高三数学对数函数与指数函数的导数1
高三数学:5对数函数与指数函数的导数 课件

解此类题应注意: (1)分清是由哪些函数复合而成的. (2)用逐步的方法来进行求导.
例4:设一质点的运动规律为 se2tsi n t () ,,为
常数,试求t=1/2时质点运动的速度v0.
解: v s t ( e 2 t) sit n ) ( e 2 t[st in ) ] (
例5:求曲线y=xlnx的平行于直线x-y+1=0的切线方程. 解:设该切线与曲线相切的切点为(x0,x0lnx0).
y x ln x x (lx ) n ln x x 1 ln x 1 . x
故曲线在点(x0,x0lnx0)处的切线斜率为lnx0+1. 由已知可得:lnx0+1=1,即x0=1,故切点为(1,0). 所以所求切线方程为y-0=x-1,即x-y-1=0.
解:(1) y [f(lx ) n ]f(lx ) n (lx ) n 1f(lx ) n.
x
(2) y [f(e x2)]f(e x2)(e x2)f(e x2)(e x2)( x2)
2x x e 2f(e x2). (3)y [f(ex)]ef(x)f(ex)[ef(x)]f(ex)exef(x)
y1 21lg x e2(1x2)x x2lg e1.
(3) y 2 e 2 x c 3 x o e 2 x ( s 3 s3 x i ) e n 2 x ( 2 c 3 x o 3 s3 s x i )n .
(4) y a 5 xln a (5 x ) 5 a 5 xln a .
例3:已知f(x)为可导函数,试求下列函数的导数: (1)y=f(lnx); (2)y=f( e x 2); (3)y=f(ex) e f ( x.)
高三数学对数函数与指数函数的导数1

对数函数与指数函数的导数1.doc

3.5 对数函数与指数函数的导数(1)教学目标:⒈掌握函数的导数公式;⒉能应用对数函数的求导公式求简单的初等函数的导数.教学重点:结合函数四则运算的求导法则及复合函数的求导法则,应用对数函 数的求导公式求简单的初等函数的导数..教学难点:对数函数求导公式的灵活运用. 教学过程:一、复习引入1.几种常见函数的导数公式.⑴0'=C (C 为常数); ⑵1)'(-=n n nx x (Q n ∈); ⑶x x cos )'(sin =; ⑷x x sin )'(cos -=; ⑸x xx 22sec cos 1)'(tan ==; ⑹221(cot )'csc sin x x x =-=-. 2.两个可导函数的和、差、积、商的导数计算法则.⑴'')'(v u v u ±=±; ⑵'')'(uv v u uv +=; ⑶)0(''2'≠-=⎪⎭⎫ ⎝⎛v v uv v u v u . 3.对于复合函数的导数.复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数.即:x u x u y y '''⋅=.二、新课讲授 ⒈对数函数的导数我们首先研究自然对数x y ln =的导数.根据重要极限e xx x =+∞→)11(lim 或e x x x =+→10)1(lim ,我们可以得到下面的公式:1(ln )'.x x=证明:∵ x x f y ln )(==∴ x x x x x x y ∆+=-∆+=∆lnln )ln()1l n (xx∆+=,∴ )1l n (1x x x x y ∆+∆=∆∆=)1ln(1x xx x x ∆+∆x xx x x ∆∆+=)1ln(1∴ =∆∆=→∆x y y x 0lim 'x xx x x x ∆→∆∆+)1l n (l i m 10])1(lim ln[10x xx xx x ∆→∆∆+= xe x 1ln 1==. 即 xx 1)'(ln =. 根据上面证明的公式,我们还可以得到下面的公式:证明:根据对数的换底公式e xx a a x x a a l o g 11ln 1)'ln ln ()'(log =⋅==.