汽车悬架理论与设计
悬架设计指南

设计指南(弹簧、稳定杆)不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。
一 弹性元件弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。
在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。
钢板弹簧设计板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。
(一) 钢板弹簧布置方案1.1钢板弹簧在整车上布置(1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。
(2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。
1.2 纵置钢板弹簧布置(1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中心之间的距离相等,多数汽车上采用对称式钢板弹簧。
(2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。
(二)钢板弹簧主要参数确定初始条件:1G ~满载静止时汽车前轴(桥)负荷2G ~满载静止时汽车后轴(桥)负荷1U G ~前簧下部分荷重2U G ~后簧下部分荷重1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷c f ~悬架的静挠度;d f -悬架的动挠度1L ~汽车轴距;1、 满载弧高a f满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。
a f 用来保证汽车具有给定的高度。
当a f =0时,钢板弹簧在对称位置上工作。
为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。
2、 钢板弹簧长度L 的确定L —指弹簧伸直后两卷耳中心间的距离(1)钢板弹簧长度对整车影响当L 增加时:能显著降低弹簧应力,提高使用寿命;降低弹簧刚度,改善汽车平顺性;在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度;减少车轮扭转力矩所引起的弹簧变形;原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。
基于ADAMS的悬架系统动力学仿真分析与优化设计

基于ADAMS的悬架系统动力学仿真分析与优化设计一、概述本文以悬架系统为研究对象,运用多体动力学理论和软件,从新车型开发中悬架系统优化选型的角度,对悬架系统进行了运动学动力学仿真,旨在研究悬架系统对整车操纵稳定性和平顺性的影响。
文章提出了建立悬架快速开发系统平台的构想,并以新车型开发中的悬架系统优化选型作为实例进行阐述。
简要介绍了汽车悬架系统的基本组成和设计要求。
概述了多体动力学理论,并介绍了利用ADAMS软件进行运动学、静力学、动力学分析的理论基础。
基于ADAMSCar模块,分别建立了麦弗逊式和双横臂式两种前悬架子系统,多连杆式和拖曳式两种后悬架子系统,以及建立整车模型所需要的转向系、轮胎、横向稳定杆等子系统,根据仿真要求装配不同方案的整车仿真模型。
通过仿真分析,研究了悬架系统在左右车轮上下跳动时的车轮定位参数和制动点头量、加速抬头量的变化规律,以及汽车侧倾运动时悬架刚度、侧倾刚度、侧倾中心高度等侧倾参数的变化规律,从而对前后悬架系统进行初步评估。
