二元函数微积分——偏导数和全微分 PPT

合集下载

二元函数微积分偏导数和全微分(课堂PPT)

二元函数微积分偏导数和全微分(课堂PPT)

的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导
数:
x
( z ) x
2z x2
fxx(x,y);
(z) y x
2z x y
fxy(x,y)
x
(
z y
)
2z yx
fyx(x,
y);
y(yz)y2z2fyy(x,y)
.
16
类似可以定义更高阶的偏导数.
例如,z = f (x , y) 关于 x 的三阶偏导数为
二元函数微积分
一元函数微分学 推广
二元函数微分学 注意: 善于类比, 区别异同
.
1
二元函数的基本概念
一、区域 二、二元函数的概念
.
2
区域
平面点集: 平面上满足某个条件的一切点构 成的集合。
平面区域: 由平面上一条或几条曲线所围成 的部分平面点集称为平面区域,ຫໍສະໝຸດ y 通常记作D。边界·
01
闭开区域
x
.
例3. 求 r x2y2z2 的偏导数 .
解:
r
2x
x
x 2 x2 y2 z2 r
r y , r z y r z r
.
13
例4. 已知理想气体的状态方程 pVRT(R 为常数) ,
求证: pVT 1 V T p
证: p RT , V
p V
RT V2
说明: 此例表明,
V RT , V R p T p
.
8
定义: 设函数 zf(x,y)在点 (x0,y0) 的某邻域内
极限
lx i0m f(x0x,y0 x)f(x 0 ,y0)
存在, 则称此极限为函数 z f( x ,y )在 ( x 0 ,y 点 0 )对 x

数学分析第十六章课件偏导数与全微分

数学分析第十六章课件偏导数与全微分

解: 已知

V 2 rh r r 2h
r 20, h 100, r 0.05, h 1
V 2 20100 0.05 202 (1) 200 (cm3)
即受压后圆柱体体积减少了
作业
• P192:1:(单数题) • P193:7;9 • P208:1:(双数题) • P208:3 • P209:9 • P217:1:(1;3);2:(2;4);6 • P223:2;3;8
定理16.1 3.全微分与偏导数的关系:
f (x, y) 设 (x0 , y0 ) 可微,在表达式中 分别令 f 0 x 0 和 x 0 y 0

定理16.2
从而:f 在 p0 的全微分可写成
dz |p0 fx (x0 , y0 )dx f y (x0 , y0 )dy
z f (x) 在某区域 G 内(x,y) 点的全微分为
f11,
f12,
f21,
f22
书上记号易混
链式法则的应用
偏微分方程的变换
目的
求解
2)复合函数的全微

u
f (x, y),若x, y为自变量,则
du f dx f dy x y
进一步,若x (s,t) y (s,t) 则有
du u ds u dt dx x ds x dt dy y ds y dt
r x 2
2x x2 y2 z2
x r
r z z r
4、计算
的近似值.
解: 设
,则
f x (x, y) y x y1 , f y (x, y) x y ln x

则 1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08

§7.3 方向导数、偏导数与全微分

§7.3 方向导数、偏导数与全微分
1
西南民族大学经济学院 毛瑞华 微积分(2007~2008下)
当P(x, y)沿着直线 l 变动时, 二元函数f(x, y)可表示为与 f(x, y)= f(x0+tv1, y0+tv2) 此时f(x, y)表示为t 的一元函数. 令 g(t)= f(x0+tv1, y0+tv2),则 g(0)= f(x0, y0).


x0
O
y0
西南民族大学经济学院 毛瑞华 微积分(2007~2008下)
9
xy 2 2 , x y 0 例5 讨论函数 f ( x, y ) x 2 y 2 2 2 0, x y 0 在点(0,0)处的偏 导数与连续性的关系.
解 由偏导数的定义知道 f ( x ,0) f (0,0) (0, 0) lim fx 0 x 0 x f (0, y ) f (0, 0) f y (0, 0) lim 0 y 0 y 函数f (x,y)在点(0,0)处的两个偏 导数均存在. 但是函数f (x,y)在点(0,0)处是不连续的.
dz z xdx z y dy
( y 3x y)dx (3xy x )dy;
3 2 2 3
西南民族大学经济学院 毛瑞华 微积分(2007~2008下)
15
(2) u ( x 2 y ) .
z

u , uy 2z( x 2 y) , x z( x 2 y )
梯度 f 是一个向量 , 其长度为 ( x , y )]2 [ f y ( x , y )]2 f [ f x
当 f 0 时, 称 f 的方向为梯度方向.
几何意义: 梯度方向是函数变化率最大的方向.

