大学物理8能量守恒力学习题课
山东理工大学大学物理上_---练习题册及答案(1——8)

第一章 力学的基本概念(一)第1单元序号 学号 姓名 专业、班级一 选择题[ A ]1. 一小球沿斜面向上运动,其运动方程为(SI),则小球运动到最高点的时285t t s -+=刻是: (A) s 4=t ;(B) s 2=t ; (C) s 8=t ;(D) s 5=t 。
[ D ]2. 一运动质点在某瞬时位于矢径 r (x,y)的端点处,其速度大小为(A)dtdr (B) dt d r(C)dt d r (D)22)()(dt dy dt dx +[ D ]3. 某质点的运动方程x=3t-53t +6 (SI),则该质点作: (A ) 匀加速直线运动,加速度沿x 轴正方向; (B ) 匀加速直线运动,加速度沿x 轴负方向;(C ) 变加速直线运动,加速度沿x 轴正方向;(D ) 变加速直线运动,加速度沿x 轴负方向。
[ C ]4. 某物体的运动规律为dtdv =-k 2v t,式中k 为常数,当t=0时,初速度为0v ,则速度v 与时间的函数关系为:(A ) v=21 k 2t +0v ; (B ) v=-21k 2t +0v(C ) v 1=21k 2t +01v(D ) v1=-21k 2t +01v[ D ]5. 一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92t ,当切向加速度与合加速度的夹角为︒45时,角位移θ等于:(A) 9 rad, (B )12 rad, (C)18 rad, (D) rad[ D ]6. 质点作曲线运动,r 表示位置矢量,s 表示路径,t a 表示切向加速度,下列表达式中: (1)dt dv =a; (2)dt dr =v; (3)dtds=v; (4)dt d v =t a ,则,(A ) 只有(1)、(4)是对的;(B ) 只有(2)、(4)是对的; (C ) 只有(2)是对的; (D ) 只有(3)是对的。
[ B ]7. 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a,b 为常量)则该质点作:(A) 匀速直线运动 (B) 变速直线运动 (C) 抛物线运动 (D) 一般曲线运动二 填空题1. 设质点在平面上的运动方程为r =Rcos t ωi +Rsin tωj ,R 、ω为常数,则质点运动的速度v =j t con R i t R ϖϖωωωω+-sin ,轨迹为 半径为R 的圆 。
大学物理动量守恒定律和能量守恒定律

04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。
大学物理课后习题-答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解:=a d v /d t 4=t d v 4=t d t⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以0d -2g h d r v i j t =d d v g j t =- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
《大学物理》(8-13章)练习题

《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。
4 刚性双原子分子气体的自由度数目为()。
A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。
6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。
处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。
大学物理 第八章 热力学基础

CV
2019/5/21
P.12/42
§8.2 热力学第一定律
热力学基础
§8.2.1 热力学第一定律 本质:包括热现象在内的能量守恒和转换定律。
E2 E1 W Q (E2 E1) W E W
Q
dQ dE dW
Q
E E2 E1
W
+ 系统吸热 内能增加 系统对外界做功
系统放热 内能减少 外界对系统做功
2019/5/21
P.13/42
热力学基础
热力学第一定律适用于任何系统(气液固)的任何过 程(非准静态过程也适用),
Q E PdV
热力学第一定律的另一叙述:第一类永动机 是不可 能制成的。
第一类永动机:Q = 0, E = 0 ,A > 0的机器;
过一系列变化后又回一开始的状态,用W1表示外界对 气体做的功,W2表示气体对外界做的功,Q1表示气体 吸收的热量,Q2表示气体放出的热量,则在整个过程中 一定有( A )
A.Q1—Q2=W2—W1 ; B.Q1=Q2
C.W1=W2 ;
D.Q1>Q2
2019/5/21
P.16/42
【例8-4】如图,一个四周绝热的气缸热,力中学基间础 有 一固定的用导热材料制成的导热板C把气缸分 成 A.B 两部分,D是一绝热活塞, A中盛有 1mol He, B中盛有1mol N2, 今外界缓慢地
等压膨胀过程 V2>V1 , A>0 又T2>T1, 即E2-E1>0 ∴Q>0 。气体吸收的热量,一部分用于内能的增加,
一部分用于对外作功;
等压压缩过程 A<0 , T2<T1, 即E2-E1<0 ∴Q<0 。
大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为0.02s 时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n
i内
0
设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
大学物理试题集和答案

