角形所在平面内,求一点,使它到三角形每个顶点的距离之和最小,现已证明:在ABC 中,若三个内角均小于120︒,则当点P 满足120APB APC BPC Ð=Ð=Ð=°时,点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上知识,已知a为平面内任意一个向量,b 和c 是平面内两个互相垂直的向量,且||2,||3b c == ,则||||||-+++-a b a b a c 的最小值是.二、选择题13.已知z 为复数,则“z z =”是“22z z =”的()A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件14.下列函数中,最小正周期为π且是偶函数的是()A .cos 2y x=B .tan y x=C .πsin 4y x ⎛⎫=+ ⎪⎝⎭D .sin 2y x=15.欧拉公式i e cos isin x x x =+(i 为虚数单位,x ∈R ,e 为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,现有以下两个结论:①i e 10π+=;②2299cos isin cos isin cos isin i 101010101010ππππππ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭其中所有正确结论的编号是()A .①②均正确B .①②均错误C .①对②错D .①错②对16.设无穷项等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,则下列四个说法中正确的个数是()①若0d <,则数列{}n S 有最大项;②若数列{}n S 有最大项,则0d <;③若数列{}n S 是递增数列,则对任意的*n ∈N ,均有0n S >;④若对任意的*n ∈N ,均有0n S >,则数列{}n S 是递增数列.A .1个B .2个C .3个D .4个三、解答题17.已知复数z 满足()1i 2i,z O +=为坐标原点,复数z 在复平面内对应的向量为OZ .(1)求34i z +-;(2)若向量OZ 绕O 逆时针旋转π2得到,OZ OZ '' 对应的复数为z ',求z z ⋅'.18.设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1n a ⎧⎫⎨⎬⎩⎭前n 项和n T ,求使111000n T -<成立的n 的最小值.19.已知函数()sin ,f x x x =∈R .(1)求解方程:()13f x =;(2)设()()2π222g x x f x ⎛⎫=++ ⎪⎝⎭,求函数()g x 的单调递增区间;(3)在ABC 中,角,,A B C 所对应的边为,,a b c .若()4,f A b ABC == 的面积为求sin C 的值.20.已知数列{}n a ,若{}1n n a a ++为等比数列,则称{}n a 具有性质P.(1)若数列{}n a 具有性质P ,且1231,3a a a ===,求45,a a 的值;(2)若2(1)n nn b =+-,判断数列{}n b 是否具有性质P 并证明;(3)设212n c c c n n +++=+L ,数列{}n d 具有性质P ,其中13212321d d d c d d c =-=+=,,,试求数列{}n d 的通项公式.II 卷21.将函数()π4cos2f x x =和直线()1g x x =-的所有交点从左到右依次记为1A ,2A ,…,n A ,若(P ,则125...PA PA PA +++=.22.已知*(1,2,9)i a i ∈=⋯N ,且对任意()*28k k ∈≤≤N 都有11k k a a -=+或11k k a a +=-中有且仅有一个成立,16a =,99a =,则91a a ++ 的最小值为.23.若向量,,a b c →→→满足a b ¹,0c ≠ ,且()()0c a c b -⋅-= ,则a b a b c++-的最小值是.24.已知函数()3112f x x ⎛⎫=-+ ⎪⎝⎭,则122023202420242024f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为.1.5-【详解】∵角α终边经过点(2,1)P -,∴OP =sinα=,故答案为2【分析】根据复数的乘除运算及复数的模的运算公式即可求解.【详解】因为复数z 满足i 2i z =-,所以2i12i iz -==--,所以z ==3.π17π,2424⎧⎫⎨⎬⎩⎭【分析】借助余弦函数的性质计算即可得.【详解】由π2cos 214x ⎛⎫+= ⎪⎝⎭,则()ππ22π43x k k +=±+∈Z ,即()πππ68x k k =±-+∈Z ,又[0,π]x ∈,则0k =,有πππ6824x =-=,当1k =,有ππ17ππ6824x =--+=,故角x 的集合为π17π,2424⎧⎫⎨⎬⎩⎭.故答案为:π17π,2424⎧⎫⎨⎬⎩⎭.4.4π##14π【分析】利用三角函数的性质即可求解.