1. 悬架系统的重要性及其在车辆动力学中的作用悬架系统是车辆的重要组成部分,对车辆的整体性能有着至关重要的作用。
它负责连接车轮与车身,不仅支撑着车身的重量,还承受着来自路面的各种冲击和振动。
悬架系统的主要功能包括:提供稳定的乘坐舒适性,保持车轮与路面的良好接触,以确保轮胎的附着力,以及控制车辆的姿态和行驶稳定性。
在车辆动力学中,悬架系统扮演着调节和缓冲的角色。
当车辆行驶在不平坦的路面上时,悬架系统通过其内部的弹性元件和阻尼元件,吸收并减少来自路面的冲击和振动,从而保持车身的平稳,提高乘坐的舒适性。
同时,悬架系统还能够根据车辆的行驶状态和路面的变化,自动调节车轮与车身的相对位置,确保车轮始终与路面保持最佳的接触状态,以提供足够的附着力。
悬架系统还对车辆的操控性和稳定性有着直接的影响。
通过合理的悬架设计,可以有效地改善车辆的操控性能,使驾驶员能够更加准确地感受到车辆的行驶状态,从而做出更为精确的操控动作。
平衡悬架结构原理

震器吸收振动,悬挂臂则将车轮与车身连接起来。
悬挂系统的设计直接影响车辆的操控性能、乘坐舒适性和轮胎
03
磨损。
减震系统
减震系统是平衡悬架中的重要 组成部分,主要作用是吸收和 减少来自路面的冲击和振动。
它通常由减震器和阻尼器组成, 减震器负责吸收振动,阻尼器 则通过摩擦和热能转化来消耗 振动能量。
减震系统的性能直接影响车辆 的行驶平稳性和乘坐舒适性。
20世纪中叶,随着汽车工 业的发展,平衡悬架开始 被应用于部分高端车型。
现代发展
近年来,随着电子技术和 控制理论的进步,平衡悬 架的性能和智能化程度得 到了显著提升。
02
平衡悬架的结构组成
悬挂系统
01
悬挂系统是平衡悬架的重要组成部分,主要负责支撑车身并缓 冲来自路面的冲击。
02
它通常由弹簧、减震器和悬挂臂组成,弹簧提供弹性支撑,减
统连接在一起,传递力和运动。
02
车身连接系统的组成
车身连接系统通常由各种连杆、轴和轴承组成,它们协同工作以实现车
身连接功能。
03
车身连接系统的力学原理
在车身连接系统中,各种连杆、轴和轴承通过精确的配合和运动传递来
确保车轮与路面之间的正确接触,同时将来自路面的冲击和振动传递到
车身。
04
平衡悬架的性能分析
车身连接系统的设计直接影响车辆的 操控性能、乘坐舒适性和轮胎磨损。
它通常由轴、轴承和车轮轴承座等组 成,轴负责连接车轮和车身,轴承和 车轮轴承座则负责支撑和润滑。
03
平衡悬架的工作原理
悬挂系统的力学原理
悬挂系统的作用
悬挂系统是平衡悬架的重要组成部分,主要作用是连接车轮和车 身,缓冲来自路面的冲击,并保持车轮与路面之间的接触。
悬架构造实验报告(3篇)

第1篇一、实验目的1. 了解汽车悬架系统的基本组成和结构。
2. 掌握不同类型悬架系统的构造特点。
3. 分析悬架系统在汽车行驶中的作用。
二、实验原理汽车悬架系统是连接车架与车轮的部件,其主要功能是将路面传递给车轮的载荷和反作用力传递到车架上,以保证汽车的平稳行驶。
悬架系统由弹性元件、减振器和导向机构三部分组成。
三、实验内容1. 扭杆梁式悬架系统2. 麦弗逊式独立悬架系统3. 电子控制主动式油气弹簧悬架系统四、实验步骤1. 观察扭杆梁式悬架系统(1)观察悬架系统的整体结构,了解其组成。
(2)观察扭杆梁的形状和材料,了解其作用。
(3)观察减振器和弹簧的安装位置和结构,了解其作用。
2. 观察麦弗逊式独立悬架系统(1)观察悬架系统的整体结构,了解其组成。
(2)观察滑动立柱和横摆臂的形状和材料,了解其作用。
(3)观察减振器和弹簧的安装位置和结构,了解其作用。
3. 观察电子控制主动式油气弹簧悬架系统(1)观察悬架系统的整体结构,了解其组成。
(2)观察油气弹簧的结构和材料,了解其作用。
(3)观察传感器、电控单元和电磁阀的安装位置和作用。