大学物理习题集上册大学物理教学部二00九年九月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习一质点运动的描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习二圆周运动相对运动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习三牛顿运动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四功和能┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五冲量和动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六力矩转动惯量转动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习七转动定律(续)角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习八力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习九理想气体状态方程热力学第一定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十等值过程绝热过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十一循环过程热力学第二定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十二卡诺循环卡诺定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十三物质的微观模型压强公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十四理想气体的内能分布律自由程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十五热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十六谐振动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十七谐振动能量谐振动合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八波动方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习十九波的能量波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习二十驻波多普勒效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习二十一振动和波习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习二十二光的相干性双缝干涉光程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习二十三薄膜干涉劈尖牛顿环┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄38 练习二十四单缝衍射光栅衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39 练习二十五光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41 练习二十六光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43部分物理常量万有引力常量G=6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W
外
0
W非保内 0
机械能守恒
E E k E p 恒量
4、角动量定理 角动量守恒定律
角动量 冲量矩 力矩瞬时作用: 质点: 质点: 质点系: 角动量守恒
L r p r mv
t2 t1
M 0 dt
M合
力矩对时间累积作用: 角动量定理
dL dt
上节主要内容
质点的动能定理:
dW mvdv
1 1 2 2 W mv 2 mv1 Ek 2 Ek1 2 2
微分表示式 积分表示式来自质点系的动能定理:1 1 2 2 W外 W内 mi vi mi vi 0 2 2
保守力: 作功与路径无关,只与始末位置有关的力。
保守力作功的数学表达式
动量守恒
0
系统:
3.动能定理——描写力对空间累积作用的规律。 1 2 1 2 质点: F合 dr 2 mv 2 mv 0 质点系: 1 2 1 2 W外 W内 mi v i mi v i0 2 2 功能原理
W外 W非保内 (E k E p ) (E k0 E p0 )
B
N mg 4mgsin 2 4kR(1 cos )2 2Rk(1 cos )