【详解】因为函数()sin 22y x ϕ=+是偶函数,所以π2π,Z 2k k ϕ=+∈,解得ππ,Z 24k k ϕ=+∈,又0ϕ>,所以当0k =时,ϕ的最小值是π4.故答案为:π4ϕ=.5.12-##0.5-【分析】由题意知,||1q <,再利用无穷等比数列和的公式求解即可.【详解】因为无穷等比数列{}n a ,14i i a +∞==-∑,则||1q <,141a q=--,又213a a q q==,所以34(1)q q =--,解得12q =-或32q =(舍).故答案为:12-.6.4【详解】设z a bi =+,则方程的另一个根为z a bi '=-,且22z ==,由韦达定理直线22,1,z z a a +==-∴=-'23,b b ∴==所以(1)(1) 4.p z z =⋅=-'-=7.1011【分析】由0n a ≥判断出变号的相邻两项即可求解.【详解】令2220230n a n n =-+≥,解得202302n ≤≤,∵n N *∈,∴前1011项为正数,从1012项开始为负数,∴当1011n =时,1i ni a =∑取到最大值,故答案为:1011.8.600m【分析】先根据已知条件求解出,AM ACM ∠的大小,然后在ACM △中利用正弦定理求解出AC ,再根据,AC BC 的关系求解出BC .【详解】因为=45,60MAD CAB ∠︒∠=︒,所以180456075MAC ∠=︒-︒-︒=︒,所以180756045MCA ∠=︒-︒-︒=︒,又因为cos 45400m MA MD ︒==,所以MA =,又因为sin 60sin 45AC AM=︒︒,所以AC =,所以sin 60600m 2BC AC =︒=,故答案为:600m .【点睛】关键点点睛:解答本题的关键是将ACM △中的角和边先求解出来,然后利用正弦定理求解出AC 的值,再借助直角三角形中边的关系达到求解高度BC 的目的.9.9【分析】在正方形中建立平面直角坐标系,设(,),(03,03)P x y x y ≤≤≤≤,结合向量数量积的概念可得结果.【详解】以A 点为原点建立如图所示的平面直角坐标系,设(,),(03,03)P x y x y ≤≤≤≤,可得(0,0),(3,0)A B ,所以(,),(3,0)AP x y AB ==,故(,)(3,0)3AP AB x y x ⋅== ,当3x =时,AP AB ⋅最大,最大值为9.故答案为:9.10.12-【分析】对4a 的值进行分类讨论,结合等差数列前n 项和最值的求法求得n S 的最小值.【详解】n S 取得最小值,则公差0d >,410a =-或40a =,(1)当17474530,0,770,5102a a a d S a S a +=>=⨯====-1130,51010a d a d ⇒+=+=-,16,20,28,2804n n a d a n a n n ⇒=-=>=-=-≤⇒≤,所以n S 的最小值为4146241212S a d =+=-+=-.(2)当1747410,0,77702a a a d S a +=->=⨯==-,不合题意.综上所述:457=0,= 10,0,n a S S S -=的最小值为12-.故答案为:12-11.9【分析】设{}n a 的公差为d ,由题意223344a b a b b a -=-=-基本量化简得到1122d a b ==.1k m b a a =+,代入基本量,化简得到22k m -=,通过m 的范围进而得到k 的范围.【详解】设等差数列{}n a 的公差为d ,2233a b a b -=- ,1111224a d b a d b ∴+-=+-,即12d b =.2244a b b a -=- ,()1111283a d b b a d ∴+-=-+,得到1125a d b +=,将12d b =代入,得到11a b =,即1122d b a ==.1k m b a a =+ ,()111121k b a m d a -∴⋅=+-+,即()11112212k b b m b -⋅=+-,10b ≠ 得到22k m -=,21500,12500k m -≤≤≤≤ ,028k ≤-≤,210k ≤≤,所以元素个数为9个.故答案为:9.12.3+【分析】读懂题意,建立直角坐标系,将向量求模问题转化为费马点问题.【详解】以b为x 轴,c 为y 轴,建立直角坐标系如下图,设(),a x y = ,则()()2,0,0,3b c == ,a c a b a b --=+ ,a c ab a b ∴-+-++即为平面内一点(),x y 到()()()0,3,2,0,2,0-三点的距离之和,由费马点知:当点(),P x y 与三顶点()()()0,3,2,0,2,0A B C -构成的三角形ABC 为费马点时a c a b a b -+-++最小,将三角形ABC 放在坐标系中如下图:现在先证明ABC 的三个内角均小于120︒:4AB BC BC ==,22211cos 0213AB AC BCBAC AB AC +-∠==> ,222cos cos 02AB BC ACABC ACB AB BC+-∠=∠==,ABC ∴ 