五、实验结果与分析1. 扭杆梁式悬架系统扭杆梁式悬架系统通过扭杆梁来平衡左右车轮的上下跳动,以减小车辆的摇晃,保持车辆的平稳。
在实验中,我们观察到扭杆梁的形状和材料,以及减振器和弹簧的安装位置和结构,从而了解了扭杆梁式悬架系统的构造特点。
2. 麦弗逊式独立悬架系统麦弗逊式独立悬架系统由滑动立柱和横摆臂组成,具有较好的操控性和稳定性。
在实验中,我们观察到滑动立柱和横摆臂的形状和材料,以及减振器和弹簧的安装位置和结构,从而了解了麦弗逊式独立悬架系统的构造特点。
3. 电子控制主动式油气弹簧悬架系统电子控制主动式油气弹簧悬架系统由油气弹簧、传感器、电控单元和电磁阀等组成,可以实现悬架刚度和阻尼的调节。
在实验中,我们观察到油气弹簧的结构和材料,以及传感器、电控单元和电磁阀的安装位置和作用,从而了解了电子控制主动式油气弹簧悬架系统的构造特点。
麦弗逊式悬架课程设计

麦弗逊式悬架课程设计一、课程目标知识目标:1. 学生能够理解并描述麦弗逊式悬架的基本结构及其工作原理;2. 学生能够掌握麦弗逊式悬架在汽车中的应用及其优势;3. 学生能够了解麦弗逊式悬架与其他类型悬架的区别。
技能目标:1. 学生能够运用所学知识分析麦弗逊式悬架在实际汽车中的运行情况;2. 学生能够通过实际操作,模拟麦弗逊式悬架的组装与调试过程;3. 学生能够运用相关工具和设备进行麦弗逊式悬架的简单故障排查。
情感态度价值观目标:1. 学生能够认识到汽车工程技术的实际应用,培养对汽车工程领域的兴趣;2. 学生通过团队合作完成麦弗逊式悬架的学习与操作,培养团队协作意识和沟通能力;3. 学生能够关注汽车行业的发展,了解汽车悬架技术的创新与变革。
课程性质:本课程为汽车工程学科的基础课程,以实践性、应用性为主,结合理论知识,培养学生的实际操作能力。
学生特点:学生为高中二年级学生,已具备一定的物理知识和汽车工程基础知识,对汽车结构有一定了解,对实践操作具有较高兴趣。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的动手能力和解决问题的能力。
通过课程学习,使学生能够更好地将所学知识应用于实际汽车工程领域。
二、教学内容本章节教学内容主要包括以下三个方面:1. 麦弗逊式悬架基本结构及工作原理- 悬架系统概述:介绍悬架系统的基本功能、分类及作用;- 麦弗逊式悬架结构:讲解麦弗逊式悬架的组成、各部分功能及其相互关系;- 工作原理:阐述麦弗逊式悬架在汽车行驶过程中的作用及其工作原理。
2. 麦弗逊式悬架的应用与优势- 应用范围:介绍麦弗逊式悬架在各类汽车中的应用情况;- 优势分析:分析麦弗逊式悬架相较于其他类型悬架的优势,如轻量化、成本低、维护方便等。
3. 麦弗逊式悬架的组装与调试- 组装过程:详细讲解麦弗逊式悬架的组装步骤,包括零部件的安装、调整及固定;- 调试方法:介绍麦弗逊式悬架调试的方法和技巧,确保悬架系统的性能稳定;- 故障排查:分析常见故障现象,教授相应的排查和解决方法。
汽车悬架设计概念的研究

图 -! 冲击部分 5244 冲程时的外倾角分析结果
%# !" 悬架特性的评价基准 ! ! 如上节所述, 选取了双横臂式和多连杆式悬架 的特征, 同时还理解了外倾角和束角产生的机理情 况; 因此, 对于设计者找到了从直感上能够判断符合 特性的设计空间的一种新的设计方法。 首先, 如图 ) 、 图 *、 图 +、 图 , 所示在各自的悬架
78 影响操稳性的悬架特性
! ! 对于影响汽车操稳性的悬架特性作为静态指标 有束角、 外倾角等; 作为其动态指标有横摆刚度, 侧 倾刚度等。本次主要对静态特性的束角和外倾角进 行研究。 所谓束角是指当汽车直线行驶时, 汽车纵向、 中 心面与车轮水平直径形成的角, 影响汽车的直线行 驶; 所谓外倾角是指车轮中心面和铅直线形成的角, 影响轮胎的接地性。