多元函数微积分学 6.3偏导数与全微分

多元函数微积分学 6.3偏导数与全微分

=1+ 2×0.04 + 0×0.02 =1.08.
24
2. 全微分的运算公式 设二元函数 u(x,y) , v(x,y) 均可微 , 则 ((v(x,y) ≠0)), 也可微 且 也可微,
d( ku)
(k为常数 为常数), 为常数
(k为常数), (k为常数), 为常数
= du ± dv, = vdu + udv,
26
f (x, y),
处连续. 即 z = f (x, y) 在点 (x, y) 处连续
17
定理4 (充分条件) 若函数
∂z ∂z 的偏导数 , ∂x ∂y 在 (x, y) 连 , 则函数在该点可微分 点 续 则函数在该点可微分. 证 ∆z = f (x + ∆x, y + ∆y) − f (x, y)
∂u =− sin( x2 − y2 − ez ) ⋅ (−2 y) = 2 y sin( x2 − y2 − ez ) ∂y
∂z 2 2 z z z 2 2 z u = −sin( x − y − e ) ⋅ (−e ) = e sin( x − y − e ) ∂z
10
2. 二元函数偏导数的几何意义
∂f ; z′ x ∂ x (x0 , y0 )
( x0 , y0 )
;
f1′(x0, y0 ) .
2
同样可定义对 y 的偏导数
f (x0, y0 + ∆y ) − f (x0, y0 ) f y′(x0, y0 ) = lim ∆ y→0 ∆y
若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x 或 y 偏导数存在 , 则该偏导数称为偏导函数 也简称为 则该偏导数称为偏导函数 偏导函数, 偏导数 , 记为

数学分析 第十六章偏导数与全微分

数学分析 第十六章偏导数与全微分

第十六章 偏导数与全微分§1偏导数与全微分概念这部分要掌握的1、 连续、偏导数、可微三个概念的定义;2、 连续、偏导数、可微三个概念之间的关系;二元函数的连续、偏导数、可微的概念都是用极限定义的,不同的概念对应不同的极限,切勿混淆。

考虑函数),(y x f 在),(00y x 点的情形,则它们分别为:),(y x f 在点),(00y x 连续定义为: ),(),(lim 0000y x f y x f y y x x =→→),(y x f 在点),(00y x 存在偏导数定义为: 000000),(),(lim),(0x x y x f y x f y x f x x x --=→ 或 x y x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000000000),(),(lim),(0y y y x f y x f y x f y y y --=→ 或 yy x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000),(y x f 在点),(00y x 可微定义为:0),(),(),(),(lim22000000000=∆+∆∆-∆--∆+∆+→∆→∆yx yy x f x y x f y x f y y x x f y x y x因此,要讨论),(y x f 点),(00y x 的可微性,首先要求),(00y x f x ,),(00y x f y 。

这三个概念之间的关系可以用下图表示(在),(00y x 点)在上述关系中,反方向均不成立。

下面以)0,0(),(00=y x 点为例,逐一讨论。

4⇒2 ,4⇒3 例1:⎪⎩⎪⎨⎧=+≠++=0 ,00 ,),(222222y x y x y x xy y x f这是教材中的典型例题,0)0,0()0,0(==y x f f 均存在,但),(y x f 在)0,0(点不可微,且),(lim 0y x f y x →→不存在,即),(y x f 在)0,0(点不连续。

高等数学教学: 偏导数与全微分

高等数学教学:  偏导数与全微分
轮换对称性

f
x
(0,0,0)


3

x cos
x

x

0

1 4
利用轮换对称性 , 可得
f y (0,0,0)
f z (0,0,0)
1 4
d f (0,0,0) f y (0,0,0) d x f y (0,0,0) d y f z (0,0,0) d z
1 (d x d y d z) 4
例 7. 求所有的二阶偏导数: 两个混合偏导数:是否总相等
例8. 设

f(x,y)=
xy
x2 x2

y2 y2
,
0 ,
x2 y2 0 x2 y2 0
证明: fxy (0, 0) f yx (0, 0)
在什么条件下才能保证两者相等呢?
定理16.4 这个定理可以推广到 n阶偏导数的情形: 即若函数 f 具有直到 n 阶的连续偏导数,则求偏导数与变量的顺序
z
2
2ze
x2

y2

z
2

2
x
sin
y
u
2 x (1 2 x2 sin2 y) ex2 y2 x4 sin 2 y
xyz
u y

f y

f z
z y
2ye x2 y2 z2 2ze x2 y2 z2 x2 cos y
2 ( y x4 sin y cos y ) ex2 y2 x4 sin 2 y
x y
x f x
y
s f
同理 y
t
例4. 设 u f (xy, y ) 求 u 2u 2u