三、例题例1求)132ln(2++=x x y 的导数. 例2求21lg x y -=的导数.说明:真数中若含乘方或开方、乘法或除法的,均可先变形再求导. 实际上,解法1中u y lg =,v u =,21x v -=,取了两个中间变量,属于多重复合.而解法2中u y lg 21=,21x u -=,仅有一次复合,所以其解法显得简单,不易出错.例3 求下列函数的导数:⑴)1(log 22x x y ++=; ⑵2211ln xx y -+=; ⑶xxy 2sin ln=; ⑷)(sin ln 2x e y -=. 三、课堂练习 求下列函数的导数:1.y=xlnx;2.y=lg(sinx)(x2-2); 4.y=3.y=loga四、课时小结:⑴要记住并用熟对数函数的两个求导公式;⑵遇到真数中含有乘法、除法、乘方、开方这些运算的,可以先利用对数运算性质将函数解析式作变形处理,然后再求导,以使运算较简便.五、作业同步练习 X03051。
高中数学选修本(理科)对数函数与指数函数的导数

对数函数与指数函数的导数——指数函数的导数●教学目标(一)教学知识点指数函数的导数的两个求导公式:(e x )′=e x .(a x )′=a x ln a .(二)能力训练要求1.理解掌握指数函数的导数的两个求导公式.2.在学习了函数的四那么运算的求导法那么与复合函数的求导法那么的基础上,应用指数函数的求导公式,能求简单的初等函数的导数.(三)德育渗透目标培养学生灵活运用知识和综合运用知识的能力.●教学重点结合函数四那么运算的求导法那么与复合函数的求导法那么,以及四种基本初等函数的求导公式,应用指数函数的求导公式.●教学难点指数函数的求导公式的记忆,以及应用指数函数的求导公式.●教学方法讲练结合.●教学过程Ⅰ.课题导入[师]先复习一下四种基本初等函数的求导公式.常数函数,幂函数,三角函数,对数函数.[生]C ′=0(C 是常数)(x n )′=nx n -1(n ∈R )(sin x )′=cos x (cos x )′=-sin x .(ln x )′=x 1 (log a x )′=x1log a e . [师]这节课要学习第五种基本初等函数的求导公式,就是指数函数的求导公式.Ⅱ.讲授新课(一)指数函数的导数[板书]1.(1)(e x )′=e x(2)(a x )′=a x ln a[师]这两个公式的证明需要用到反函数的求导法那么,这超出了目前的学习X 围,所以这里就不再证明.只需记住它的结论,以e 为底数的指数函数的导数是它本身,以a 为底数的指数函数的导数是它的本身乘以ln a .我们利用这两个公式就可以求一些关于指数函数的导数了.(二)课本例题[例3]y =e 2x cos3x 的导数[分析] 这题先要用到两个函数乘积的求导法那么,再要用到复合函数的求导法那么.解:y ′=(e 2x )′cos3x +e 2x (cos3x )′=e 2x (2x )′cos3x +e 2x (-sin3x )(3x )′=2e 2x cos3x -3e 2x sin3x=e 2x (2cos3x -3sin3x )[例4]求y =a 5x 的导数.[分析]这题只需用复合函数的求导法那么.解:y ′=(a 5x )′=a 5x ln a ·(5x )′=5a 5x ln a .(三)精选例题[例1]求函数y =e -2x sin3x 的导数.[学生分析]先用积的求导法那么,(uv )′=u ′v +uv ′,再用复合函数的求导法那么求导,y x ′=y ′u u ′x . [学生板演]解:y ′=(e -2x )′sin3x +e -2x ·(sin3x )′=e -2x (-2x )′sin3x +e -2x cos3x (3x )′=-2e -2x sin3x +3e -2x cos3x=e -2x (3cos3x -2sin3x ).[例2]求y =xe x3sin 2-的导数. [学生分析]先用商的求导法那么2)(v v u v u v u '-'=',再用复合函数求导法那么求导.y ′x = y ′u ·u ′x .