汽车悬架设计概念的研究
’#
图 !" 冲击部分 #$%% 冲程时的束角分析结果
选择了 & 个点。这点是理解了特性的发生机理而选 出的; 而且, 用 & 个点所做面的法线是很重要的, 可 以说悬架在行程时的法线变化量与特性变化量是相 同的。从前面看到的角度是外倾角, 从上面看到的 角度是束角。如图 ’ 、 图 (、 图 #、 图 )$ 所示在外倾角 中得到了和所有四种形式的悬架分析值几乎一致的 值。还有即使在束角方面也能得到同样的结果。图 * 所示的五连杆形式和其它三种形式相比选取 & 个 点虽然是很困难的事情, 但也能得到好的结果。为 此, 用一种评价方法能够同时评价两种特性, 不必要 进行庞大的计算, 可以从直感上能够进行判断。
万方数据
汽车悬架设计概念的研究
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 被引用次数: 于学华, YU Xue-hua 华南理工大学,汽车工程学院;华南理工大学,广东省电动汽车研究重点实验室,广州510641 噪声与振动控制 NOISE AND VIBRATION CONTROL 2006,26(6) 0次
麦弗逊悬架仿真分析

麦弗逊悬架仿真分析一、本文概述随着汽车工业的飞速发展和消费者对车辆性能要求的不断提高,悬架系统作为车辆的重要组成部分,其设计优化和性能分析显得尤为关键。
麦弗逊悬架作为一种常见的独立前悬架类型,以其结构简单、紧凑且性能稳定的特点,被广泛应用于各类乘用车中。
本文旨在通过仿真分析的方法,对麦弗逊悬架的动态特性进行深入探讨,以期为悬架设计优化和车辆性能提升提供理论支持和实践指导。
本文首先将对麦弗逊悬架的基本原理和结构特点进行简要介绍,为后续分析奠定理论基础。
随后,将详细介绍仿真分析的方法论,包括模型的建立、边界条件的设定、仿真工况的选择等,以确保分析结果的准确性和可靠性。
在此基础上,本文将重点分析麦弗逊悬架在不同工况下的动态响应特性,如位移、速度、加速度等关键参数的变化规律,并探讨其对车辆操纵稳定性和乘坐舒适性的影响。
本文将对仿真结果进行总结,并提出针对性的优化建议,以期为麦弗逊悬架的设计改进和车辆性能的提升提供有益的参考。
通过本文的研究,不仅可以加深对麦弗逊悬架动态特性的理解,还可以为车辆悬架系统的优化设计和性能评估提供科学的方法和依据。
本文的研究方法和成果也可为其他类型悬架系统的仿真分析提供参考和借鉴。
二、麦弗逊悬架结构与工作原理麦弗逊悬架(McPherson Strut Suspension)是汽车工业中应用最为广泛的一种独立悬架形式。
其名称来源于其发明者,英国工程师约翰·麦弗逊(John Alexander McPherson)。
麦弗逊悬架以其结构紧凑、成本低廉、性能稳定等优点,在乘用车市场中占据了主导地位。
麦弗逊悬架主要由减震器、螺旋弹簧、下摆臂、转向节、轴承等部件组成。
减震器与螺旋弹簧组合在一起,构成了悬架的支柱,既起到了支撑车身的作用,又能够吸收路面冲击产生的振动。
下摆臂则连接车轮与车身,通过轴承与转向节相连,使得车轮可以相对于车身进行转向运动。
当车辆行驶在不平坦的路面上时,路面的起伏会引起车轮的上下跳动。
悬架设计

B:前悬架用宽的弹簧片,会影响转向轮的最大转角。
C:片宽选取过窄,又得增加片数,从而增加片间的摩
擦和弹簧的总厚
大家好
next 50
汽车设计
大家好
back
51
汽车设计2).钢板弹簧片厚h的选择(影响)
➢增加片厚h,可以减少片数n
➢钢板弹簧各片厚度可能有相同和不同两种情况,
希望尽可能采用前者
选 择