为锐角三角形,满足产生费马点的条件,又因为ABC 是等腰三角形,点P 必定在底边BC 的对称轴上,即y 轴上,120,30BPC PCB ︒︒∠=∴∠=,tan 233PO OC PCB =∠=⨯= ,即230,3⎛ ⎝⎭P ,现在验证120BPA ︒∠=:2333BP AP ==-,2221cos 22BP AP AB BPA BP AP +-∠==- ,120BPA ︒∴∠=,同理可证得120CPA ︒∠=,即此时点0,3⎛ ⎝⎭P 是费马点,到三个顶点A ,B ,C 的距离之和为233BP CP AP ++=+=+,即a c a b a b -+-++ 的最小值为3+;故答案为:3+13.A【分析】正向可得R z ∈,则正向成立,反向利用待定系数法计算即可得0a =或0b =,则必要性不成立.【详解】若z z =,则R z ∈,则22z z =,故充分性成立;若22z z =,设i,,R z a b a b =+∈,则2222i z a ab b =+-,222i z a ab b =--,则20ab =,0a =或0,b z =∴与z 不一定相等,则必要性不成立,则“z z =”是“22z z =”的充分非必要条件,故选:A 14.A【分析】借助三角函数得周期性与对称性逐项判断即可得.【详解】对A :2π2πT ==,又cos 2y x =是偶函数,故A 正确;对B :tan y x =为奇函数,故B 错误;对C :πsin 4y x ⎛⎫=+ ⎪⎝⎭周期为2π,故C 错误;对D :sin 2y x =为奇函数,故D 错误.故选:A.15.A【分析】对①,通过欧拉公式,i e cos i sin πππ=+,算出即可;对②,先将欧拉公式逆用,将原式化简为29i i i 101010e e e πππ⋅⋅⋅⋅⋅⋅ ,再通过指数运算性质化简,最后再用欧拉公式展开,最后算出即可.【详解】对①,由题意,i e 1cos i sin 11010πππ+=++=-++=,正确;对②,原式=29i i i 101010e eeπππ⋅⋅⋅⋅⋅⋅ =29999i i i 10101021010299eeecos isin 22ππππππππ⎛⎫⎛⎫+++⋅+⋅ ⎪⎪⎝⎭⎝⎭===+ =cosi sini 22ππ+=,正确.故选:A.16.C【分析】由等差数列的求和公式可得()2111+222n n n d d S na n a n +⎛⎫=+=+ ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个验证即可【详解】由等差数列的求和公式可得()2111+222n n n d d S na n a n +⎛⎫=+=+ ⎪⎝⎭,对于①,若0d <,由二次函数的性质可得数列{}n S 有最大项,故①正确;对于②,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故②正确;对于③,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,则有0d >,故数列{}n S 是递增数列,故③正确;对于④,若数列{}n S 是递增数列,则对应抛物线开口向上,则0d >,但无法确定0n S >恒成立,故④错误;故正确的有3个,故选:C【点睛】本题考查等差数列的求和公式的应用,考查数列的函数性质的应用17.(1)5(2)2-【分析】(1)求出对应复数,再利用模的公式求模即可.(2)利用复数的几何意义结合旋转的性质求出对应复数,再求乘积即可.【详解】(1)由()1i 2i z +=得:()()()()2i 1i 2ii 1i 1i 1i 1i 1i z -===-=+++-,34i 43i 5z ∴+-=-=.(2)又1i z =+,由复数的几何意义,得向量()1,1OZ = 绕原点O 逆时针旋转π2得到的()1,1OZ -'= ,则OZ '对应的复数为1i z '=-+,则()()1i 1i 2z z ⋅=+⋅-+=-'.18.(1)2n n a =.(2)10.【详解】试题分析:(1)借助于()12n n n a S S n -=-≥将12n n S a a =-转化为12(1)n n a a n -=>,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列1n a ⎧⎫⎨⎩⎭的通项公式112n n a =,可知数列为等比数列,求得前n 项和n T ,代入不等式111000n T -<可求得n 的最小值试题解析:(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->,即12(1)n n a a n -=>.从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1232(1)a a a +=+.所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列.故2n n a =.(2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n n T -=++++==-- .