二元函数微积分——偏导数和全微分解读

二元函数微积分——偏导数和全微分解读

z f , , z y , f ( x, y ) , f ( x, y ) y 2 y y
偏导数的概念可以推广到二元以上的函数 .
例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的
偏导数定义为
x x
x
x
f y ( x, y , z ) ?
r2
内容小结
1. 偏导数的概念及有关结论
• 定义; 记号
2. 偏导数的计算方法 • 求一点处偏导数的方法 • 求高阶偏导数的方法
先求后代(把其他 变量视为常数)
利用定义
逐次求导法
练 习
1、求二元函数 z x ye 的各二阶偏导数。
2 y
3 3 2
2、 求二元函数 z x y 3 xy 的各二阶偏导数。
定义: 设函数 z f ( x, y ) 在点 ( x0 , y0 ) 的某邻域内 极限
x0 x
x
x0
存在, 则称此极限为函数 z f ( x, y ) 在点 ( x0 , y0 ) 对 x 的偏导数,记为
f ; zx x ( x0 , y 0 )
( x0 , y 0 )
;
f ( x0 x, y0 ) f ( x0 , y0 ) 注意: f ( x , y ) lim x 0 0 x 0 x
例3. 求 的偏导数 . 2x x r 解: 2 2 2 x 2 x y z r r z z r
(R 为常数) , 例4. 已知理想气体的状态方程 求证: p V T 1 V T p RT p RT 2 , 证: p 说明: 此例表明, V V V 偏导数记号是一个 RT V R V , p T p 整体记号, 不能看作 分子与分母的商 !

8.3偏导数与全微分

8.3偏导数与全微分

f ( x0 x , y0 ) f ( x0 , y0 ) f x ( x0 , y0 ) lim x 0 x
同理可定义关于y的偏导数
f ( x 0 , y 0 y ) f ( x 0 , y 0 ) lim f y ( x0 , y0 ) y 0 y
记为: f y ( x0 , y0 )
Q1 :Q1对 自 身 价 格1的 边 际 需 求 p ; p1 Q1 :Q1对 相 关 价 格2的 边 际 需 求 p ; p2
Q2 :Q2 对 相 关 价 格1的 边 际 需 求 p ; p1 Q2 :Q2 对 自 身 价 格2的 边 际 需 求 p ; p2
Q1 的经济意义:相关价格不变时,自身价格达到p1时, p1 价格再增加一个单位所增加或减少的需求量; Q1 的经济意义:自身价格不变时,相关价格达到p2时, p2 价格再增加一个单位所增加或减少的需求量;
的改变量为
z f ( x x, y y ) f ( x, y )
全改变量
1.全微分的定义 设长方形边长为x, y, 则它的面积为S=x y,如果边长有
改变量x, y, 则面积的改变量为
S f ( x x, y y ) f ( x, y ) ( x x )( y y ) xy yx xy x y dS : S在点( x, y )处的全微分.
注: 1.z f ( x, y)在( x0 , y0 )处的偏导数,可理解为 该函数
在( x0 , y0 )处沿x轴和y轴方向的变化率,即
d f x ( x0 , y0 ) f ( x , y0 ) | x x 0 dx d ( x 0 , y0 ) fy f ( x 0 , y ) | y y0 dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程 u x2u2 y2u2 z2u2 0
证: u x
1 r2
r x
1 r2
x r
r2
2u x2
1 r3
3x r4
பைடு நூலகம்
r x
1 r3
3x2 r5
利用对称性
,