➢但因为主片工作条件恶劣,为了加强主片及卷 耳,也常将主片加厚,其余各片厚度稍薄。此时,
汽车设计
1.满载弧高fa
➢满载弧高fa是指钢板弹簧装到车轴(桥)上, 汽车满载时钢板弹簧主片上表面与两端(不包 括卷耳半径)连线间的最大高度差
➢fa用来保证汽车具有给定的高度
➢当fa=0时,钢板弹簧在对称位置上工作 ,为 了在车架高度已限定时能得到足够的支挠度值, 常fa=10~20mm。
大家好
45
40 40
汽车设计
Fk Fc F0
ca/cm 1
大家好
41
汽车设计
四、悬架侧倾角刚度及其在前、后轴的分配
1.侧倾角刚度
侧向惯性力为0.4G时:
乘用车侧倾角:2.5-4.0度
货车侧倾角:6-7度
2.前、后轴侧倾角刚度的匹配
乘用车:前、后悬架侧倾角刚度比值:
1.4~2.6
大家好
42
汽车设计
第四节 弹性元件的计算
➢各片的承受的弯矩正比于其惯性矩
➢同时该截面上各片的弯矩和等于外力 所引起的弯矩
n
c6aE/
ak31(Yk
Yk1)
k1
k
ak1(l1lk1)
Yk 1/ Ji i1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度
c. 确定是否安装横向稳定
杆
O2
L2
D
H2 E
O L1 S 1
P
F
z
H1
B
Oy
x
G
2020/5/3
② 主要设计步骤
a. 根据悬架主要零件尺寸, 确定主要关键点的间距
b. 确定各点坐标,进行悬 架运动学计算,检查前 轮定位参数变化趋势是 否合理
c. 根据轴荷及弹性元件刚 度进行悬架力学计算, 确定悬架刚度,偏频及 平衡位置
PW—转向节臂;
双横臂独立悬架导向机构简图
7
2.2 双横臂独立悬架前轮定位参数
L2
O2
D
H2 E
L1
S
O1 z
P B
H1
O y
⑴车轮外倾角
tan yF yG , tan1 yF yG
zF zG
zF zG
⑵主销后倾角
F
tan xD xB , tan1 xD xB
zD zB
zD zB
⑶主销内倾角
tan yB yD , tan1 yB yD
zD zB
zD zB
x
G
双横臂独立悬架导向机构简图
2020/5/3
8
2.3 双横臂独立悬架的设计任务及设计步骤
以前悬架为双横臂独立悬架(弹性元件为扭杆)为例:
① 设计任务
a. 确定O1、O2和S点坐标 b. 确定扭杆弹簧的安装角
2020/5/3
6
2. 双横臂独立悬架导向机构及设计任务
2.1 双横臂独立悬架导向机构(点击察看实物结构)
O2
L1 S O1
z O y
x
2020/5/3
L2 D
L2-上摆臂摆动轴线; O2D-上摆臂轴线; O2-上摆臂轴线与其摆动轴线的垂足;
H2 E W F
P B
H1
L1-下摆臂摆动轴线; O1B-下摆臂轴线;
主销内倾角及自动回正作用
BD-主销轴线;EF-转向节轴线;FG轮中心平面;O1O2-竖直线
2020/5/3
4
1.3 车轮外倾角γ
a. 定义——在汽车横向平面内, 转向轮向远离主销上部方向
倾斜一个角度,即为车轮外
倾角γ。
b. 车轮外倾角的作用(使满 载时车轮中心平垂直地面, 减少轮胎偏磨顺)——若 汽车空载时车轮无外倾, 即车轮中心面垂直路面, 则满载时重力作用使车轮 中心面向内倾斜一个角度, 加速轮胎偏磨损;若汽车 空载时车轮存在一定的外 倾,则满载时可以使车轮 中心平面垂直于地面,减 少轮胎偏磨损;但车轮外 倾不宜过大。
2020/5/3
10
3.3 滑柱摆臂独立悬架的设计任务及设计步骤
① 设计任务
a. 确定O、S和D点坐标 b. 确定弹簧刚度和自由长
度 c. 确定是否安装横向稳定
杆
D
H2
C
E
A
F
H1
S
L
P
B
O
T
L?