由111000n T -<,得111121000n --<,即21000n >.因为9102512100010242=<<=,所以10n ≥.于是,使111000n T -<成立的n 的最小值为10.考点:1.数列通项公式;2.等比数列求和19.(1)1(1)arcsin ,3k x k k Z π=+-∈(2)πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦(3)26【分析】(1)将()f x 代入方程,用反三角函数解出即可;(2)将()f x 代入()g x 用半角公式,辅助角公式进行化简,求出单调增区间即可;(3)先求出sin A 的值,再根据面积公式求出c 的值,根据sin A 的值求出角A 的值,再用余弦定理求出a ,再根据正弦定理即可求出sin A .【详解】(1)解:由题知()13f x =,即1sin 3x =,解得12arcsin ,3x k k Z π=+∈或12arcsin ,3x k k Z ππ=+-∈;即1(1)arcsin ,3k x k k Z π=+-∈(2)由题()()2π222g x x f x ⎛⎫=++ ⎪⎝⎭,即()()2π22sin 2g x x x ⎛⎫=++ ⎪⎝⎭()222cos x x=+()()2cos 21x x =++π2sin 216x ⎛⎫=++ ⎪⎝⎭,()g x ∴的单调递增区间为:πππ2π22π262k x k -+≤+≤+,Z k ∈,解得:ππππ36k x k -+≤≤+,Z k ∈,故()g x 的单调递增区间为πππ,πZ 36k k k ⎡⎤-++∈⎢⎥⎣⎦;(3)由()32f A =sin A ∴=π3A ∴=或2π3A =,14,sin 2ABC b S bc A === 3c ∴=,当π3A =时,在ABC 中由余弦定理得:22221691cos 22432b c a a A bc +-+-===⋅⋅,解得a =,此时在ABC 中由正弦定理得:sin sin a c A C=,解得sin sin c A C a =当2π3A =时,在ABC 中由余弦定理得:22221691cos 22432b c a a A bc +-+-===-⋅⋅,解得a =此时在ABC 中由正弦定理得:sin sin a c A C=,解得sin sin 74c A C a ==,综上:sin C =3111sin 74C =.20.(1)45,a a 分别为5、11(2)数列{}n b 具有性质P ,证明见解析(3)()1*N ,213n n n d n -+-=∈【分析】(1)根据数列数列{}n a 具有性质P 可得{}1n n a a ++为等比数列,根据等比数列性质可求得答案;(2)依据数列新定义,结合等比数列定义即可判断结论,进而证明;(3)求出2n c n =,可得12n n n d d ++=,进而推出22n n n d d +-=,分n 为奇偶数,求出n d ,综合可得答案.【详解】(1)由题意数列{}n a 具有性质P ,{}1n n a a ++为等比数列,设公比为q ,由1231,3a a a ===,得122334424,,,28,5a a a a q a a a +=+=∴=+=∴=∴,又45516,11a a a +=∴=;(2)数列{}n b 具有性质P ;证明:因为2(1)n n n b =+-,所以()()111212132n n n n n n n b b ++++=+-++-=⋅,则112132232n n n nn n b b b b +++++⋅==+⋅,即{}1n n b b ++为等比数列,所以数列{}n b 具有性质P .(3)因为212n c c c n n +++=+L ,则12c =,2121(1)1,(2)n c c c n n n -+++=-+-≥L ,故22(1)12,(2)n c n n n n n n ++==---≥,12c =适合该式,故2n c n =,所以由13212321d d d c d d c =-=+=,,得13223124d d d d d =-=+=,,,则123122311,2,,3,4d d d d d d d ===∴+=+=,因为数列{}n d 具有性质P ,故{}1n n d d ++为等比数列,设其公比为q ',则2q '=,故111222,22,n n n n n n n n n d d d d d d +++++=++∴=∴-=,当n 为偶数时,()()()2422244222122213n n n n n n n n d d d d d d d d ------=-+-++-+=++++= ;当n 为奇数时,()()()12412243112(21)212221133n n n n n n n n n d d d d d d d d ------+=-+-++-+=+-++=++= ,故()1*N ,213n n n d n -+-=∈.【点睛】关键点睛:本题是关于数列新定义类型题目,解答的关键是要理解数列新定义,并依据该定义去解决问题.21.10【分析】根据题意作出两个函数的图象分析交点个数,利用对称性化简向量的和即可求解.