2u y2
r13
3ry52
,
2u z2
r13
3rz52
二元函数微积分——偏导数和全微分
二元函数的基本概念
一、区域 二、二元函数的概念
区域
平面点集: 平面上满足某个条件的一切点构 成的集合。
平面区域: 由平面上一条或几条曲线所围成 的部分平面点集称为平面区域,
y 通常记作D。
边界
·
01
闭开区域
x
常见区域
y
y2(x)
0 a y1(x) b x
X 型区域
偏导数的概念可以推广到二元以上的函数 .
例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的
偏导数定义为
fx(x,
y,
z)
lim f(xx, y,z)f(x,y,z)
x 0
x
fy(x,y,z)? fz(x,y,z)?
(请自己写出)
由偏导数的定义可以看出,要求二元函
函数 z 也称为因变量,x, y 的变化范围 D 称为函数的定
义域。 类似的,可以定义三元函数 u f (x, y, z) 及三元以上的函数。
自变量个数
定义域
x 一元函数 一个:
在数轴上讨论
(区间)
二元函数 两个:x, y 在平面上讨论
(区域)
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
由 xa xb
y2(x) y1(x)
四条曲线围成
y
d
x2(y)
c x1(y)
0
x
Y 型区域
由 yc y d
x1(y) x2(y)
四条曲线围成
邻域:
平面上以点 P0 (x0 , y0 ) 为圆心, 0 为半径的圆内部构成
的有界开区域 D (x, y) (x x0 )2 ( y y0 )2 , 0 称
xz 1 z2z yx lnxy
证: z yx y1, z xy lnx
x
y
xz 1 z xyxy 2z yx lnxy
例3. 求 r x2y2z2 的偏导数 .
解:
r
2x
x
x 2 x2 y2 z2 r
r y , r z y r z r
例4. 已知理想气体的状态方程 pVRT(R 为常数) ,
y 0
y
d dy
f
(x0,
y)
yy0
若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x
或 y 偏导数存在 , 则该偏导数称为偏导函数, 也简称为
偏导数 , 记为
z , x
f , x
zx ,
fx(x,y), f1(x,y)
z , y
f , y
zy ,
fy(x,y), f2(x,y)
求证: pVT 1 V T p
证: p RT , V
p V
RT V2
说明: 此例表明,
V RT , V R p T p
偏导数记号是一个 整体记号, 不能看作
T pV , T V R p R
分子与分母的商 !
pVT V T p
RT pV
1
练习
1、 求二元函数 z exy 的一阶偏导数。 2、 求二元函数 z arctan y 的一阶偏导数。
f x
(x0,
y0)
;
zx (x0, y0) ;
fx (x0,y0);f1(x0,y0)
注意: fx(x0, y0) lx i0m f(x0 x,y 0 x )f(x0,y0)
d dx
f
(x,
y0)
xx0
同样可定义对 y 的偏导数
fy(x0, y0) limf(x0,y0y) f(x0,y 0 )
为点 P0 (x0 , y0 ) 的 邻域。
y

P0(x0, y0)
·
01
x
二元函数的概念
定义:设有三个变量 x, y 和 z ,如果当变量 x, y 在某平面区域 D 内任取一组值时,变量 z 按照一定的规 律 f ,总有唯一确定的数值与之对应,则称 z 为 x, y 的
二元函数,记作 z f (x, y) ,其中 x, y 称为自变量,
x zfx(x,y), y zfy(x,y)
若这两个偏导数仍存在偏导数,则称它们是z = f ( x , y )
的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导
数:
x
( z ) x
2z x2
fxx(x,y);
(z) y x
2z x y
fxy(x,y)
x
(
z y
)
2z yx
fyx(x,
解: xzexy(xy)xexy yzexy(xy)y exy
2z x2
x
(z) x
exy(xy)xexy
z2 xy
y
( z ) x
exy(xy)yexy
z2 (z) yx x y
exy(xy)x exy
2z z
y2
y
() y
exy(xy)yexy
例6. 证明函数 u1,r x2y2z2满足拉普拉斯 r
偏导数
一、 偏导数概念及其计算 二 、高阶偏导数
定义: 设函数 zf(x,y)在点 (x0,y0) 的某邻域内
极限
lx i0m f(x0x,y0 x)f(x 0 ,y0)
存在, 则称此极限为函数 z f( x ,y )在 ( x 0 ,y 点 0 )对 x
的偏导数,记为
z x
(x0,
y0
);
x
3、 求二元函数 z esin x cos y 的一阶偏导数。 4、 求二元函数 z y ln( x 2 y 2 ) 的一阶偏导数。
5、 已知二元函数 z ln( x y ) ,证明:关系式
x z y z 1 x y 2
二、高阶偏导数
设 z = f (x , y)在域 D 内存在连续的偏导数
y);
y(yz)y2z2fyy(x,y)
类似可以定义更高阶的偏导数.
例如,z = f (x , y) 关于 x 的三阶偏导数为
x
(x22z)
3z x3
z = f (x , y) 关于 x 的 n –1 阶偏导数 , 再关于 y 的一阶
偏导数为
y
(
n
x
1 n
z
1
)
nz x n1 y
例 5. 求二元函数 z e xy 的二阶偏导数。
数对某个自变量的偏导数,只需将另一个 自变量看做常量,然后利用一元函数求导 公式和求导法则即可。
例1 . 求 zx23xyy2在点(1 , 2) 处的偏导数.
解: z
x
z x
(1, 2)
2x3y,
z y
3x2y
2 1 3 2 8 ,
z y
(1, 2)
31227
例2. 设 zxy(x0,且 x1 ) , 求证
相关文档
最新文档