[学生板演]解:y ′=(x e x 3sin 2-)′=222)3(sin )3(sin 3sin )(x x e x e x x '-'-- xx x e x x e x e x x x 3sin )3cos 33sin 2(3sin 33cos 3sin )2(22222+-=⋅--=--- [例3]求y =x sin x 的导数.y =ln x sin x =sin x ·ln x两边对x 求导y y '=cos x ·ln x +sin x ·x1 ∴y ′=(cos x ln x +x x sin )y =(cos x ·ln x +xx sin )·x sin x . y =f (x )都可以用指数函数的形式表示出来y =)(log x f a a,为了方便起见,我们取a =e .∴y =)(ln x f e .这道题转化成指数函数的形式怎么做呢?[学生板演]解:由所给函数知x >0∵x x x x e e x y x ln sin ln sin sin ⋅===∴y ′=)ln (sin )(ln sin ln sin '⋅⋅='⋅⋅x x e e x x x x)sin ln (cos )sin ln (cos sin ln sin xx x x x x x x x e x x x +⋅=+⋅=⋅ [师]当用第二种方法求导的时候,要说明一下x >0,∵x sin x 是幂函数的形式,所以x >0,否那么x n (xx sin x >0,所以在用第一种方法求导时,等于默认了y >0.[师生共同总结]形如(u (x ))v (x )的幂指函数,可以用两种方法求导,其一,是两边取对数后再对x 求导;其二,是把它化成指数函数与其他函数复合.[例4]求y =32x lg(1-cos2x )的导数.方法一:y =32x lg(1-cos2x )=9x lg(1-cos2x )y ′=9x ln9·lg(1-cos2x )+9xx e2cos 1lg -·(1-cos2x )′ =9x ln9·lg(1-cos2x )+9xx e2cos 1lg -sin2x ·2. =9x ·ln9·lg(1-cos2x )+29x ·lg e ·xx x 2sin 2cos sin 2 =9x ·2ln3·lg(1-cos2x )+29x ·lg e ·cot x=2·9x [ln3·lg(1-cos2x )+lg e ·cot x ]方法二:y ′=(32x )′lg(1-cos2x )+32x ·[lg(1-cos2x )]′=32x ·ln3·2lg(1-cos2x )+32x ·x e 2cos 1lg -·sin2x ·2=2·32x ln3·lg(1-cos2x )+2·32x lg e ·cot x=2·32x [ln3·lg(1-cos2x )+lg e ·cot x ][例5]求y =f (e x )e f (x )的导数,其中f (x )为可导函数.解:y ′=[f (e x )]′e f (x )+f (e x )·(e f (x ))′=f ′(e x )·e x e f (x )+f (e x )·e f (x )·f ′(x )=e f (x )[f ′(e x )e x +f (e x )·f ′(x )].[例6]求y =2x x 的导数.(请两位同学用两种不同的方法做)(方法一)解:两边取对数,得ln y =ln2+x ln x .两边对x 求导y 1y ′=(x )′ln x +x (ln x )′=21x 21-ln x +x ·x 1 )2(ln 21ln 21212121+=+=---x x x x x ∴y ′=)2(ln 2)2(ln 212121+=⋅+--x x x x x x x (方法二)解:x x x x e e xy x ln 2ln 2ln 2+===. (方法二)解:x x x x e e xy x ln 2ln 2ln 2+=== y ′=)1ln 21()ln (21ln 2ln ln 2ln xx x x e x x e x x x x ⋅+='⋅-++)2(ln )2(ln 2122121+=+⋅=--x x x x x x x [师]比较这两种方法,是不是难易程度差不多,都只要对x ln x 求导就可以了.