【详解】如图可知:函数()π4cos2f x x =和直线()1g x x =-共有5个交点,依次为12345,,,,A A A A A ,其中()31,0A ,∵函数()π4cos 2f x x =和直线()1g x x =-均关于点()31,0A 对称,则12345,,,,A A A A A 关于点()31,0A 对称,∴632,1,2,3i i PA i PA PA -+==uuu r uuuur uuu r ,且(31,PA =uuu r ,故533125...22510PA PA PA PA PA ===+++=⨯uuu r uuu r uuu r uuu r uuu r .故答案为:10.22.31【分析】根据题意分两种情况讨论求出91a a ++ 的值,即可求得91a a ++ 的最小值.【详解】解:由题设,知:1i a ≥;211a a =+或231a a =-中恰有一个成立;321a a =+或341a a =-中恰有一个成立;…871a a =+或891a a =-中恰有一个成立;则①2117a a =+=,341a a =-,561a a =-,781a a =-,则()129357252a a a a a a +++=+++ ,当3571a a a ===时,129a a a +++ 的和为最小值为:31;②231a a =-,451a a =-,671a a =-,891a a =-,则()129468262a a a a a a +++=+++ ,当4681a a a ===时,129a a a +++ 的和为最小值为:32;因此,129a a a +++ 的最小值为:31.故答案为:31.23.2【解析】设,,a OA b OB c OC →→→→→→===,由条件可知AC BC ⊥,画出图形,由向量加减法及性质可得a b a bc→→→→→++-2||2||OM CM OC →→→+=,利用两边之和不小于第三边求解.【详解】设,,a OA b OB c OC →→→→→→===,因为0c a c b →→→→⎛⎫⎛⎫-⋅-= ⎪ ⎪⎝⎭⎝⎭,所以()()0OC OA OC OB →→→→-⋅-=,即0AC BC →→⋅=,所以AC BC ⊥,取AB 中点M ,如图,所以2||2||a b a bOA OB OA OB OM AM cOC OC →→→→→→→→→→→→→++-++-+==2||2||2||2OM CM OC OC OC →→→→→+=≥=,当且仅当,,O M C 三点共线时取等号.故答案为:2【点睛】本题主要考查了向量的加减法运算,向量加法的几何意义,考查了数形结合思想,属于难题.24.2023【分析】利用函数的对称性得到()()12f x f x +-=,然后计算即可.【详解】根据题意,函数()3112f x x ⎛⎫=-+ ⎪⎝⎭,则()3311111122f x x x ⎛⎫⎛⎫-=--+=--+ ⎪ ⎪⎝⎭⎝⎭,故()()12f x f x +-=,11012122024f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,122023120232202210111013202420242024202420242024202420242024f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 101210112120232024f ⎛⎫=⨯+= ⎪⎝⎭故答案为:2023.。
上海市复旦大学附属中学2018_2019学年高一数学下学期期末考试试题(含解析)

是符合题目要求的.
13.对于函数 f(x)=2sinxcosx,下列选项中正确的是( )
A. f(x)在( , )上是递增的
42 C. f(x)的最小正周期为 2
【答案】B
B. f(x)的图象关于原点对称 D. f(x)的最大值为 2
【解析】
【详解】解:
,是周期为 的奇函数,
对于 A,
在
上是递减的,错误;
【解析】
【分析】
先将 x 的表示形式求解出来,然后根据范围求出 x 的可取值.
【详解】因为 cos(x ) 1 ,所以 x 2k , k Z ,又因为 x [0, ] ,所以 k 0 ,
32
33
此时
x
0或
2 3
,则可得集合:{0, 2 } . 3
【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.
考点:函数
的对称性、周期性,属于中档题.
11.由正整数组成的数列an ,bn 分别为递增的等差数列、等比数列, a1 b1 1 ,记
cn an bn ,若存在正整数 k ( k 2 )满足 ck1 100 , ck1 1000 ,则 ck __________.
【答案】262
【解析】
上海市复旦大学附属中学 2018-2019 学年高一数学下学期期末考试试
题(含解析)
一、填空题(本大题共有 12 题,满分 54 分,将答案填在答题纸上)
1.计算 lim 2n 3 __________. n 3n 1 2
【答案】
3
【解析】
【分析】
采用分离常数法对所给极限式变形,可得到极限值.