力学(七)角动量守恒、综合练习 三, 1
mv 0 ( M m )v 1
1 1 2 2 mgh ( m M )v 1 mv 0 2 2
Mv0 h 2( M m ) g
m1 v10 m2 v 20 m1 v1 m2 v 2 v10 v20 v2 v1
(m1 m2 ) v10 2m2 v 20 v1 m1 m2 (m2 m1 ) v 20 2m1 v10 v2 m1 m2
(1) 如果m1= m2 ,则v1 = v20 ,v2 = v10,即两物体 在碰撞时速度发生了交换。 (2) 如果v20 =0 , 且 m2 >> m1, 则v1 = - v10, v2 = 0
W外 0 , W非保内 0
E E k E p 恒量
机械能守恒定律
当系统只受保守内力作功时,质点系的总机 械能保持不变。
注意:
(1)机械能守恒定律只适用于惯性系,不适合于 非惯性系。这是因为惯性力可能作功。 (2)在某一惯性系中机械能守恒,但在另一惯性 系中机械能不一定守恒。这是因为外力的功与参 考系的选择有关。对一个参考系外力功为零,但 在另一参考系中外力功也许不为零。
2
设m 离 开 轨 道 时 速 度 为 v,小 车 的 速 度 为 V , 则 在 入 射 到 离开小车的过程中
mv0 MV mv
1 1 1 2 2 mv 0 MV mv 2 2 2 2
( M m) v v0 M m
W外 W保内 W非保内 Ek 2 Ek1
W保内 E p 2 E p1
W外 W非保内 E k 2 Ep 2 Ek1 E p1
机械能
E Ek Ep
W外 W非保内 E2 E1
质点系的功能原理
质点系机械能的增量等于所有外力和所有非保 守内力所作功的代数和。 如果
保守力沿任何闭合路径作功等于零。
F dr 0
保守力的功与势能的关系:
保守力对物体作的功等于物体势能增量的负值。
Wab ( E pb E pa ) E p
四、机械能守恒定律
质点系的动能定理: 其中
W内 W外 Ek 2 Ek1
W内 W保内 W非保内
第二章 动力学基本定律小结
1.牛顿第二定律——描写力的瞬时作用规律。 F ma 2.动量定理——描写力对时间累积作用的规律。
F外 dt mv mv0
t
质点:
质点系:
F dt m v m v i i i i0 合外
F合外 0
M合外dt Li Li0
M合 dt L L0
M合外 0
注意: M、L 都是对点的!
L = 恒矢量
力学(四)功、势能 三、1、 (1) F 力作功 A , 一直保持 1 F 与圆弧相切
A
y
F
30
C
x
F B 2 A1 F ds Fds Fs 30 94.2 J 2
R
0
Fy dy 40( 3 1) 29.2J
o
( F F ' cos30 F F ' sin 30 )
' x
' y
o
力学(五)动能定理 功能原理 机械能守恒 三、2、解 (1)小环下滑过程中,小环、弹簧、地球系统机械能 守恒,设B处重力势能为0
1 1 2 mgh mv k ( l ) 2 2 2
2.完全非弹性碰撞 由动量守恒定律
m1v10 m2 v20 (m1 m2 )v
m1 v10 m2 v 20 v m1 m2
完全非弹性碰撞中动能的损失
1 1 1 2 2 E ( m1 v10 m2 v 20 ) (m1 m2 )v 2 2 2 2
m1 m2 ( v10 v 20 ) 2 2(m1 m2 )
完全非弹性碰撞:碰撞后物体系统的机械能有损失, 且碰撞后物体以同一速度运动。
v10
m1
O
v 20
m2
v1
m m1 1
v2
m2
x
动量守恒
m1v10 m2 v20 m1v1 m2 v2
1.完全弹性碰撞
1 1 1 1 2 2 2 2 m1 v10 m2 v 20 m1 v1 m2 v 2 2 2 2 2
(2)
A2
B A
与 A2, F F力作功 x、y 轴方向不变。
A A
B B F' dr F ' x i F ' y j dxi dyj ( F ' x dx F ' y dy)
R 0
Fx dx
3.非弹性碰撞
牛顿的碰撞定律:在一维对心碰撞中,碰撞后两物 体的分离速度 v2- v1 与碰撞前两物体的接近速度 v10- v20 成正比,比值由两物体的材料性质决定。
e
v2 v1 v10 v20
e 为恢复系数
e = 0,则v2 = v1,为完全非弹性碰撞。 e =1,则分离速度等于接近速度,为完全弹性碰撞。 一般非弹性碰撞:0 < e < 1
1 1 2 mg2 R si n mv k 2 R(1 COS ) 2 2 2 A 4 2 2 2 v 4 gR si n kR (1 cos ) m
2
N
f
an
mg
(2)分析B处受力:
v2 N f mg m R
2R h
k
f kl k 2R(1 cos )
五、碰撞
两个或两个以上的物体在运动中 发生极其短暂的相互作用,使物体的 运动状态发生急剧变化,这一过程称 为碰撞。
碰撞分正碰和斜碰两种: 正碰:两球沿着联心线运动而发生的碰撞 斜碰:两球碰撞前后的速度不在两球的中 心连线上。
v1
m m1 1
v2
m2
m1 m2
完全弹性碰撞:碰撞后物体系统的机械能没有损失。 非弹性碰撞:碰撞后物体系统的机械能有损失。