所以碰到这类题目,两种方法可以任选其一.Ⅲ.课堂练习.求以下函数的导数.1.y =x 2e x .解:y ′=(x 2e x )′=2xe x +x 2e x =(2+x )xe x2.y =e 3x解:y ′=(e 3x )′=e 3x ·3=3e 3x3.y =x 3+3x解:y ′=3x 2+3x ·ln3.4.y =x n e -x解:y ′=nx n -1e -x +x n e -x ·(-1)=(n -x )x n -1e -x .5.y =e x sin x解:y ′=e x sin x +e x cos x =e x (sin x +cos x )6.y =e x ln x 解:y ′=e x ln x +e x ·x 1=e x (ln x +x 1)7.y =a 2x +1解:y ′=a 2x +1ln a ·2=2a 2x +1·ln a8.y =2〔22x xe e -+〕解:y ′=22222)2121(x x x xe e e e ---=-⋅.f (x )=2x e +1那么f ′(x )=(C )A.(x 2+1)2x e B.(x 2+1)12+x e x 12+x e xe 2x解:(2x e +1)′=12+x e ·2x =2x 12+x e .10.假设f (x )=e cos x .求f ′(x ).解:f ′(x )=(e cos x )′=e cos x ·(cos x )′=-sin x ·e cos x .y =xe 1-cos x 的导数. 解:y ′=(xe 1-cos x )′=e 1-cos x +xe 1-cos x ·(1-cos x )′ =e 1-cos x +xe 1-cos x ·sin x =(1+x sin x )e 1-cos xy =2x e +ax 导数.解:y′=(2x e+ax)′=2x e·2x+a=2x2x e+a.Ⅳ.课时小结这节课主要学习了指数函数的两个求导公式.(e x)′=e x,(a x)′=a x ln a,以及它们的应用.还有形如(u(x))v(x)的函数求导有两种方法:其一,两边取对数,再两边对x求导,其二是把它化成指数函数与其他函数复合,再进行求导.Ⅴ.课后作业(一)课本P127~128.习题3.5 2、3(1)(3).近似计算.128~129131~1322.预习提纲.(1)自变量的微分概念、表示.(2)函数的微分概念、表示.(3)Δy与y的微分的关系.(4)导数用微分如何表示.(5)求微分的方法.(6)微分的四那么运算法那么.●板书设计。
高三数学对数函数与指数函数的导数1

有这么一种传说。隋炀帝的游船到了扬州的西郊,看到一座小桥,随口便问一句:这叫什么桥?一个宠妃说:游船上的公主、妃子有二十三个,可谓二十三娇,就叫二十三桥吧。"娇"和"桥"音韵相 通,字形亦相似。一个太监急忙报告皇上,船上有二十四娇,一个娘娘肚子里还有一娇……因此,这一座桥就叫二十四桥了。 还有人说,二十四桥有24级台阶,长24米,宽2.4米,两边护栏上的图案有24个,所以才有这芳名。 《扬州鼓吹词》说"是桥因古之二十四美人吹箫于此,故名"。 现今,扬州平山堂西南通往市区的一条路叫念泗路,又作念四路。也有人写作西湖,便是急着要去看二十四桥。澳门彩开户 瘦西湖,因桥多而闻名。
桥之所以多,怕是源于这一湖的“瘦”字。
湖上的桥,风格迥异,形状、颜色、材质都不尽相同。一座座,若明珠一般,散养在湖面上。桥上行人如织,桥下千帆过尽,这才是水乡的景致。扬州虽不在江南,看了偏觉极有江南的韵味,极有 江南温婉的气质。
高三数学对数函数与指数函数的导数1

高三数学复合函数的导数、对数与指数函数的导数人教版知识精讲