解得 d
k 0 不符,当
q
3 9 时,解得 d
2017-2018学年高一数学下学期期末考试试题 理 (IV)

2017-2018学年高一数学下学期期末考试试题 理 (IV)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC 中,B = 60那么角A 等于: ··················· ( )A .135B .90C .45D .302. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc 且b =3a ,则△ABC 不可能...是( ) A .等腰三角形 B .钝角三角形 C .直角三角形D .锐角三角形3. 如果命题“p 且q ”与命题“p 或q ”都是假命题,那么 ( )(A ) 命题“非p ”与命题“非q ”的真值不同(B ) 命题“非p ” 与命题“非q ”中至少有一个是假命题 (C ) 命题p 与命题“非q ”的真值相同 (D ) 命题“非p 且非q ”是真命题 4. .已知命题,,则( ) A ., B . , C .,D .,5. 已知, 且, 则 ( )A. 6B. -6C. 4D.-46.设0<b <a <1,则下列不等式成立的是: ·················· ( ) A . ab <b 2<1B .C . a 2<ab <1D .7. 已知满足:=3,=2,=4,则=( )A .B .C .3D 8. 某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .59. 已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .310. 在各项均为正数的等比数列中,若 , 则……等于( ) A.5B. 6C. 7D.811. 的( )条件A.充分不必要B.必要不充分C.充分且必要D.既不充分也不必要 12.若x , y 是正数,且 ,则xy 有 ( )A.最大值16 B.最小值 C.最小值16 D.最大值第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13. 不等式的解为 。
2017-2018学年高一下学期期末考试数学试题 (4)

第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为正确的选项序号填入相应题号的表格内)1.1.设,,,且,则()A. B. C. D.【答案】D【解析】当时,选项A错误;当时,选项B错误;当时,选项C错误;∵函数在上单调递增,∴当时,.本题选择D选项.点睛:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便.2. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的()A. 白色B. 黑色C. 白色可能性大D. 黑色可能性大【答案】A【解析】由图可知,珠子出现的规律是3白2黑、3白2黑依次进行下去的特点,据此可知白、黑珠子的出现以5为周期,又……1,故第36颗珠子应该是白色的,故选A.3.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A. 对立事件B. 不可能事件C. 互斥但不对立事件D. 不是互斥事件【答案】C【解析】甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.选C.4.4.在中,,,,则解的情况()A. 无解B. 有唯一解C. 有两解D. 不能确定【答案】B【解析】【分析】根据正弦定理,结合题中数据解出,再由,得出,从而,由此可得满足条件的有且只有一个.【详解】中,,根据正弦定理,得,,得,由,得,从而得到,因此,满足条件的有且只有一个,故选B.【点睛】本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.5.5.一组数据的茎叶图如图所示,则数据落在区间内的概率为A. 0.2B. 0.4C. 0.5D. 0.6【答案】D【解析】【分析】根据茎叶图个原始数据落在区间内的个数,由古典概型的概率公式可得结论.【详解】由茎叶图个原始数据,数出落在区间内的共有6个,包括2个个个,2个30,所以数据落在区间内的概率为,故选D.【点睛】本题主要考查古典概型概率公式的应用,属于简单题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.6.6.设,,则()A. B. C. D.【答案】C【解析】【分析】利用“作差法”,只需证明即可得结果.【详解】,,,,恒成立,,即,故选C.【点睛】本题主要考查“作差法”比较两个数的大小,属于简单题. 比较两个数的大小主要有三种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.7.7.已知,,是一个等比数列的前三项,则的值为()A. -4或-1B. -4C. -1D. 4或1【答案】B【解析】【分析】由是一个等比数列的连续三项,利用等比中项的性质列方程即可求出的值. 【详解】是一个等比数列的连续三项,,整理,得,解得或,当时,分别为,构不成一个等比数列,,当时,分别为,能构成一个等比数列,,故选B.【点睛】本题主要考查等比数列的定义、等比中项的应用,意在考查对基础知识掌握的熟练程度以及函数与方程思想的应用,属于简单题.8.8.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为()A. 8B. 15C. 20D. 36【答案】A【解析】【分析】由已知的程序框图,可知该程序的功能是利用条件结构,计算并输出变量的值,模拟程序的运行过程,可得结论.【详解】输入后,满足进条件,则输出;输入,满足条件,则输出;输入,不满足条件,,输出,故第三次输出的值为,故选A.【点睛】本题主要考查程序框图应用,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.9.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1-160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A. 7B. 6C. 5D. 4【答案】B【解析】【分析】设第一组抽出的号码为,则第组抽出的号码应为,由第15组中抽出的号码为118,列方程可得结果.【详解】因为从160名学生中抽取容量为20的样本所以系统抽样的组数为,间隔为,设第一组抽出的号码为,则由系统抽样的法则,可知第组抽出的号码应为,第组应抽出号码为,得,故选B.【点睛】本题主要考查系统抽样的方法,属于简单题. 系统抽样适合抽取样本较多且个体之间没有明显差异的总体,系统抽样最主要的特征是,所抽取的样本相邻编号等距离,可以利用等差数列的性质解答.10.10.具有线性相关关系的变量,满足一组数据如表所示,若与的回归直线方程为,则的值是()A. 4B.C. 5D. 6【答案】A【解析】由表中数据得:,根据最小二乘法,将代入回归方程,得,故选A.11.11.若关于、的不等式组表示的平面区域是一个三角形,则的取值范围是( )A. B. C. D. 或【答案】C【解析】分析:先画出不等式组表示的平面区域,再根据条件确定的取值范围.详解:画出不等式组表示的平面区域如图阴影部分所示.由解得,∴点A的坐标为(2,7).结合图形可得,若不等式组表示的平面区域是一个三角形,则实数需满足.故选C.点睛:不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,由不等式组表示的平面图形的形状求参数的取值范围时,可先画出不含参数的不等式组表示的平面区域,再根据题意及原不等式组表示的区域的形状确定参数的取值范围.12.12.公比不为1的等比数列的前项和为,且,,成等差数列,若,则()A. -5B. 0C. 5D. 7【答案】A【解析】【分析】设公比为,运用等差数列中项的性质和等比数列的通项公式,解方程可得公比,再由等比数列的求和公式即可得结果.【详解】设的公比为,由成等差数列,可得,若,可得,解得舍去),则,故选A.【点睛】本题主要考查等比数列的通项公式、等比数列的求和公式以及等差中项的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中的横线上)13.13.二次函数的部分对应值如下表:则不等式的解集为;【答案】【解析】试题分析:两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n n ⎩ 复旦附中 2017-2018 学年高一期末数学试卷
一. 填空题
1. 在等差数列{a n } 中,若a 4 = 0 , a 6 + a 7 = 10 ,则 a 7 = . 答案: 6
2. 在数列1、3、7、15、⋅⋅⋅ 中,按此规律,127 是该数列的第 项.