G
2020/5/3
② 主要设计步骤
a. 根据零件尺寸确定各点间 距
b. 确定各点坐标,进行悬 架运动学计算,检查前 轮定位参数变化趋势是 否合理
2020/5/3
车轮外倾角 BD-主销轴线;EF-转向节轴线;FG-
轮中心平面;O1O2-竖直线
5
1.4 前轮前束 A-B
a. 定义——两前轮后边缘距离 A与前边缘距离B之差,称 为前轮前束。
b. 前轮前束的作用(抵消车 轮外倾的滚锥效应)—— 外倾角的存在使车轮滚动 类似滚锥,即滚动时两前 轮向外滚开,同时车轮受 到前桥及转向横拉杆的限 制,车轮不能向外滚开, 出现边滚边滑的状况,加 剧了轮胎的磨损。前轮前 束的存在则使车轮滚动接 近正前方。
O1-摆臂轴线与其摆动轴线的垂足;
B-下摆臂球销中心; D-上摆臂球头销中心;
BD-主销轴线;
BDEFP-转向节;
EF-转向节轴线; E-主销轴线与和转向节轴线交点;
FG-车轮半径;
SP-转向横拉杆;
S-转向横拉杆断开点; P-转向节臂球销中心;
H2-螺旋弹簧在下摆臂上的固定点; G H1-螺旋弹簧在车架上固定点 ;
d. 计算前后悬架侧倾角刚 度及整车侧偏角,确定 是否安装横向稳定杆
9
3. 滑柱摆臂独立悬架导向机构及设计任务
3.1 双横臂独立悬架导向机构(点击察看实物结构)
D
OB-摆臂轴线; L-摆臂摆动轴线 ;
H2
C
B-摆臂球销中心; O-摆臂在车架固定点(垂足); D-悬架在车架上固定点(球销中心);
E
BD-主销轴线; L’-减振器轴线(与BD不共线);
车辆工程专业选修课程
汽车悬架理论与设计
授课对象:2004级本科生 教 研 室:汽车系 任课教师:李 静
2020/5/3
1
第一章 绪论
§1.2 前轮定位参数及独立悬架导向机构
教学目的:复习前轮定位参数概念,掌握独立悬 架导向机构结构简化模型,了解设计任务和步骤
教学重点和难点:双横臂和滑柱摆臂悬架导向机 构简化,前轮定位参数
1. 前轮定位参数简介
a. 主销后倾角τ b. 主销内倾角σ c. 车轮外倾角γ d. 前轮前束A-B
2020/5/3
2
1.1 主销后倾角τ
a. 定义——在汽车纵向平面内,
主 销 BD 向 后 倾 斜 一 个 角 度 , 即为主销后倾角τ。
C
τ
D
主
销
b. 主销后倾角的自动回正作 M
后 倾
用 —— 在 干 扰 力 矩 M 作 用
A
F C-减振器杆与油缸交点; A-减振器活塞中心;
H1
S
L
P
B
O
T
L?
EF-转向节轴线; F-车轮中心; FG-车胎半径; E-转向节轴线与减振器轴线交点; G-车轮接地点; H1-弹簧下支点; H2-弹簧下支点;
S-转向梯形断开点;
G P-转向节臂(转向梯形臂)球销中心;
滑柱摆臂独立悬架导向机构简图 T-由摆臂球销中心向减振器轴线作垂线的垂足
角
下,车轮前端向纸面内偏
及
转,汽车偏离直线行驶方
自
向。而地面与车轮之间的
侧向附着力FY产生绕主销
ห้องสมุดไป่ตู้
B
l
动 回 正
的回正力矩,该力矩方向
与干扰力矩M的方向相反,
作
A
用
在其作用下,转向轮自动
FY
回到直线行驶状态。
AC—轮胎中心垂直线;A—轮胎中心垂直线与地
面交点;BD—主销轴线;B—主销轴线与地面交
点;l—AC与BD的距离;M—干扰力矩
2020/5/3
3
1.2 主销内倾角σ
a. 定义——在汽车横向平面内, 主销上部向内倾斜一个角度, 即为主销内倾角σ。
b. 主销后倾角的自动回正作 用——转向轮在外力作用 下转过一个角度时,车轮 最低点将陷入地面以下, 但实际上车轮最低点不可 能陷入路面以下,因此在 车辆重力作用下连同汽车 前部被上抬一个高度,使 转向轮回到直线行驶的状 态。
c. 根据轴荷及弹性元件刚 度进行悬架力学计算, 确定悬架刚度,偏频及 平衡位置