高三数学复合函数的导数、对数与指数函数的导数人教版【本讲教育信息】一. 教学内容:复合函数的导数、对数与指数函数的导数二. 本周教学重、难点: 1. 复合函数的求导法则设)(x u ϕ=在点x 处有导数)(x u x ϕ'=',)(u f y =在点x 的对应点u 处有导数)(u f y u '=',则))((x f ϕ在点x 处也有导数,且x u x u y y '⋅'='或)()())((x u f x f x ϕϕ''='2. 对数函数的导数 (1)x x 1)(ln =' (2)e xx a a log 1)(log =' 3. 指数函数的导数(1)xxe e =')( (2)a a a xxln )(='【典型例题】[例1] 求下列函数的导数(1)32)2(x x y += (2)245x e y +=(3)32c bx ax y ++=(4)312)(sin x y =(5))1ln(2x x y ++= (6)x x y 33log =(7)xxy 2sin 5cos =解:(1)22222)2)(1(6)22()2(33x x x x x x u u y ++=++='⋅=' (2)x e u e y x u 8245⋅='⋅='+(3))2()(313132232b axc bx ax u u y +++='='--(4)3222232232)(sin 3cos 22cos )(sin 31)2(cos 31x x x x x x x v u v u y y x v u =⋅=⋅⋅='⋅'⋅'='-- (5)])1(1211[11)1(1122222'+++++='++++='x x x x x x x x y 22211)11(11x x x x x +=++++= (6))(log log 1log 33323332ex x e xx x x y =⋅+='(7)2)2(sin )2(sin 5cos 2sin )5(cos )2sin 5cos (x x x x x x x y '-'='=' 2)2(sin 2cos 5cos 22sin 5sin 5x xx x x ⋅-⋅-=[例2] 若)5ln()(-+=x x x f ,)1ln()(-=x x g 解不等式)()(x g x f '>'解:511)(-+='x x f 11)(-='x x g ∵ )()(x g x f '>' ∴ 11511->-+x x ∴ 0)1)(5()3(2>---x x x ∴ 5>x 或1<x ∵ 两函数定义域为⎩⎨⎧>->-0105x x ∴ 5>x∴ 解集为(5,∞+)[例3] 设曲线)0(≥=-x e y x 在点M (te t -,)处的切线l 与y x ,轴围成的三角形面积为)(t s ,求切线l 的方程。
高三数学对数函数与指数函数的导数1

y
1 2
lge 1 x2
x2 )
1 2
(1
lge x 1 x2 1 x
lg(1 x2 );
x2 )
xlge x2 1
.
2
x lge x2 1
.
(3) y 2e2x cos3x e2x(3sin3x) e2x(2cos3x 3sin3x).
(4) y a5 x ln a (5 x) 5a5 x ln a.
3.5对数函数 与指数函数 的导数
一、复习与引入:
1. 函数的导数的定义与几何意义. 2.常见函数的导数公式. 3.导数的四则运算法则. 4.复合函数的导数公式.
5.由前面几节课的知识,我们已经掌握了初等函数中的 幂函数、三角函数的导数,但还缺少指数函数、对数 函数的导数,而这就是我们今天要新学的内容.
ln(1
x ) x
1 x
x x
ln(1
x ) x
1 x
ln(1
x
)
x x
,
x
y
lim
y
1
lim
ln(1
x
)
x x
1
ln[ lim (1
x
)
x x
]
x0 x x x0
x
x x0
x
1 ln e 1 .
x
x
证:利用对数的换底公式即得:
(log a
x )
( ln x ) ln a
1 ln a
有了指数函数、对数函数的导数,也就解决了初等函 数的可导性.