答案: 7
3. 已知数列{a } 的前 n 项和 S = n 2 -1,那么数列{a } 的通项公式为
.
⎧0, n = 1 答案: ⎨
2n -1, n ≥ 2
4. 若在等比数列{a n } 中, a 1 ⋅ a 2 ⋅⋅ ⋅⋅⋅ a 9 = 512 ,则 a 5 = . 答案: 2
5. 方程(3cos x -1)(cos x + 1
3 sin x ) = 0 的解集是
.
π 答案:{x | x = ±arccos + 2k π , x = - + k π , k ∈ Z }
3 6
6. 若数列{a } 满足 a = 13 , a - a = n ,则 a n
的最小值为 .
n 1
答案:
23 5
n +1 n n
7. 若数列{a } 是等差数列,则数列b = a n +1 + ⋅ ⋅⋅
+ a n +m (m ∈ N * ) 也为等差数列,类比上述性质,相应地,若正项 n n
m
数列{c n } 是等比数列,则数列d n = 也是等比数列
m c n +1 ⋅ c n +2 ⋅⋅ ⋅⋅⋅ c n +m
8. 观察下列式子:1+ 1 ≥ 3 ,1+ 1 + 1 + 1 > 2 ,1+ 1 + 1
+ ⋅ ⋅⋅ + 1 > 5 ,…,你可归纳出的不等式是
.
2 2 2
3 4
2 3 8 2
答案:1+ 1 + 1 + ⋅⋅ ⋅ + 1
≥ 2 3 2n
n + 2
2 9. 在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三, 七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为 a n = . 答案:105n + 23
10. 对于下列数排成的数阵:
-1 4 -9 16 -25
36 -49
64
-81 100
⋅⋅⋅
⋅⋅⋅
⋅⋅⋅
它的第10 行所有数的和为
. 答案: -505
11. 对于数列{a } 满足:a = 1,a
- a ∈{a , a ,⋅⋅ ⋅, a } (n ∈ N *
) ,其前 n 项和为 S ,记满足条件的所有数列{a }
n
1
n +1
n
1
2
n
n
n
3 3 3 3 = * n
k
中, S 12 的最大值为a ,最小值为b ,则 a - b = 答案: 4017
12. 设n ∈ N *
,用 A 表示所有形如 2r 1
+ 2r 2
+ ⋅ ⋅⋅ + 2r n
的正整数集合,其中0 ≤ r < r < ⋅⋅⋅ < r
≤ n ,r ∈ N (i ∈ N * ) ,
n
b n 为集合 A n 中的所有元素之和,则{b n } 的通项公式为b n = .