二、新课——指数、对函数的导数:
1.对数函数的导数:
1
下面给出公式的证明,中间用到重要极限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[判断题]一般来说,人们随着知识,能力的提高和增强,会自己作出肯定的回答和评价,也希望别人认可并得到他人,集体和社会的尊重与爱护,这就产生了自尊心理.在这里,自我承认往往比社会承认更重要.A.正确B.错误 [填空题]主断路器连接于受电弓及主变压器原边绕组之间,安装在机车车顶中部,它是交流电力机车电源的()和机车的总保护。 [单选]肝局灶性结节增生(FNH)为良性病变,通常是中等或低回声,在使用造影剂后主要特征是:A.缓慢的血管分布和中央向周边扩散趋势,动脉、门静脉、延迟相均呈高回声区B.快速的血管分布和中央向周边扩散趋势,动脉、门静脉、延迟相均呈低回声区C.快速的血管分布和中央星形瘢痕,在 [单选]时间分辨荧光免疫测定的特点不包括()A.标记物荧光衰变时间长B.测定范围较窄C.标记物为镧系元素D.能排除非特异性荧光的干扰E.荧光强,灵敏度高 [单选]下列选项中,按配送中心功能划分配送中心的是()。A.城市配送中心B.流通加工配送中心C.共同型配送中心D.第三方配送中心 [单选]企业在办理出口退(免)税资格认定时,按照规定报送有关材料后,税务机关和对资料是否齐全、是否符合法定形式,对于符合条件的()。A、当场受理,并在1个工作日内转下一环节,由税务管理部门进行调查核实B、当场受理,并在1个工作日内将相关资料信息转下一环节按规定程序审 [单选]对板翅式可逆式换热器,一般允许的热端温差为()A、2-3℃B、1-2℃C、3-5℃ [单选]为明确骨肿瘤的诊断,下列最有价值的检查是()A.X线检查B.MRIC.核素骨显像D.碱性磷酸酶测定E.组织病理检查 [单选]行政责任的特点里,法律责任区别的对象是()。A.内部责任B.行政相对人的责任C.民事、刑事责任D.道义责任 [单选]就法律关系的主体而言,债的主体()。A.双方都是特定的B.双方都不是特定的C.债权人是特定的,债务人是不特定的D.债务人是特定的,债权人是不特定的 [单选,A1型题]下列各项,属于火淫证临床表现的是()。A.皮肤干燥B.干咳少痰C.口渴喜饮D.大便干燥E.小便短黄 [问答题,案例分析题]某企业预投资建设某化工项目,设计生产能力为4.5×105t。已知生产能力指数为3×105t的同类项目投入设备费为30000万元,设备综合调整系数为1.1。该项目生产能力指数估计为0.8,该类项目的建筑工程费是设备费的10%,安装工程费为设备费的20%,其他工 [单选]能将电压放大10000倍的放大器用电平表示其增益是()。A、40dBB、60dBC、80dBD、100dB [单选]癔症性痉挛发作与癫痫发作的鉴别要点是()。A.意识障碍B.角弓反张C.发作的突然性D.发作时间长短E.痉挛的严重程度 [单选]下列分析中,()应考虑关联效果,对项目涉及的所有社会成员的有关效益和费用进行全面识别。A.社会分析B.风险分析C.经济分析D.经济影响分析 [单选]拟定沿岸航线,确定航线离危险物的安全距离时可不考虑下列哪项因素()。A.船上货物装载情况B.能见度的好坏C.风流影响情况D.测定船位的难易 [单选]颅后窝骨折的特征性表现为()A.脑脊液鼻漏B.失明C.Battle征D.失嗅E.搏动性突眼 [判断题]18--8型不锈钢的线膨胀系数比较大,所以焊后的残余变形较大。A.正确B.错误 [单选]办理个人教育贷款时,受理和调查环节面临的操作风险不包括()。A.借款申请人的主体资格是否符合银行个人教育贷款的相关规定B.借款申请人所提交的材料真实性C.对于商业助学贷款而言,借款申请人的担保措施是否足额、有效D.贷款业务是否按规定办妥相关评估、公证等事宜 [名词解释]起动风速 [配伍题,B1型题]不全流产</br>不孕症了解卵巢功能</br>证实或排除子宫内膜癌</br>A.月经来潮前或来潮6~12h内刮宫B.分段诊断性刮宫C.月经周期第5天刮宫D.先用抗生素控制感染再刮宫E.急诊刮宫 [单选]下述"Smith骨折"知识,哪项不对()A.手腕"枪刺样"畸形B.可合并尺骨茎突骨折C.可有下尺桡关节脱位D.桡骨近侧3cm以内骨折E.骨折远端向掌侧移位 [单选,共用题干题]男,75岁。眩晕日久不愈,精神萎靡,腰酸膝软,少寐多梦,健忘,两目干涩,视力减退,舌红少苔,脉细数。(假设信息)若兼肝阳上亢,可选用()A.龙胆泻肝汤B.大补元煎C.天麻钩藤饮D.麦门冬汤E.济生肾气丸 [单选]热力学第一定律的物理意义是体系的内能增量等于体系吸入的热与环境对体系所做的功之和。其内能用下列哪一项表示()。A、Q;B、U;C、W;D、H。 [单选]SDH日常维护项目的周期?()A.每日一次B.每周一次C.每月一次D.每季一次 [单选]脑栓塞的临床表现不正确的是()。A.患者较年轻B.多有风湿性心瓣膜病史C.起病急骤D.多有脑膜刺激征E.可有偏瘫失语 [名词解释]单级水泵 [单选]对于钢筋混凝土用砂,其氯离子含量不得大于()。A.0.02%B.0.06%C.0.08% [单选]临床应用的脑电图机不应少于()A.8个导程B.16个导程C.32个导程D.64个导程E.无要求 [单选]根据《公司法》的规定,关于有限责任公司的设立,下列说法符合规定的是()。A.有限责任公司注册资本最低额为两万元B.公司的股东人数不能少于50人C.全体股东的货币出资额不得低于其注册资本的30%D.全体股东的首次出资额不得低于其注册资本的30% [单选]某营业厅原来装有一只照明表,一只动力表,由于执行商业电价后,电价相同,客户要求将两上表的容量合在一起,该客户办理()手续。A.并户B.增容C.改类D.迁址 [单选,A1型题]WHO给健康下的定义是()A.无病就是健康B.身体各器官结构完好,功能正常C.没有疾病,身体又不虚弱D.身体、心理和社会适应的完好状态,而不仅仅是没有疾病和虚弱E.身体强壮,精神饱满 [多选]性病性淋巴肉芽肿临床上可分为三期,包括()A.生殖器初疮B.腹股沟综合征C.生殖器-直肠-肛门综合征D.软下疳 [单选]在正文中,当需要说明引用内容出处时,应把引用的参考文献编号连同方括号,写在标注的:()A、右上角B、右下角C、左上角D、左下角 [单选,A1型题]体重指数(BMI)计算公式是指()A.体重(kg)/身高(m)B.体重(kg2)/身高(m)C.体重(kg2)/身高(m2)D.体重(kg)/身高(m2)E.以上都不是 [单选]10KV线路的过流保护是该线路的()。A.近后备保护B.远后备保护C.主保护 [单选]如何切入自动返航模式。()A、shift键↑+photo↓B、shift键↑+waypoint键↑C、waypoint键↑D、shift键↑+waypoint键↓ [名词解释]乡村家庭和城市家庭功能的异同 [多选]某项目,建设单位甲公司在银行办理了在建工程抵押,银行同时要求建设单位提供保证人。保证方式没有约定。工程竣工后,甲建设单位无力偿还贷款5000万元,则银行有权()。A.直接与甲建设单位协议折价B.向法院起诉拍卖该工程项目后优先受偿C.直接变卖该工程项目D.直接转移 [单选]仲裁案件当事人甲公司与乙公司在案件审理过程中通过协商,就已经提交仲裁的争议达成和解协议。随后申请人甲公司撤回了仲裁申请。后甲公司反悔,此时甲、乙两公司的纠纷应如何解决?()A.甲公司只能另外通过诉讼解决纠纷B.甲公司只能与乙公司重新达成仲裁协议再申请仲裁C.甲
Байду номын сангаас