答案: n (2n +1 -1)
1
2
n
i
二. 选择题
13. “ b 是1+ 与1- 的等差中项”是“ b 是2 + 与 2 - 的等比中项”的(
)
A. 充分不必要条件
答案: A
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
14. 在数列{a } 中,a = 1,a = 64 ,且数列{
a n +1 } 是等比数列,其公比 q = - 1
,则数列{a } 的最大项等于(
)
n
A. a 7
1
2
B. a 8
a n
C. a 9 2 n
D. a 10
答案: C
15. 若数列 a
π π
cos( n + ) ,若k ∈ N ,则在下列数列中,可取遍数列{a } 前6 项值的数列为( )
n
A . {a 2k +1} 答案: D
3 5 B . {a 3k +1} C . {a 4k +1} n
D . {a 5k +1}
16. 数列{a } 中,若 a = a , a
= π
, n ∈ N * ,则下列命题中真命题个数是( )
n 1 n +1
sin( 2
a n ) (1) 若数列{a n } 为常数数列,则 a = ±1 ;
(2) 若 a ∈ (0,1) ,数列{a n } 都是单调递增数列;
(3) ) 若 a ∉ Z , 任取{a n } 中的 9 项a k
、 a 2 、…、 a 9
(1 < k 1 < k 2 < ⋅⋅⋅ < k 9 ) 构成数列{a n } 的子数列{a k } , n = 1, 2,⋅⋅⋅,9 ,则{a } 都是单调数列. n
A. 0 个 答案: C
B. 1个
C. 2 个
D. 3 个
三. 解答题
17. 已知{a n } 是一个公差大于 0 的等差数列, 且满足 a 4 a 6 = 96 , a 3 + a 7 = 20 , 数列{b n } 满足等式:
a =
b 1 + b 2 + b 3 + ⋅⋅ ⋅ + b
n (n ∈ N * ) . n
2 22 2
3 2n
(1) 求数列{a n } 的通项公式;
n + 1
(2) 求数列{b n + 2
} 的前 n 项和 S n .
答案:(1) 2n ;(2) b n = 2n +1 , S = 2n +2
- 4 +
n (n + 3) .
4
1 k k n
⎩
n
2
⎧⎪b ⋅ n -1, n 为奇数
18. 已知 b 、c 为常数且均不为零,数列{a n } 的通项公式为a n = ⎰
⎪c ⋅ 3n
,
,并且a 1 、a 3 、a 2 成等差数列,
n 为偶数
a 1 、a 2 、 a 4 成等比数列.
(1) 求 b 、c 的值;
(2) 设 S 是数列{a }
前 n 项的和,求使得不等式 S > 20182 成立的最小正整数 n .
答案:(1) b = 2 , c = 1;(2) n = 7 .
19. 王某2017 年12 月31日向银行贷款100000 元,银行贷款年利率为5% ,若此贷款分十年还清( 2027 年12 月31 日还清),每年年底等额还款(每次还款金额相同),设第 n 年末还款后此人在银行的欠款额为 a n 元.
(1) 设每年的还款额为m 元,请用 m 表示出a 2 ; (2) 求每年的还款额(精确到1元).
答案:(1) a = 100000(1 + 5%)2 - m (1 + 5%) - m = 110250 - 2.05m ;
(2) a 10 = 100000(1.05) - m (1.05) - m (1.05) - ⋅ ⋅⋅ - m = 0 , 10 9
8
100000(1.05)10
- m (1-1.0510 ) 1 -1.05 = 0 , m =
100000(0.05)(1.05)10
(1.05)10 -1
≈ 12950 .
20. 设数列{a } 的首项a 为常数,且 a
= 3n - 2a (n ∈ N * ) .
n
1
n +1
n
3n
(1) 判断数列{a n - 5
} 是否为等比数列,请说明理由;
(2) S n 是数列{a n } 的前 n 项的和,若{S n } 是递增数列,求 a 1 的取值范围.
3
3n 3 3
答案:(1) a 1 ≠ 5 时,{a n - 5 } 为等比数列,公比为-2 ;(2) - 4 < a 1 < 2
.
n n +2 n n +1 n 21. 如果数列{a } 对任意的 n ∈ N *
满足: a + a > 2a ,则称数列{a } 为“
M 数列”.
(1) 已知数列{a } 是“ M 数列”,设b = a
- a , n ∈ N * ,求证:数列{b } 是递增数列,并指出 2(a - a ) 与
n
n
n +1
n
a 4 - a 2 的大小关系(不需要证明);
n
5
4
(2) 已知数列{a n } 是首项为1,公差为2d 的等差数列, S n 是其前 n 项的和,若数列{| S n |} 是“ M 数列”,求 d
的取值范围;
(3) 已知数列{a n } 是各项均为正数的“ M 数列”,对于 n 取相同的正整数时,比较 u n =
a 1 + a 3 + ⋅ ⋅⋅ + a 2n +1 和
n +1
v =
a 2 + a 4 + ⋅⋅ ⋅ + a 2n
的大小,并说明理由. n
n
答案:(1) 2(a 5 - a 4 ) > a 4 - a 2 ; (2) d ∈ (-∞, - 3
) (0, +∞) ;
5
(3)数学归纳法, u n > v n .。